\sim \sim \sim

УДК 528.88.042.4:630

Спектрорадиометрическая космосъемка в анализе зоны вспышки массового размножения сибирского шелкопряда

Сергей Т. Им*, Елена В. Федотова, Вячеслав И. Харук

Институт леса им. В. Н. Сукачева СО РАН, 660036 Россия, Красноярск, Академгородок 50, стр. 28⁻¹

Received 22.10.2008, received in revised form 30.10.2008, accepted 29.12.2008

На основе временных рядов космосъемки Landsat (1978 – 2000 гг.) исследована динамика растительного покрова, индуцированная вспышкой массового размножения сибирского шелкопряда (междуречье Ангары и Енисея, 1994 – 1996 гг.). Разработан и применен метод генерации временного ряда картосхем с разделением сцен на фрагменты по преобладающим типам наземного покрова. Установлено, что в зоне вспышки погибло до 25 % темнохвойных древостоев. Часть ослабленных древостоев восстановилась после вспышки. В зоне шелкопрядников наблюдалось возрастание площади гарей. Показано, что в 90-е годы 20-го столетия уменьшалась площадь вырубок, а также наблюдалась трансформация части сельхозугодий в редколесья и травяно-кустарниковую растительность.

Ключевые слова: сибирский шелкопряд, динамика растительного покрова, Landsat.

Введение

Южная тайга Сибири относится к области экологического оптимума темнохвойных лесов как зонального типа растительности. Фактически же площади, занятые вторичными мелколиственными и смешанными лесами, значительно превышают территории, на которых сохранились сообщества темнохвойной тайги. Важная роль в формировании современного облика лесов этого региона, наряду с рубками и пожарами, принадлежит сибирскому шелкопряду. Он относится к основным причинам наблюдаемых в южной тайге сукцессий, представляя собой постоянно действующий фактор в хвойных формациях Сибири. Это насекомое повреждает древостои пихты, сосны сибирской кедровой, ели, лиственницы [4, 5]. Вспышки массового размножения сибирского шелкопряда обусловлены сочетанием благоприятных погодных условий (оптимальная температура, низкий уровень осадков и влажности). Такого рода вспышки являются редким феноменом; в пределах Енисейского меридиана они наблюдаются с периодичностью 15 – 25 лет.

Спутниковая съемка - эффективное средство обнаружения и мониторинга вспышек насекомых. Дотавио и Вильямс [7] показали применимость съемки Landsat-MSS с 80-метровым

^{*} Corresponding author E-mail address: stim@ksc.krasn.ru

¹ © Siberian Federal University. All rights reserved

разрешением на местности для обнаружения вспышек непарного шелкопряда в Пенсильвании, США. Нельсон [13] успешно применил данные съемки с того же спутника для обнаружения зон дефолиации еловых древостоев стволовыми вредителями. Ранее была показана применимость съемки Landsat для картирования и оценки вспышек массового размножения сибирского шелкопряда [10]. Анализируя съемку с Landsat-TM, Раделофф с соавторами установили высокую корреляцию между фракцией зеленой хвои и численностью популяции стволовых вредителей [14]. Спутниковая информация с меньшим пространственным разрешением была успешно применена для обнаружения и классификации поврежденных шелкопрядом территорий [3, 11, 12], а также для мониторинга повреждений посевов насекомыми [9]. Использование ГИС- технологий позволяет установить связь динамики вспышки с элементами рельефа [2, 3, 12].

Цель исследования: анализ динамики растительного покрова в зоне вспышки массового размножения сибирского шелкопряда на основе временных рядов космосъемки среднего (Landsat) разрешения.

Объект исследования

Исследовалась динамика наземного покрова Нижнего Приангарья до и после вспышки массового размножения сибирского шелкопряда, произошедшей в 1994 – 1996 гг. [1, 10, 11, 12]. Леса сформированы пихтой, елью, кедром, сосной, лиственницей, осиной и березой. Древостои – III – IV классов бонитета, с запасом древесины 200 – 230 м³/га и средним возрастом 135 лет. Рельеф большей части территории представляет слабо всхолмленное плато. Почвы – преимущественно подзолистые. Климат – континентальный, годовое количество осадков

Рис. 1. Расположение объекта исследования (квадрат)

составляет 400 – 500 мм, среднегодовая температура – минус 2,6 °C с абсолютным минимумом минус 54 °C (декабрь) и максимумом плюс 36 °C (июль). Период вегетации длится около 100 дней.

