$\sim \sim \sim$

УДК 547.754.83+543.442.3

Ацилирование по нитрозогруппе в перзамещенных *пара*-нитрозофенолах

Д.Г. Слащинин^а, Д.Ю. Лешок^в, Е.В. Роот^а, В.А. Соколенко⁶, М.С. Товбис^{*а}, С.Д. Кирик^{6,в}

 ^a Сибирский государственный технологический университет, Poccuя 660049, Красноярск, пр. Мира, 82
 ^b Институт химии и химической технологии Сибирского отделения Российской академии наук Poccuя 660049, Красноярск, ул. Маркса, 42
 ^e Сибирский федеральный университет, Poccuя 660041, Красноярск, пр. Свободный, 79⁻¹

Received 10.12.2012, received in revised form 17.12.2012, accepted 24.12.2012

При ацилировании 2,6-ди(алкоксикарбонил)-3,5-диметил-4-нитрозофенолята калия уксусным ангидридом и хлористым бензоилом получено 10 ранее неизвестных ацильных производных. Методами ЯМР ¹Н-спектроскопии и РСА доказано, что ацилирование идет по атому кислорода нитрозогруппы с образованием продуктов хиноидного строения. Поликристальное рентгеноструктурное исследование 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4-бензохинона выявило плоское строение молекулы с хиноидным кольцом в качестве центрального фрагмента. Метоксикарбонильные группы повернуты на 75,82 и 88,03 ° относительно плоскости молекулы. Водородные связи отсутствуют. Укладка молекул происходит по принципу плотнейшей упаковки в форме колонн.

Ключевые слова: гексазамещенные нитрозофенолы, хинонмонооксимы, ацилирование, рентгеноструктурный анализ поликристаллов, ИК-спектроскопия.

Известен ряд перзамещенных *пара*-нитрозофенолов, которые существуют в виде солей в мономерной нитрозоформе [1]. При их гидрировании образуются соответствующие *n*-аминофенолы [2], некоторые производные которых нашли применение в химикофармацевтической промышленности в качестве противоаритмических препаратов [3]. Несмотря на практическую значимость подобных *пара*-нитрозофенолов, их химические свойства мало изучены. Известно лишь, что они димеризуются [4], при окислении дают ни-

^{*} Corresponding author E-mail address: Tovbis@bk.ru

¹ © Siberian Federal University. All rights reserved

трофенолы [5]; недавно было показано, что при их алкилировании образуются алкиловые эфиры *n*-бензохинонмонооксимов [6].

Поэтому представляло интерес изучить реакцию ацилирования гексазамещенных нитрозофенолов. Для обычных нитрозофенолов, существующих в двух таутомерных формах, в виде нитрозофенола и *n*-бензохинонмонооксима (ПХМО), реакция ацилирования может протекать как по гидроксильной, так и по оксимной группе.

Например, из *n*-нитрозофенола и хлористого бензоила в диоксане образуется *n*-нитрозофенилбензоат [7, 8]. Аналогично протекает реакция калиевой соли *n*-нитрозофенола с уксусным ангидридом в ацетонитриле в присутствии краун-эфира (18-краун-6), давая *n*-нитрозофенилацетат [9]. В то же время при действии уксусного ангидрида на ПХМО или хлористого ацетила на серебряную соль ПХМО был получен ацетат *n*-бензохинонмонооксима [10]; такой же результат получили при ацилировании целого ряда замещенных ПХМО хлористым ацетилом [11]. Точно так же с образованием эфира по оксимной группе идет бензоилирование ПХМО хлористым бензоилом в пиридине [12] и в диэтиловом эфире в присутствии триэтиламина [13]. Исходя из приведенных данных нельзя предсказать заранее, как пройдет ацилирование для перзамещенных нитрозофенолов: по атому кислорода гидроксильной или нитрозогруппы.

В представленной работе мы провели реакцию калиевых солей 2,6-диалкоксикарбонил-3,5-диметил-4-нитрозофенолов с уксусным ангидридом и хлористым бензоилом и в результате впервые выделили 10 новых 1-ацетоксимино-3,5-ди(алкоксикарбонил)-2,6-диметил-1,4бензохинонов и 1-бензоилоксимино-3,5-ди(алкоксикарбонил)-2,6-диметил-1,4-бензохинонов, их строение подтверждено методами ЯМР ¹Н-спектроскопии, РСА в порошке и массспектрометрии.

