Эффекты хронического и острого радиационного воздействия у пресноводного моллюска Lymnaea stagnalis L.

Д.И. Гудков¹, Е.В. Дзюбенко¹, Т.В. Пинкина², Н.Л. Шевцова¹, Л.С. Чепига³, А.Б. Назаров⁴

¹Институт гидробиологии НАН Украины, Киев

²Житомирский национальный агроэкологический университет, Житомир

³Национальный авиационный университет, Киев

⁴ГСП «Чернобыльский спецкомбинат» МЧС Украины, Чернобыль

Пресноводные моллюски являются удобными объектами как экспериментальных радиационно-токсикологических исследований, так и радиоэкологического мониторинга водных экосистем, находящихся в условиях влияния предприятий ядерного топливного цикла. Благодаря широкому распространению, способности накапливать практически все радионуклиды, присутствующие в среде обитания, а также высокой биомассе, этой группе беспозвоночных принадлежит важная роль в процессах биогеохимической миграции радиоактивных веществ в пресноводных экосистемах.

В результате аварии на Чернобыльской АЭС водные объекты, оказавшиеся на пути формирования радиоактивного выброса, подверглись интенсивному радионуклидному загрязнению. При этом экосистемы замкнутых водоемов Чернобыльской зоны отчуждения (ЧЗО), несмотря на 26-летний период минувший после аварии, продолжают характеризоваться высокими уровнями содержания радиоактивных веществ во всех компонентах. Основным дозообразующим радионуклидом для моллюсков ЧЗО в настоящее время является $^{90}\mathrm{Sr}$ – химический аналог кальция, накапливающийся в раковинах и в значительных количествах присутствующий в донных отложениях радиоактивных веществ водоемов. Концентрирование водной биотой обуславливать критические дозовые нагрузки на организмы, обладающие высокими коэффициентами накопления радионуклидов и/или обитающие в экологических зонах с повышенными уровнями внешнего облучения. Особый интерес для современной радиобиологии представляет сравнительный анализ эффективности острого хронического радиационного воздействия.

Материал и методы исследований. Основные исследования выполнены в период 1998–2010 гг. на следующих водоемах ЧЗО: оз. Азбучин, Яновский затон, водоемы Красненской поймы р. Припяти — Красненская старица, озера Глубокое и Далекое-1, а также реки Уж (с. Черевач) и Припять (г. Чернобыль). В качестве контрольных водоемов для сравнительного анализа цитогенетических, гематологических, морфометрических и репродуктивных показателей использовали ряд озер с фоновыми уровнями радионуклидного загрязнения, расположенных в г. Киеве и его окрестностях — Вырлица, Голосеевское, Опечень, Пидбирна, а также реки Тетерев (г. Житомир) и Альта (г. Переяслав-Хмельницкий). Объектом исследований был брюхоногий моллюск прудовик обыкновенный (Lymnaea stagnalis L.).

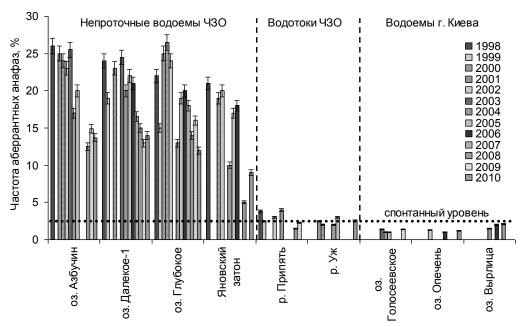
Измерение удельной активности 137 Cs, 90 Sr, 238 Pu, $^{239+240}$ Pu, 241 Am в пробах моллюсков и мощности внешней дозы γ -излучения выполняли при помощи методик изложенных в работах [1–3], оценку мощности поглощенной дозы от инкорпорированных в тканях и содержащихся в воде радионуклидов проводили по методике [4]. Острое облучение синкапсул и взрослых особей моллюсков выполняли на установке ИЛУ-6 в диапазоне доз 3–300 Гр. Мощность поглощенной дозы составляла 0,69 Гр/сек.

