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The alumina concentration in the bath plays a fundamental role on cell operation. Local depletion 
may lead to an anode effect when using carbon anodes. A mathematical model describing the alumina 
convection-diffusion process in the bath coupled to the cell magneto-hydrodynamic (MHD) in the 
presence of small bubbles is presented. Small bubbles may be assumed when slotted anodes are used. 
The relative importance of the velocity felds generated by the magnetic effects and/or the small bubbles 
on the alumina concentration in the bath is discussed.
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Introduction

The aluminum industry is continuously increasing the productivity of electrolysis cells by 
increasing the line current. In order to keep an acceptable anode current density, the anode length is 
almost systematically increased. As a result the central channel (distance between the anodes in the 
center of the cell) and the side channels (distance between the anodes to the side lining) are reduced. 
The channel geometry, Lorentz force fields and bubbles have an important impact on the bath velocity 
field. We will see that the velocity field plays a key role on the alumina distribution. In order to keep an 
acceptable energy input when increasing the current, the anode to cathode distance (ACD) is reduced as 
much as possible before reaching the Magneto-Hydrodynamic constraints. This means a further bath 
volume reduction. The increase of current imposes an increase of alumina feeding rate simultaneously 
with a reduction of bath volume. Therefore, the question of dissolution, diffusion and alumina transport 
becomes an important element for avoiding underfeeding leading to an increase of anode effects (AE) 
frequency. Alumina dissolution is a very complex phenomena in which the bath chemical composition, 
bath temperature, alumina temperature and alumina properties play an important role [1, 2, 3]. In this 
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paper we assume that the dissolution is instantaneous when the alumina reaches the bath surface and 
concentrate the study on the diffusion and transport processes. The purpose of the study is to optimize 
the feeding quantities (feeding frequency), alumina feeders location and the number of feeders to 
minimize the number of AE and avoid sludge.

Bath velocity field in presence of bubbles  
and Lorentz force field: Theory

When the number of bubbles produced, per m2 and per second, is too large, a numerical approach 
describing the motion of each bubble separately should be disregarded.

There are essentially two standard ways to overcome this difficulty. The first consists in performing 
some kind of averaging over the equations and over the corresponding fields. The second bypasses the 
averaging and directly postulates the flow equations for each phase.

One of the main difficulties encountered when performing an averaging process is related to 
the possible jumps that fields can suffer at the boundaries between the two phases. One way to 
overcome this problem, see for example [4], consists in extending the domain of definition of each 
motion equation to the domain occupied by the two phases. This is achieved by multiplying each 
equation by the characteristic function corresponding to its domain of definition. Derivatives are 
then performed in the sense of distributions allowing to keep track of these discontinuities in the 
averaging process.

Whatever choice we make, the resulting equations will contain terms which reflect the interaction 
between the two phases. The exact shape of these terms are not known; they have to be defined through 
constitutive equations.

Motion equations

Let Ωl and Ωg be the domains containing the fluid and the gas respectively, with corresponding 
characteristic functions χl and χg = 1 – χl. χl satisfies (see [4]),

∂t χl + v · ∇χl = 0,	 (1)

where v is the velocity field. < f > being the average of an arbitrary field f, we set
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.~~ >χ∇τ<=τα⋅∇+∇α− gggggg  p                                       (10) 

Neglecting the surface tension effect and handling the jump conditions between the two 

phases in the setting used for the equations we get 

 

sliplg v~v~v~ =−  and ( ) ,01 =>χ∇⋅τ−τ<  lg                                    (11) 

where slipv~ is a new field which takes into account for the averaging on the jump conditions. 

Second approximation  

We now make the following assumptions 

 

( ) .0~
2  g =τα⋅∇                                         (12) 

and 

( ) .0v =α slipldiυ                                (13) 

We moreover introduce the new  field  fint defined by 

 

.12 >χ∇⋅τ<=>χ∇⋅τ<= ggint    f                         (14) 

With this assumption (10) becomes 

 

.0~
2 =+∇α− intg fp                                          (15) 

From (3) and (13) one draws 

 

.0v1 = diυ                                        (16) 

( ) .0v~ =α+α∂ gggt diυ                                         (17) 

Constitutive equations 

We will now make the assumption that the field (14), i.e. fint, is a function of slipv~ only. 

Following [5] we assume that 

 

,v~slipgint  f λα=                                              (18) 

where λ is a constant. Introducing this expression into (15) yields, since by assumption ,~~
21 p p =  

 

.v~~
1 slipgg p λα=∇α−                                          (19) 
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The coefficient λ has to be determined experimentally. 

 

The model 

With the above results we are now ready to give the equations on which our model is 

leaning. Fluid averaged equations 
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Boundary conditions on the different fields have to be added. 

 

Alumina diffusion and convection: Theory 

Let 3R  ⊂Ω be the domain representing the cell, Ωb be the bath, and Ωa the anodes. 