Экспериментальная часть

А. Синтез

Ацилирование замещенных 2,6-ди(алкоксикарбонил)-3,5-диметил-4-нитрозофенолов

Ацилирование 2,6-ди(алкоксикарбонил)-3,5-диметил-4-нитрозофенолов вели при атмосферном давлении, перемешивании и нагревании. Для этого калиевую соль гексазамещенного *пара*-нитрозофенола (0,13 – 0,65 ммоль) суспендировали в среде абсолютного диэтилового эфира (2 мл), добавляли уксусный ангидрид либо хлористый бензоил в 1,1-кратном мольном избытке относительно калиевой соли *пара*-нитрозофенола. Реакцию вели в присутствии серной кислоты. Реакционную массу кипятили в круглодонной колбе с обратным холодильником и хлоркальциевой трубкой при перемешивании в течение 1,5–3 ч. Продукт переходил в эфирный раствор, цвет реакционной смеси изменялся от зеленого до желтого. Затем смесь охлаждали до комнатной температуры, выливали в 10–15 мл воды, в делительной воронке отделяли водный слой от органического. Водный слой экстрагировали 3 раза по 10 мл диэтиловым эфиром. Эфирные вытяжки объединяли с органическим слоем и промывали 10 %-ным раствором соды, затем водой. Эфир упаривали, а твердый остаток сушили в течение 1 ч под вакуумом в эксикаторе над безводным сульфатом натрия. Те продукты, которые выделялись в виде масла, предварительно затирали с гексаном, полученные кристаллы сушили под вакуумом. Все высушенные вещества очищали перекристаллизацией из петролейного эфира. Некоторые продукты оставались в виде желтого масла.

1-Ацетоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4-бензохинон (а).

Выход 60 %, желтые кристаллы, т. пл. 185 – 187 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 2.34 с (3H, PhCH₃), 2.37 с (3H, PhCH₃), 2.47 с (3H, NO-COCH₃), 3.93 с (6H, COO-CH₃). Масс-спектр, *m/z* (*I*_{отн}., %): 309 (7) [M]⁺, 267 (8), 147 (5), 121 (7), 67 (16), 43 (100), 39 (9).

1-Ацетоксимино-3,5-ди(этоксикарбонил)-2,6-диметил-1,4-бензохинон (b)

Выход 50 %, желтые кристаллы, т. пл. 123 – 125 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.371 т (3H, COOC₂H₅), 1.378 т (3H, COOC₂H₅), 2.34 с (3H, PhCH₃), 2.37 с (3H, PhCH₃), 2.47 с (3H, NOCOCH₃), 4.397 к (2H, COOC₂H₅), 4.401 к (2H, COOC₂H₅). Масс-спектр, *m/z* (*I*_{отн}., %): 337 (6) [M]⁺, 295 (20), 249 (6), 204 (5), 67 (13), 43 (100), 39 (5).

1-Ацетоксимино-3,5-ди(пропилоксикарбонил)-2,6-диметил-1,4-бензохинон (с)

Выход 53 %, желтые кристаллы, т. пл. 63 – 65 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.01 т (3H, COOC₃H₇), 1.02 т (3H, COOC₃H₇), 1.75-1.79 м (4H,2 COOC₃H₇), 2.34 с (3H, PhCH₃), 2.37 с (3H,

Рис. 1. ЯМР ¹Н-спектр 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4-бензохинона

PhCH₃), 2.47 с (3H, NOCOCH₃), 4.30 т (2H, COOC₃H₇), 4.32 т (2H, COOC₃H₇). Масс-спектр, *m/z* (*I*_{0TH}., %): 365 (9) [M]⁺, 323 (10), 203 (5), 121 (5), 67 (18), 43 (100), 41 (33), 39 (14).

1-Ацетоксимино-3,5-ди(бутилоксикарбонил)-2,6-диметил-1,4-бензохинон (d)

Выход 40 %, оранжевое масло, т. пл. 0 – 5 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.974 т (3H, COOC₄H₉), 0.975 т (3H, COOC₄H₉), 1.417-1.480 м (4H, 2 COOC₄H₉), 1.702-1.750 м (4H, 2 COOC₄H₉), 2.33 с (3H, PhCH₃), 2.37 с (3H, PhCH₃), 2.47 с (3H, NOCOCH₃), 4.34 т (2H, COOC₄H₉), 4.35 т (2H, COOC₄H₉). Масс-спектр, *m/z* (*I*_{отн}., %): 393 (2) [M]⁺, 351 (7), 277 (23), 263 (11), 221 (20), 204 (11), 175 (7), 147 (13), 67 (21), 57 (59), 43 (83), 41 (100), 39 (22).