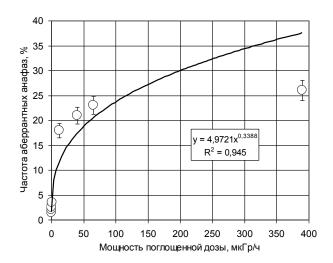
Для цитогенетических исследований использовали эмбрионы прудовика обыкновенного преимущественно на стадии трахофоры и велигера. Фиксацию материала осуществляли на месте отбора проб смесью этилового спирта и ледяной уксусной кислоты (3:1). Окраску цитологических препаратов выполняли 1 % ацетоорсеином. Анализ частоты аберраций хромосом в препаратах проводили в клетках на стадиях анафазы и телофазы митоза [5]. Гематологические исследование выполняли с использованием мантийной жидкости взрослых особей моллюсков, фиксированной раствором Карнуа.

Препараты окрашивали азур-эозином по Романовскому-Гимза [6]. Анализ соотношения различных групп гемоцитов и их классификацию выполняли по методике [7].

Результаты исследований. Мощность поглощенной дозы для взрослых моллюсков за счет внешних и внутренних источников облучения за период исследований регистрировали в следующих диапазонах: оз. Глубокое -350–420; оз. Азбучин -55–78; оз. Далекое-1 -35–58; Яновский затон -6–12; р. Припять -0,5–0,7; р. Уж -0,3–0,5; контрольные водоемы -0,03–0,04 мкГр/ч.

Выполненные цитогенетические исследования свидетельствуют о повышенном уровне аберраций хромосом у прудовиков из замкнутых водоемов ЧЗО по сравнению с моллюсками контрольных озер. За период исследований наибольшие значения зарегистрированы для беспозвоночных оз. Глубокое, в клетках которых частота аберраций в 2001 г. достигала 27 %, что более чем в 10 раз превышает уровень спонтанного мутагенеза для водных организмов. Средние значения для моллюсков из наиболее загрязненных озер Зоны отчуждения составляли около 23, 21, 20 и 18 %, соответственно для озер Азбучин, Далекое-1, Глубокое и Яновского затона. Эмбрионы моллюсков в реках Уж и Припять характеризовались сравнительно невысоким средним уровнем аберрантных клеток, который составлял соответственно 2,5 и 3,5 %. Для моллюсков контрольных озер этот показатель равнялся в среднем около 1,5 %, с максимальными значениями до 2,3 % (рис. 1).




Рис. 1. Частота аберрантных анафаз у эмбрионов моллюсков в водоемах ЧЗО и озерах г. Киева в период 1998–2010 гг.

На протяжении 1998–2010 гг. отмечена тенденция снижения частоты хромосомных аберраций в эмбрионах прудовиков, отобранных в замкнутых водоемах ЧЗО. Выполненный регрессионный анализ имеющихся данных позволил получить прогнозные оценки снижения частоты хромосомных аберраций у моллюсков исследуемых водоемов до спонтанного уровня (2,0–2,5%) [8], присущего водным организмам в условиях естественного радиационного фона. По нашим данным в озерах, расположенных на территории левобережной поймы р. Припяти (оз. Глубокое и оз. Далекое-1), наиболее загрязненной радионуклидами, спонтанный уровень частоты хромосомных аберраций может быть достигнут в 60-х–70-х годах, а в Яновском затоне и оз. Азбучин – в 20-х–30-х годах текущего столетия.

Наиболее высокую достоверность имеет экспоненциальная экстраполяция данных, полученных за 13-летний период для моллюсков оз. Азбучин ($R^2 = 0.758$). Результаты

вычислений для других замкнутых водоемов имеют невысокую достоверность аппроксимации ($R^2 = 0.196, 0.384$ и 0.488, соответственно для озер Глубокое, Далекое-1 и затона) однако заслуживают внимания, поскольку прогноз хромосомных аберраций для Яновского затона подобен с таковым для оз. Азбучин. А поскольку эти водоемы имеют сходные тенденции процессов самоочищения, это может влиять на динамику частоты хромосомных аберраций у моллюсков. В озерах Глубокое и Далекое-1 более медленные темпы снижения частоты хромосомных аберраций могут быть обусловлены особенностями динамики *у*дельной активности радионуклидов компонентах свидетельствующие о стагнации автореабилитационных экосистем. процессов на одамбированной территории левобережной поймы р. Припяти.

Отмечена положительная корреляция между частотой аберрантных анафаз и мощностью поглощенной дозы у эмбрионов прудовика обыкновенного в водоемах ЧЗО. Дозовая зависимость количества аберрантных клеток в эмбриональных тканях моллюсков наиболее соответствует степенной функции (рис. 2).