Поврежденные сибирским шелкопрядом участки представлены мозаично расположенными очагами, ограниченными 57° и 59° с. ш. и 93° и 98° в. д. Около 700 тыс. га леса было охвачено вспышкой. Примерно 300 тыс. га насаждения погибли.

Для анализа выбран фрагмент территории, включавший основные элементы трансформации лесных территорий, связанных как со вспышкой массового размножения сибирского шелкопряда, так и с деятельностью человека. Фрагмент покрывает части Усольского, Первомайского и Чуноярского лесхозов (координаты: от 56°30' до 57°50' с.ш. и от 94°10' до 96°10' в. д., рис. 1). Площадь фрагмента ~ 1,4 млн га.

Материалы и методика

В данной работе для анализа динамики растительного покрова использованы снимки Landsat, имеющие наименьшее количество облачности и шумов (Landsat-3\MSS, 24.06.1978 (рис. 2,а); Landsat-5\TM, 10.07.1989 (рис. 2,б); Landsat-7\ETM+, 18.08.2000 (рис. 2,в)). Съемка Landsat-3\MSS велась в четырех спектральных диапазонах с пространственным разрешением 57 x 57 м. Landsat-5\TM является до сих пор действующим прибором и позволяет получать съемку в 7 спектральных диапазонах с разрешением на местности 28,5 x 28,5 м. Landsat-7\ETM+в настоящее время - последний прибор из серии Landsat, который по сравнению с предыдущим поколением имеет улучшенные радиометрическое и пространственное разрешения (панхроматический канал с разрешением 15 x 15 м). Помимо данных космосъемки, использованы лесотаксационные материалы Усинского и Чунского лесничеств 2001 и 1999 гг., М 1 : 250 000; топографические карты М 1 : 200 000 (1948, 1949, 1971, 1993 и 1994 гг.); материалы полевых исследований 1999 г., включающие лесотаксационное описание пробных площадок.

Рис. 2. Материалы космосъемки Landsat. (a) Landsat-3\MSS, 24.06.1978; (б) Landsat-5\TM, 10.07.1989; (в) Landsat-7\ETM+, 18.08.2000

Анализ состоял из трех основных этапов: 1) предварительная обработка космоснимков; 2) формирование классификационных картосхем для временного ряда космоснимков; 3) согласование классификационных картосхем и анализ пространственно-временной динамики основных классов земной поверхности.

Предварительная обработка космоснимков. Геометрическая коррекция снимков проводилась в соответствии с топокартами.

Формирование классификационных картосхем для временного ряда космоснимков. Базовым космоснимком выбран Landsat-7\ETM+, полученный 18 августа 2000 г., так как он обладает наилучшими параметрами съемки и предобработки по сравнению с другими.

Методика формирования картосхем включала составление различных масок и разделение снимков на фрагменты, для которых определялась специфика в соответствии с масками. Таким образом были выделены фрагменты, для которых характерны: 1) облака и тени от них, 2) сельхозполя, 3) вырубки, 4) урбанизированные территории, 5) леса, поврежденные сибирским шелкопрядом, 6) водные поверхности. Такой подход позволил уменьшить ошибки классификации. В соответствии с лесоустроительными материалами, данными полевых исследований и экспертными знаниями итерационно сформированы обучающие выборки. Методом максимального правдоподобия сгенерированы классификационные картосхемы для всех снимков [15, 16]. Выделены следующие классы земной поверхности: 1) сомкнутые темнохвойные древостои (drk closed); 2) сомкнутые сосновые древостои (pin closed); 3) сомкнутые смешанные древостои (mxd closed); 4) сомкнутые лиственные древостои (dcd closed); 5) низкосомкнутые лиственные древостои (dcd closed); 6) возобновление лиственных (rgn); 7) гари (fre); 8) кустарники (srb); 9) травяные сообщества (grs); 10) сельскохозяйственные поля (agr); 11) вырубки (cut); 12) урбанизированные зоны (urb); 13) заболоченные территории (swp); 14) минерализованные поверхности (mrl); 15) водные поверхности (wtr); 16) лесные территории, поврежденные сибирским шелкопрядом (slk). Количество выборок приведено в табл. 1.