1-Ацетоксимино-3,5-ди(амилоксикарбонил)-2,6-диметил-1,4-бензохинон (е)

Выход 70 %, желтое масло. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.92 т (6H, 2 COOC₅H₁₁), 1.36-1.38 м (8H, 2 COOC₅H₁₁), 1.72-1.74 м (4H, 2 COOC₅H₁₁), 2.32 с (3H, PhCH₃), 2.36 с (3H, PhCH₃), 2.46 с (3H, NOCOCH₃), 4.32 т (4H, 2 COOC₅H₁₁). Масс-спектр, *m/z* (*I*_{отн}., %): 421 (3) [M]⁺, 379 (10), 291 (27), 277 (6), 221 (26), 205 (13), 202 (23), 189 (11), 175 (8), 147 (23), 67 (34), 55 (40), 43 (100), 41 (85), 39 (27).

1-Бензоилоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4-бензохинон (f)

Выход 55 %, желтое масло. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 2.44 с (3H, PhCH₃), 2.60 с (3H, PhCH₃), 3.95 с (3H, COOCH₃), 4.04 с (3H, COOCH₃), 7.57 м (2H, NOCOPh), 7.72 м (1H, NOCOPh), 8.11 м (2H, NOCOPh). Масс-спектр, *m/z* (*I*_{отн}, %): 371 (15) [M]⁺.

1-Бензоилоксимино-3,5-ди(этоксикарбонил)-2,6-диметил-1,4-бензохинон (g)

Выход 50 %, желтое масло. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.38 т (3H, COOC₂H₅), 1.39 т (3H, COOC₂H₅), 2.42 с (3H, PhCH₃), 2.59 с (3H, PhCH₃), 4.40 к (4H, 2 COOC₂H₅), 7.56 м (2H, NOCOPh), 7.71 м (1H, NOCOPh), 8.10 м (2H, NOCOPh). Масс-спектр, *m/z* (*I*_{отн}., %): 399 (3) [M]⁺, 354 (6), 295 (7), 249 (6), 234 (6), 219 (22), 205 (18), 202 (12), 175 (8), 147 (22), 122 (30), 105 (65), 67 (66), 51 (60), 43 (22), 39 (32).

1-Бензоилоксимино-3,5-ди(пропилоксикарбонил)-2,6-диметил-

1,4-бензохинон (h)

Выход 86 %, оранжевые кристаллы, т. пл. 75 – 76 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.01 т (3H, COOC₃H₇), 1.02 т (3H, COOC₃H₇), 1.79 м (4H, 2 COOC₃H₇), 2.43 с (3H, PhCH₃), 2.60 с (3H, PhCH₃), 4.32 т (4H, 2 COOC₃H₇), 7.57 м (2H, NOCOPh), 7.70 м (1H, NOCOPh), 8.10 м (2H, NOCOPh). Масс-спектр, *m/z* (*I*_{отн}., %): 427 (3) [M]⁺, 205 (23), 147 (6), 122 (25), 105 (100), 67(32), 51 (47), 43 (96), 41 (70), 39 (32).

1-Бензоилоксимино-3,5-ди(бутилоксикарбонил)-2,6-диметил-1,4-бензохинон (i)

Выход 55 %, желтое масло. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.98 т (3H, COOC₄H₉), 0.99 т (3H, COOC₄H₉), 1.45 м (4H, 2 COOC₄H₉), 1.74 м (4H, 2 COOC₄H₉), 2.43 с (3H, PhCH₃), 2.60 с (3H, PhCH₃), 4.36 т (4H, 2 COOC₄H₉), 7.55 м (2H, NOCOPh), 7.71 м (1H, NOCOPh), 8.11 м (2H, NOCOPh). Масс-спектр, *m/z* (*I*_{отн}., %): 455 (10) [M]⁺.