70 % 60 Частота аберрантных анафаз, 50 40 $= 5,5373x^{0,4223}$ 30 $R^2 = 0,9906$ 20 10 0 0 50 100 150 200 250 300 Поглощенная доза, Гр

Рис. 2. Зависимость частоты аберрантных анафаз в эмбриональных тканях прудовика обыкновенного от мощности поглощенной дозы в водоемах ЧЗО.

Рис. 3. Зависимость частоты аберрантных анафаз в эмбриональных тканях прудовика обыкновенного от поглощенной дозы при остром облучении.

Острое экспериментальное облучение эмбрионов прудовика обыкновенного на стадии трахофоры в диапазоне поглощенной дозы 3–300 Гр вызывает степенной рост количества хромосомных аберраций от 11,2 до 63,4% (рис. 3). Частота аберрантных анафаз у эмбрионов моллюсков в контроле составила 1,2% и не превышала спонтанный уровень хромосомного мутагенеза. Полулетальной для эмбрионов прудовиков на стадии трахофоры была доза облучения 30 Гр, а поглощенная доза 60 Гр вызывала полную гибель эмбрионов в течение 20 сут. после облучения. Полулетальная доза облучения для взрослых особей моллюсков составила 120 Гр.

В клетках эмбрионов из наиболее загрязненных водоемов ЧЗО среди основных типов хромосомных аберраций наблюдали преобладание мостов над фрагментами, а также образование значительного количества множественных аберраций, что считается специфическим проявлением биологического воздействия ионизирующего излучения (рис. 4). В этом отношении показательны эмбрионы моллюсков из рек Уж и Припять, отобранные в пределах ЧЗО, которые несмотря на практически фоновые уровни радионуклидного загрязнения, также характеризуются незначительным количеством клеток с множественными аберрациями. У моллюсков из всех контрольных водоемов наличие клеток с множественными аберрациями не регистрировали.

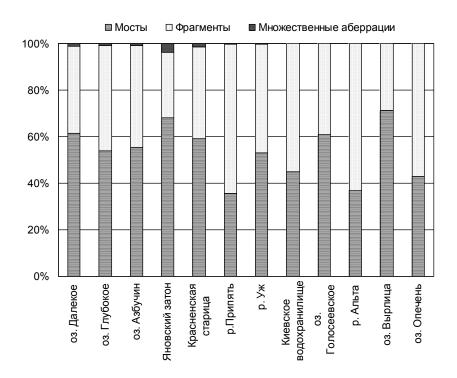


Рис. 4. Соотношение основных типов хромосомных аберраций в клетках эмбрионов прудовика обыкновенного в водоемах с различным уровнем радионуклидного загрязнения в период 1998–2010 гг.

Описанную тенденцию также подтверждают данные экспериментального облучения моллюсков, в результате которого происходил рост выхода аберрантных мостов и множественных аберраций с повышением поглощенной дозы. При действии острого облучения около 55–80 % общего количества аберраций приходилось на мосты, 10–40% – на фрагменты и 4–17% составили множественные аберрации. В контроле общее количество мостов и фрагментов составило, соответственно 60 и 40%, а множественные аберрации отсутствовали (рис. 5).

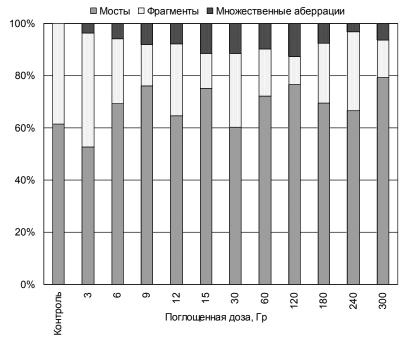


Рис. 5. Соотношение основных типов хромосомных аберраций в клетках эмбрионов прудовика обыкновенного при действии острого экспериментального облучения.

Сравнительный анализ состава форменных элементов гемолимфы прудовика обыкновенного показал, что у моллюсков из замкнутых водоемов ЧЗО доля мертвых агранулоцитов достигает 43,8 %, а количество фагоцитов — 45,0 %. Аналогичные показатели у моллюсков из контрольных водоемов были значительно ниже и составили соответственно в среднем около 5,3 и 4,2 %. Количество молодых амебоцитов у моллюсков ЧЗО было, наоборот, невысоким — до 20 %, в то время как у моллюсков контрольных водоемов достигало 89,6 % (рис. 6). В целом, анализ форменных элементов мантийной жидкости исследованных прудовиков, свидетельствует о существенном изменении состава гемолимфы моллюсков из наиболее загрязненных озер ЧЗО.