 

Current density 

The current density distribution in the bath is a function of alumina concentration, and is 
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Alumina diffusion and convection: Theory

Let Ω⊂R3 be the domain representing the cell, Ωb be the bath, and Ωa the anodes.
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with following the boundary conditions (j�n) = j0 on the anodic rod, on the bath-

metal interface, and   elsewhere. 

The current j = (j1; j2; j3) is then computed in the following way to avoid rough 

approximations. 
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Alumina distribution 

In this study, it is assumed that the alumina feeding is known, and that the dissolution is 
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where 

– c is the alumina concentration in mol/m3, 

– α  is the anisotropic diffusion coefficient. A value of 0,5 m2/s was determining the 

Reynolds mean tensor. It also leads to an average alumina concentration reflecting industrial cells. 

– v is the velocity field in Ωb induced by the bubble motion, and the MHD. 

The boundary and initial conditions have the following form. 

– The concentration c is given on the feeder. 

– The concentration flux on the anode and the bath-aluminum interface is ( ) ;0=β+
∂
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α nj
n
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Let us decompose the domains Ω, and Ωb into classical tetrahedral finite element mesh. For the 
numerical simulations of problems (33), (29), and (34), the following algorithm is used.

– Initialization
An initial alumina concentration distribution c0 is given at time t = 0. Let τ be the time step.
– Iterations
For time tm = m · τ, if 
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d) A BDF scheme of order 2 [6] is used for the time discretization of the concentration 

equation (34). Moreover a Petrov-Galerkin streamline diffusion method is applied for the advection 

term [7, 8]. We get the following equation (δ small parameter). 
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Alumina diffusion and convection:  

Industrial cell

In this section some numerical result for the computation of the alumina distribution in the bath 
are presented. On the feeders, the alumina concentration is set to 5 % of the bath weight. As a stationary 
solution is presented, continuous feeding is assumed. The impact of dump feeding could easily be 
analysed.

Figure 1 correspond to the stationary alumina distribution, when the velocity is neglected. The 
concentration is shown under the anodes. The two feeders locations appear clearly in the figure. The 
asymmetry of the diffusion pattern reflects the larger channel width at the feeders. Figure 2 shows 
the alumina concentration under the same conditions at metalbath interface level. Away from the 
feeders, at a distance larger than about one anode width, the concentration is close to 2,55 %. The 
vertical variation of the alumina concentration is 0:5 % under the feeders. It is negligible away from 
the feeders.

In fig. 3, the velocity streamlines induced by the MHD are presented.
The impact of this velocity field is shown in fig. 4.
The previous cases did not take the bubbles into account. It is well known that they have an 

important effect on the velocity field. Moreover the considered cell has slotted anodes. This also has an 
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impact on the velocity. Figure 5 considers the case when the velocity field consists of the effects of the 
MDH, the bubbles, and the slots in the anodes.

From the different figures, the alumina concentration field appears as slightly modified by the 
velocity field. However, when considering the concentration evolution, the time needed for reaching 
the stationary state is reduced by a factor 2 in any situation when the velocity field is acting. Therefore 
the velocity field plays an important role in the feeding process (alumina dumps).

To highlight the role of the velocity field, fig. 6 and 7 show the difference between the alumina 
concentration field due to the diffusion only and in presence of MHD velocity, resp. total velocity 
field.

The highest diааerences are observed at the ends of the cell, due essentially to the MHD effects. 
High negative values relate to high alumina concentration difference. The effect of bubbles and slots 
generate turbulence, homogenizing the concentration distribution.

Conclusions

A new model for the velocity field in presence of MHD, and small bubbles is developed. This 
velocity field is used to determine the evolution of the alumina concentration using a non-stationary 
convection-diffusion equation. This equation takes into account the feeding, and the Faraday law at 
the anodes and cathode.
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– The alumina concentration can vary up to 2,5 %. Typically a variation 1 % can be expected 
between anodes.

– The time needed to reach the stationary state due to the diffusion process only is twice the one 
for the case with MHD and bubbles effects velocity fields. It was found around two minutes.

– The velocity field has an important effect for the alumina distribution under the anodes. It helps 
to homogenize the alumina concentration.

– Bubbles and slots modify the velocity field which generate turbulences leading to increased 
homogenizing effects.
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Концентрация глинозёма в алюминиевом электролизере играет ключевую роль в технологических 
операциях. Локальное истощение может привести к анодному эффекту при использовании 
углеродных анодов. Представлена математическая модель, описывающая конвективно-
диффузионный перенос глинозёма, связанный с магнитогидродинамикой (МГД) в ванне при 
малых размерах пузырьков. Маленькие пузырьки можно получить при использовании анодов с 
пазами. Обсуждена относительная значимость полей скоростей, создаваемых магнитными 
эффектами и/или маленькими пузырями, на концентрацию глинозёма в электролизере.

Ключевые слова: моделирование концентрации глинозёма, взаимодействие газовых пузырьков, 
магнитогидродинамическое взаимодействие.