1-Бензоилоксимино-3,5-ди(амилоксикарбонил)-2,6-диметил-1,4-бензохинон (j)

Выход 50 %, желтые кристаллы, т.пл. 45 – 47 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.943 т (3H, 2 COO-C₅H₁₁), 0.953 т (3H, 2 COO-C₅H₁₁), 1.39 м (8H, 2 COO-C₅H₁₁), 1.76 м (4H, 2 COO-C₅H₁₁), 2.43 с (3H, PhCH₃), 2.60 с (3H, PhCH₃), 4.348 т (2H, 2 COO-C₅H₁₁), 4.359 т (2H, 2 COO-C₅H₁₁), 7.58 м (2H, NOCOPh), 7.72 м (1H, NOCOPh), 8.10 м (2H, NOCOPh). Масс-спектр, *m/z* (*I*_{отн}., %): 483 (3) [M]⁺, 105 (100), 77 (24), 51 (9), 43 (13).

Б. Условия записи ЯМР¹Н и масс-спектров

Спектры ЯМР¹Н записывали на приборе Avance III 600 Bruker в среде дейтерохлороформа. Масс-спектры регистрировали на приборе Finnigan MAT 8200.

В. Рентгеновские данные и методика рентгеноструктурного определения

Порошковые дифракционные данные для 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6диметил-1,4-бензохинона получены с использованием Си Кα-излучения на дифрактометре X'Pert PRO с детектором PIXcel (Panalytical), снабженным графитовым монохроматором. Образец растирали в агатовой ступке и подготавливали методом прямой набивки кюветы. Условия съемки: диапазон от 3 до 90° по 2θ, шагом 0,026°, Δt – 50 с.

Поиск и уточнение параметров элементарной ячейки и выбор пространственной группы осуществляли в программах EXPO2009 и DBWM, описанных в работах [14, 15]. Нахождение модели структуры проводили с помощью метода Монте-Карло [16] в программе *FOX* [17] по отсутствию фиксации торсионных углов заместителей по отношению к плоскости бензольного кольца. Процедуру уточнения выбранных структурных моделей выполняли полнопрофильным методом Ритвельда в программе *FullProf* [18]. На уточняемые в элементарной ячейке координаты атомов накладывали жесткие и мягкие ограничения [19] с помощью весовых коэффициентов с учетом среднестатистических значений расстояний и углов [20]. Оптимизация структуры осуществлялась путем постепенного снятия этих ограничений при параллельном уточнении фоновых и некоторых профильных параметров. Тепловые параметры атомов уточняли в изотропном приближении. На заключительном этапе в модель были добавлены атомы водорода, жестко прикрепленные к соответствующим углеродам [21].

Результаты и обсуждение

В анионах перзамещенных нитрозофенолов имеются два нуклеофильных центра – атомы кислорода гидрокси- и нитрозогруппы. При этом с точки зрения величины зарядов на нуклеофильных центрах предпочтительнее атака по кислороду фенольной группы.

- 421 -

Ранее мы установили, что алкилирование идет исключительно по атому кислорода нитрозогруппы с образованием алкиловых эфиров *n*-бензохинонмонооксимов [6], то есть реакция подчиняется не зарядовому, а орбитальному контролю, что хорошо согласуется с механизмом нуклеофильного замещения $S_N 2$.

В то же время реакции ацилирования протекают по иному, двухстадийному, механизму через присоединение нуклеофила по карбонильной группе с последующим отщеплением аниона галогена для бензоилхлорида или ацетат-иона в случае применения уксусного ангидрида. Для выяснения вопроса, каким из двух нуклеофильных центров – атомом кислорода гидроксильной группы или нитрозогруппы – реагируют перзамещенные нитрозофенолы, мы ввели их калиевые соли в реакцию с уксусным ангигридом и хлористым бензоилом в среде абсолютного эфира в присутствии серной кислоты.

В результате во всех случаях были получены кристаллические либо маслянистые продукты ацилирования желтого цвета. Схема реакции образования ацильных производных гексазамещенных *пара*-нитрозофенолов представлена ниже:

где R = Me, Et, Pr, Bu, Amyl; R' = 1) CH₃, 2) C₆H₅.

Важная информация о строении продуктов ацилирования была получена при анализе ЯМР ¹Н-спектров. Судя по ЯМР ¹Н спектрам полученных продуктов, во всех случаях образовались 1-ацилоксимино-3,5-ди(алкоксикарбонил)-2,6-диметил-1,4-бензохиноны. Во всех ЯМР ¹Н-спектрах протоны метильных групп кольца и сложноэфирных заместителей оказались неэквивалентными из-за син- либо анти-расположения по отношению к ацилоксимной группе. По этой причине сигналы протонов всех указанных групп были двойными и имели одинаковую интенсивность. В то же время сигналы протонов ацильного заместителя при оксимной группе не удвоены. Это наглядное подтверждение того, что ацилирование во всех случаях идет по атому кислорода нитрозогруппы.