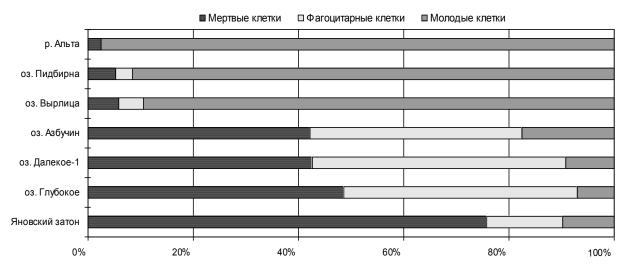


Рис. 6. Состав форменных элементов мантийной жидкости прудовика обыкновенного в водоемах ЧЗО и контрольных водоемах в 2007–2008 гг.

На протяжении 2009—2010 гг. анализировали морфологические показатели и наличие аномалий кладок прудовика обыкновенного: деспирализацию или слабую спирализацию тяжа с яйцевыми капсулами; многорядность размещения яйцевых капсул в синкапсуле; рыхлое размещение яйцевых капсул; сдвоенные яйцевые капсулы; многозиготность яйцевых капсул; яйцевые капсулы без зигот; зиготы вне синкапсул; яйцевые капсулы больших или меньших размеров, а также неправильной формы (табл.).

Таблица. Морфологические показатели и тератогенные нарушения кладок прудовика обыкновенного в волоемах ЧЗО в 2009–2010 гг

Показатель	Контроль	Яновский	Озеро	Озеро	Озеро	Река
		затон	Глубокое	Далекое	Азбучин	Припять
Длина синкапсулы, мм	33,5	26,3	30,0	27,8	31,3	31,8
Длина яйцевых капсул, мм	1,35	1,16	1,29	1,22	1,22	1,31
Количество яйцевых капсул, экз.	106	75	93	89	101	99
Аномалии развития яйцевых капсул, %	0,8	23,6	9,2	2,4	1,6	_*

^{* –} анализ не проводили

В результате выполненных исследований отмечено, что морфологические показатели кладок моллюсков из водоемов ЧЗО достоверно ниже контрольных. В

импактных водных объектах зарегистрирован высокий процент следующих типов аномалий: отсутствие яйцеклетки в яйцевой капсуле; слабая спирализация тяжа с яйцевыми капсулами; многозиготность яйцевых капсул; однорядное размещение яйцевых капсул; малое количество яйцевых капсул в синкапсуле; наличие яйцеклеток и яйцевых капсул за пределами синкапсулы. Соотношение количества нарушений в строении кладок прудовиков из водоемов ЧЗО в сравнении с контрольной группой в среднем составляет 1:12.

В замкнутых водоемах ЧЗО отмечен повышенный процент аномальных раковин прудовиков с различными формами искривления последнего завитка, чаще всего в виде ступенчатой (до 0,5 см) деформации, возникающей, как правило, на втором году жизни моллюсков. В Яновском затоне доля аномальных раковин была максимальной и составила 58,3 %, в оз. Глубокое – 48,9 %, в Красненской старице (на территории одамбированного участка) — 25,0 %, в оз. Далекое-1 — 10 %, в оз. Азбучин — 2,8 %, в р. Припять (г. Чернобыль) — 1,1 %. В 5-ти контрольных водных объектах аналогичные аномалии или отсутствовали, или не превышали 0,7 %. В настоящее время нами не зарегистрировано достоверной зависимости между количеством деформированных раковин в водоеме и мощностью поглощенной дозы облучения. Мы можем лишь констатировать высокий уровень аномалий раковин в наиболее загрязненных радионуклидами водоемах ЧЗО. Одним из возможных объяснений наблюдаемого явления могут быть повышенные дозы внешнего облучения, которые моллюски получают в период зимовки в донных отложениях водоемов.