На рисунке 2 представлен ЯМР ¹Н-спектр одного из продуктов бензоилирования: 1-бензоилоксимино-3,5-ди(амилоксикарбонил)-2,6-диметил-1,4-бензохинона.

В спектре видны сигналы протонов ароматического кольца бензоильного заместителя в слабом поле, с химсдвигом δ =8.1 м.д. для двух протонов в *орто*-положении, одного протона в *пара*-положении с химсдвигом δ =7.72 м.д. и двух протонов в *мета*-положении с химсдвигом δ =7.58 м.д. В спектре также присутствуют сигналы протонов пентильных заместителей сложноэфирных групп: четыре протона метиленовых групп, которые находятся у атома кислорода в виде триплета, в более слабом поле, с химсдвигом δ =4.34 – 4.36 м.д. (триплет «двоится» из-за различного окружения алкоксикарбонильных групп вследствие син- либо анти-расположения

Рис. 2. ЯМР ¹Н-спектр 1-бензоилоксимино-3,5-ди(амилоксикарбонил)-2,6-диметил-1,4-бензохинона

по отношению к бензоилоксимной группе); шесть протонов метильных групп в сильном поле в виде «удвоенного» триплета с химсдвигом δ =0.95 – 0.96 м.д.; остальные протоны метиленовых групп в виде мультиплетов в области δ =1.39 – 1.74 м.д. Сигналы шести протонов метильных групп кольца выходят в области δ =2.43 м.д. и δ =2.60 м.д. в виде «удвоенных» синглетов по указанной выше причине.

Кристаллическая структура 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4бензохинона (С₁₄Н₁₅NO₇)(а) была определена методом рентгеноструктурного анализа поликристаллов. Моделирование структуры проводили с учетом представлений о строении исходных фрагментов, основанных на методе синтеза, химическом анализе и ЯМР-данных. Обе обсуждаемые конфигурации молекулы продукта при возможном ацилировании по гидроксильной или нитрозогруппы были последовательно проанализированы. Ориентации метоксикарбоксильных групп к кольцу уточнялись независимо. Таким образом, определению подвергались общая ориентация молекулы в элементарной ячейке, центр ацилирования и ориентация метоксикарбоксильных заместителей. Ориентация молекул найдена методом «моделирования отжига». Уточнение ориентаций заместителей выполнено с применением МНК в условиях гибких ограничений. Атомы водорода были введены на конечном этапе уточнения путем жесткого закрепления у соответствующих атомов. Кристаллографические данные и характеристики проведенного уточнения приведены в табл. 1. На рисунке 3 изображены дифракционные данные в сравнении, включая экспериментальную дифрактограмму и рассчитанную по конечной модели их разность и положение рефлексов.

Учитывая присутствие в анализируемом веществе до 5 % кристаллической примеси, а также аморфной составляющей, можно признать, что полученный уровень подгонки гаран-

Рис. 3. Дифрактограмма 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4-бензохинона (С₁₄H₁₅NO₇)

тирует правильность конфигурации молекулы. Перенос центра на гидроксильную группу приводит к значительному расхождению экспериментальной и рассчитанной рентгенограмм $(R_{wp} = 14,94 \%)$.

Как показали расчеты, исследуемое вещество имеет молекулярную структуру. Молекулы 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4-бензохинона (C₁₄H₁₅NO₇), представленные на рис. 4, имеют плоскостное строение, в котором 16 из 22 тяжелых атомов лежат практически в одной плоскости. Центральным фрагментом является хиноидное кольцо.

Значительное различие в длинах C-C-связей в кольце, в частности d(C2-C7) = 1,45(1) \mathring{A} , d(C7-C6) = 1,36(1) \mathring{A} , свидетельствует о хиноидной структуре с отсутствием π -сопряжения, характерного для ароматических систем. Заместители (=O, -CH₃, -CH₃, =N) находятся в плоскости кольца.

Плоскости метоксикарбонильных групп практически перпендикулярны бензольному кольцу, соответствующие торсионные углы несколько отличаются друг от друга: 75,82 и 88,03 °. Ориентация групп направлена в одну сторону относительно плоскости кольца. Присутствие в молекуле коротких межатомных расстояний, а именно d(C2-O1) = 1,19(2) Å и d(C5-N10) = 1,30(2) Å, свидетельствует о наличие двойных связей между соответствующими атомами, участвующими в хиноидном π -сопряжении. Другие внутренние параметры молекулы приведены в табл. 2.

Элементарная ячейка содержит две параллельно расположенные, связанные центром симметрии асимметричные молекулы (рис. 5). Расстояние между плоскостями составляет 4,038(5)

Химическая формула	Молекулярная масса	$ ho_{pacy.},$ Г/с M^3	Пространственная группа	V _{эл. ячейки} , Å ³	Z
$C_{14}H_{15}NO_7$	766,386	1,340	P -1	766,386	2
a, Å	b, Å	c, Å	α, (°)	β, (°)	γ, (°)
11,91150	9,09970	8,26190	109,2257	98,4906	108,9771
Т, К	μ, мм-1	Дифрактометр	Излучение	λ, Á	Область скан., 20 (°).
295	0,931	X'Pert PRO	Cu Ka	$\lambda_1 = 1,54056,$ $\lambda_2 = 1,54439$	3,039-80,935
Число точек	Число рефлексов	$R_p, \%$	$R_{wp}, \%$	$R_{exp},$ %	$S = R_{wp} / R_{exp}$
2997	953	5,70	7,32	5,98	1,22

Таблица 1. Кристаллографические данные и условия съемки для (C₁₄H₁₅NO₇)

Рис. 4. Молекула 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6-диметил-1,4-бензохинона (С₁₄H₁₅NO₇)

Å. В образующихся «сэндвичах» молекулы сдвинуты относительно друг друга, поскольку центр симметрии находится точно над серединой связи (C5-C6). По-видимому, сдвиг вызван достижением наиболее плотной укладки.

В структуре отсутствуют «классические» водородные связи, поэтому надмолекулярная структура регулируется геометрией молекул и их упаковкой. В межмолекулярных структурных элементах можно выделить отдельные колонны-стопки вдоль оси с, выстроенные из плоских молекул, располагающихся попарно центросимметрично под углом (52,3°) к оси колонны. Соседние колонны своими слоями сдвинуты относительно друг друга, поэтому не возникает объединения молекул из разных колонн в слой (рис. 6).

Таким образом, взаимодействием уксусного ангидрида либо хлористого бензоила с гексазамещенными *пара*-нитрозофенолами получено 10 новых ацетильных и бензоильных производных. Установлено, что реакция ацилирования перзамещенных *пара*-нитрозофенолов протекает

Рис. 5. Расположение молекул С₁₄Н₁₅NO₇ в элементарной ячейке

Рис. 6. Укладка молекул $C_{14}H_{15}NO_7$ в колонки вдоль оси с

по атому кислорода нитрозогруппы. На примере 1-ацетоксимино-3,5-ди(метоксикарбонил)-2,6диметил-1,4-бензохинона показано, что молекулы имеют преимущественно плоскую конфигурацию с хиноидным кольцом в качестве центрального фрагмента. При отсутствии водородных связей расположение молекул происходит в виде стопок в колонны и подчиняется принципу плотнейшей упаковки.