Выводы

- 1. Радиобиологические исследования прудовика обыкновенного в водоемах ЧЗО свидетельствуют о негативном воздействии хронического низкодозового облучения на организм моллюсков, проявляющемся на цитогенетическом и соматическом уровне, а также отражающемся на репродуктивной функции.
- 2. Мощность поглощенной дозы облучения для брюхоногих моллюскив, обитающих в приповерхностном слое водной толщи литорали и сублиторали водоемов ЧЗО, на протяжении 2000–2011 гг. регистрировали в диапазоне 0,3–390,0 мкГр/час. Максимальные уровни отмечены для озер одамбированного участка левобережной поймы р. Припяти Глубокое и Далекое-1, минимальные для проточных водных объектов рек Уж и Припять. Основным дозообразующим радионуклидом для моллюсков ЧЗО является ⁹⁰Sr, на долю которого приходится до 95–98 % внутренней мошности поглошенной дозы:
- 3. Данные цитогенетических и гематологических исследований продемонстрировали высокий уровень аберраций хромосом в клетках эмбрионов, а также существенное изменение состава гемолимфы взрослых особей моллюсков в наиболее загрязненных радионуклидами водных объектах ЧЗО. Частота аберраций хромосом в тканях моллюсков, обитающих в замкнутых водоемах, многократно превышает уровень спонтанного мутагенеза для водных организмов и может быть проявлением радиационно-индуцируемой генетической нестабильности.
- 4. Острое экспериментальное облучение эмбрионов прудовика обыкновенного на стадии трахофоры в диапазоне поглощенной дозы 3–300 Гр вызывает степенной рост количества хромосомных аберраций от 11 до 63%. Полулетальной для эмбрионов прудовиков на стадии трахофоры была доза облучения 30 Гр, а поглощенная доза 60 Гр вызывала полную гибель эмбрионов в течение 20 сут. Полулетальная доза облучения для взрослых особей моллюсков составила 120 Гр.
- 5. Эффективность влияния малых хронических доз ионизирующего излучения на эмбрионы прудовика обыкновенного в водоемах ЧЗО по критерию частоты выхода аберрантных клеток более чем на порядок величин превышает влияние кратковременного острого экспериментального облучения.

6. Прудовик обыкновенный может быть использован в качестве одного из референтных видов гидробионтов при разработке положений охраны окружающей среды от ионизирующего излучения с использованием основанного на биоте стандарта.

Список использованной литературы

- [1] Гудков Д.И., Деревец В.В., Кузьменко М.И., Назаров А.Б. Функциональноэкологические и возрастные закономерности концентрирования радионуклидов пресноводными моллюсками зоны отчуждения Чернобыльской АЭС // Радиационная биология. Радиоэкология. − 2001. − Т. 41, № 3. − С. 326−330.
- [2] Гудков Д.И., Назаров А.Б., Дзюбенко Е.В. и др. Радиоэкологические исследования пресноводных моллюсков в Чернобыльской зоне отчуждения // Радиационная биология. Радиоэкология. 2009. Т. 49, № 6 С. 703–713.
- [3] Гудков Д.И., Дзюбенко Е.В., Назаров А.Б., Каглян А.Е., Кленус В.Г. Пресноводные моллюски в зоне отчуждения Чернобыльской АЭС: динамика содержания радионуклидов, дозовые нагрузки, цитогенетические и гематологические исследования // Гидробиологический журнал. − 2010. − Т. 46, № 3. − С. 86–104.
- [4] Handbook for assessment of the exposure of biota to ionising radiation from radionuclides in the environment / Eds. J. Brown, P. Strand, A. Hosseini, P. Børretzen. Project within the EC 5th Framework Programme, Contract № FIGE-CT-2000-00102. Stockholm: Framework for Assessment of Environmental Impact, 2003. 395 p.
- [5] Паушева З.П. Практикум по цитологии растений. М.: Колос, 1974. 288 с.
- [6] Majone F., Brunetti R., Gola I., Levis A.G. Persistence of micronuclei in the marine mussel, Mytilus galloprovincialis, after treatment with mitomycin // Mutat. Res., 1987. Vol. 191, № 3–4. P. 157–161.
- [7] Дзюбо С.М., Романова Л.Г. Морфология амебоцитов гемолимфы приморского гребешка // Цитология. 1992. Т. 34, № 10 С. 52—58.
- [8] Tsytsugina V.G. An indicator of radiation effects in natural populations of aquatic organisms // Radiat. Protect. Dosim. 1998. 75 (1–4). P. 171–173.