Атом	Атом	d(A-B), Å	Атом	Атом	Атом	Угол (ABC) °	Атом	Атом	Атом	Атом D	Угол (ABCD) °
01	C2	1,12(1)	01	C2	C3	120,1(5)	01	C2	C3	C4	179,2(1)
C2	C3	1,44(1)	01	C2	C7	120,1(1)	01	C2	C3	C8	4,2(1)
C2	C7	1,45(1)	C3	C2	C7	119,7(1)	C7	C2	C3	C4	-3,5(5)
C3	C4	1,35(1)	C2	C3	C4	120,3(1)	C7	C2	C3	C8	-178,5(5)
C3	C8	1,50(1)	C2	C3	C8	116,7(1)	01	C2	C7	C6	-179,0(2)
C4	C5	1,45(1)	C4	C3	C8	122,7(4)	01	C2	C7	C12	-8,9(1)
C4	C9	1,47(2)	C3	C4	C5	119,8(1)	C3	C2	C7	C6	3,7(1)
C5	C6	1,44(2)	C3	C4	C9	115,8(2)	C3	C2	C7	C12	173,8(2)
C5	N10	1,30(1)	C5	C4	C9	124,3(3)	C2	C3	C4	C5	3,1(2)
C6	C7	1,35(2)	C4	C5	C6	119,9(4)	C2	C3	C4	C9	-179,5(1)
C6	C11	1,51(2)	C4	C5	N10	116,1(1)	C8	C3	C4	C5	177,7(5)
C7	C12	1,56(1)	C6	C5	N10	123,9(5)	C8	C3	C4	C9	-4,8(1)
C8	013	1,15(1)	C5	C6	C7	119,9(5)	C2	C3	C8	013	-100,9(5)
C8	014	1,35(1)	C5	C6	C11	117,9(5)	C2	C3	C8	014	98,1(1)
N10	017	1,32(1)	C7	C6	C11	121,9(5)	C4	C3	C8	013	84,1(4)
C12	015	1,22(1)	C2	C7	C6	120,0(3)	C4	C3	C8	014	-76,8(1)
C12	016	1,35(1)	C2	C7	C12	116,5(5)	C3	C4	C5	C6	-2,7(4)
014	C19	1,41(1)	C6	C7	C12	122,6(3)	C3	C4	C5	N10	178,4(5)
016	C18	1,46(1)	C3	C8	013	118,9(3)	C9	C4	C5	C6	-179,9(4)
017	C20	1,44(1)	C3	C8	014	117,3(2)	C9	C4	C5	N10	1,3(1)
C20	C21	1,47(1)	013	C8	014	120,8(5)	C4	C5	C6	C7	2,9(2)
C20	022	1,21(1)	C4	C9	H9A	109,5(1)	C4	C5	C6	C11	179,9(1)
			C5	N10	017	126,9(4)	N10	C5	C6	C7	-178,4(1)
			C7	C12	015	121,2(2)	N10	C5	C6	C11	-1,4(2)
			C7	C12	016	119,1(1)	C4	C5	N10	017	-146,7(1)
			015	C12	016	119,5(1)	C6	C5	N10	017	34,5(5)
			C8	014	C19	127,1(1)	C5	C6	C7	C2	-3,4(1)

Таблица 2. Основные межатомные расстояния и углы для $C_{14}H_{15}NO_7$

Исследование выполнено при финансовой поддержке Министерства образования и науки РФ (Гос. контракты № 02.740.11.0629) и Международного центра по дифракционным данным (ICDD, грант № 93-10).

Список литературы

1. Сёмин И.В., Соколенко В.А., Товбис М.С. Димеризация пространственно-затрудненных *n*-нитрозофенолов // Журнал органической химии. 2007. № 43. С. 545-548.

2. Слащинин Д.Г., Товбис М.С., Роот Е.В., Задов В.Е., Соколенко В.А. Каталитическое гидрирование перзамещенных *n*-нитрозофенолов // Журнал органической химии. 2010. № 46. С. 527-529.

3. Eiden F., Leister H.P., Mayer D. 5-Aminoacetamido-4,6-dimethyl-2-hydroxy-isophtalsäurediethylester: Synthese und Untersuchung antiarrhythmischer Eigenschaften // Arzneimittel-Forschung. 1983. № 33. C. 101-105.

4. Alemasov Yu.A., Slaschinin D.G., Tovbis M.S., Kirik S.D. X-Ray Diffraction and Spectroscopic Verification of Dimerization in Hexasubstituted Para-Nitrosophenols // Journal of Molecular Structure, 2011. № 985. C. 184-190.

5. Сёмин И.В., Слащинин Д.Г., Товбис М.С. Получение 2,6-диалкоксикарбонил-4нитрофенолов // Студент и научно-технический прогресс: XLV Международная научная конференция: Новосибирск, 2007. 53.

6. Слащинин Д.Г., Алемасов Ю.А., Илюшкин Д.И., Соколенко В.А., Товбис М.С., Кирик С.Д. Реакция алкилирования перзамещенных *пара*-нитрозофенолов // Журнал Сибирского федерального университета. Серия «Химия», 2011. № 4. С. 233-247.

7. Белоусова И.А., Симаненко Ю.С., Савелова В.А., Супрун И.П. О механизме катализа триэтиламином реакции бензоилирования фенолов в диоксане. Качественно новый эксперимент // Журнал органической химии. 2000. №. 36. С. 1706-1713.

8. Белоусова И.А., Савелова В.А., Симаненко Ю.С., Панченко Б.В. Эффективность синергизма в катализе смесью пиридин-N-оксид-триэтиламин процессов ацильного переноса с участием хлорангидридов карбоновой, фосфорной и сульфоновой кислот // Журнал органической химии. 2002. № 38. С. 118-121.

9. Kovach I.M. Kinetics and Some Equilibria of Transacylation between Oxy Anions in Aprotic Solvents' // The Journal of Organic Chemistry. 1982. № 47. № 12. 2235-2241.

10. Ramart-Lucas P., Martynoff M.M., Grumez M., Chauvin M. Sur la natrue de l'isomerie des nitrosophenols d'apres leurs specters d'absorption (Quatrieme Memoire: Derives acyles) // Bulletin de la Societe Chim. de France. 1949. № 16. C. 905-917.

11. Титов Е.А., Бурмистров С.И. Эфиры хиноноксимов с карбоновыми кислотами // Украинский химический журнал. 1960. № 26. С. 744-749.

12. Авдеенко А.П., Глиняная Н.М., Пироженко В.В. Взаимодействие о-ацилэфиров 1,4-бензохинонмонооксимов с циклопентадиеном // Журнал органической химии. 1995. № 31. С. 1173-1177.

13. Авдеенко А.П., Жукова С.А. Глиняная Н.М., Коновалова С.А. Галогенирование 4-ароил(арилсульфонил)оксимино-2,6(3,5)-диметил-2,5-циклогексадиен-1-онов // Журнал органической химии. 1999. № 35. С. 586-596.

14. Visser J.W. A fully automatic program for finding the unit cell from powder data // J. Appl. Cryst. 1969. № 2. C. 89–95.

15. Kirik S.D., Borisov S.V., Fedorov V.E. Symmetry independent algoriphm for indexing of X-ray powder pattern // Zh. Strukt. Khim. 1979. № 20. C. 359–364.

16. Solovyov L.A., Kirik S.D., Application of simulated annealing approach in powder crystal structure analysis // Material Science Forum. 1993. № 133-136. C. 195-200.

17. Favre-Nicolin V., Černý R. FOX, 'free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction // J. Appl. Cryst. 2002. № 35. C. 34-743.

18. Rodriguez-Carvajal J., FullProf version 4.06, March 2009, ILL (unpublished).

19. Кирик С.Д. Уточнение кристаллических структур по профилю порошковых рентгенограмм с использованием жестких структурных ограничений // Кристаллография. 1985. № 30. С. 185-187.

20. Allen F.H. The Cambridge Structural Database: a quarter of a million crystal structures and rising // Acta Crystallogr. 2002. B58. C. 380-388.

21. Siemens (1989). XP. Molecular Graphics Program. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acylalation Towards Nitrosogroup for Persubstituted Para-Ninrosophenols

Dmitry G. Slaschinin^{*a*}, Daria Y. Leshok^c, Evgeniy V. Root^{*a*}, Wiliam A. Sokolenko^{*b*}, Mikhail S. Tovbis^{*a*} and Sergei D. Kirik^{*c*}

 ^a Siberian State Technological University, 82 Mira, Krasnoyarsk, 660049 Russia
 ^b Institute of Chemistry and Chemical Technology, 42, Marx St., Krasnoyarsk, 660049 Russia
 ^c Siberian Federal University, 79 Svobodny, Krasnoyarsk, 660041 Russia

Acylation reaction of potassium 2,6-di(alkoxycarbonyl)-3,5-dimethyl-4-nitrosophenolates was used to obtain 10 new compounds. It was shown using ¹H NMR, mass-spectroscopy and X-ray diffraction that acylation follows towards oxygen of nitrosogroup giving the products of quinoid type. X-ray powder diffraction technique revealed that molecules of 1-acetoximino-3,5-di(methoxycarbonyl)-2,6-dimethyl-1,4-benzoquinone have flat structure with quinoid ring as central fragment. Methoxycarbonyl groups are turned on 75,8° u 88,0° respectively quinoid ring. Hydrogen bonding is absent. Molecules stack in column following compact parking.

Keywords: hexasubstituted nitrosophenols, quinone monooximes, acylation, X-ray powder diffraction, IR-spectroscopy.