		20	00	19	89	1978			
N⁰	Класс	Кол-во Кол-во выборок пикселей		Кол-во выборок	Кол-во пикселей	Кол-во выборок	Кол-во пикселей		
1	drk closed	117	92267	52	43358	77	9421		
2	pin closed	2	2000	2	615	2	1218		
3	mxd closed	2	191	2	1294	2	1064		
4	dcd closed	192	50301	100	52246	115	13575		
5	dcd sparse	50	6123	30	713	25	5738		
6	rgn	38	3151	50	997	14	251		
7	fre	2	1178						
8	srb	2	28						
9	grs	1	129			2	126		
10	agr	587	163030	320	97949	206	74284		
11	cut	42	3452	50	1769	20	1356		
12	urb								
13	swp	38	5218	50	5707	18	2287		
14	mrl	10	959	2	437	6	392		
15	wtr	4	3159	4	4000	6	177		
16	slk	71 10688							
Всего		1156	341874	704	164134	493	109889		

Таблица 1. Количество выборок для составления классификационных картосхем

Картосхемы составлялись в соответствии со следующими шагами: (1) Разделение сцены на два фрагмента в соответствии с маской сельхозполей: «А» – с сельхозполями, «Б» – без сельхозполей. (2) Разделение фрагмента «Б» маской вырубок: «Б1» – с вырубками, «Б2» – без вырубок. (3) Разделение фрагмента «Б2» маской территорий, поврежденных сибирским шелкопрядом: «Б21» – поврежденные сибирским шелкопрядом, «Б22» – не поврежденные сибирским шелкопрядом. Таким образом получаются четыре непересекающихся фрагмента для дальнейшего анализа. (4) Генерация классификации для фрагмента «Б1» методом максимального правдоподобия с применением сформированных обучающих выборок, за исключением адг и правдоподобия с применением сформированных обучающих выборок, за исключением адг и

Мо Класс			2000			1989		1978				
J10	Класс	Ac %	Au %	Каппа	Ac %	Au %	Каппа	Ac %	Au %	Каппа		
1	drk closed	96,8	81,9	0,8	100,00	85,71	0,84	100,00	98,71	0,99		
2	pin	100,0	90,8	0,9	100,00	100,00	1,0	100,00	95,65	0,96		
3	mxd	78,2	96,6	1,0	86,47	100,00	1,0	98,08	100,00	1,00		
4	dcd closed	96,9	90,5	0,9	99,75	91,38	0,9	99,85	92,47	0,91		
5	dcd sparse	94,0	78,8	0,8	92,37	95,28	0,95	79,82	95,79	0,96		
6	rgn	65,4	65,4	0,6	92,54	73,81	0,73	73,87	72,57	0,72		
7	fre	97,1	100,0	1,0								
8	srb	50,0	46,7	0,5								
9	grs	58,8	100,0	1,0	56,25	100,00	1,0	95,45	45,65	0,45		
10	agr	97,0	99,6	1,0	98,34	100,00	1,0	97,21	100,00	1,00		
11	cut	98,0	93,3	0,9	90,93	98,47	0,98	98,00	100,00	1,00		
12	urb	100,0	100,0	1,0	95,81	99,46	0,99	100,00	90,81	0,90		
13	swp	95,1	89,7	0,9	90,50	97,84	0,97	88,96	93,84	0,94		
14	mrl	100,0	73,6	0,7	100,00	57,97	0,57	98,15	100,00	1,00		
15	wtr	100,0	100,0	1,0	93,24	100,00	1,0	98,68	100,00	1,00		
16	slk	89,7	98,9	1,0								

Таблица 2. Каппа-статистика

Примечание: А_с – точность классификатора, А_и – точность пользователя.

fre. (6) Генерация классификации для фрагмента «Б21» методом максимального правдоподобия с применением сформированных обучающих выборок, за исключением agr, cut и fre. (7) Генерация классификации для фрагмента «Б22» методом максимального правдоподобия с применением сформированных обучающих выборок, за исключением agr, cut и slk. (8) Объединение полученных классификаций в картосхему «В». (9) Объединение картосхемы «В» с маской урбанизированных территорий в картосхему «Г». (10) Переобозначение всех пикселей slk вне маски лесов, поврежденных сибирским шелкопрядом, в класс fre на картосхеме «Г». (11) Генерализация картосхемы «Г» медианным фильтром с окном 3х3 пикселя. (12) Переобозначение всех пикселей rgn и dcd sparse в пределах маски водных поверхностей основных рек в grs и srb, соответственно, на картосхеме «Г». (13) Удаление с картосхемы «Г» методом каппа-статистики [15, 16].

Результаты оценки точности картосхем приведены в табл. 2. Использовано от 16 до 584 тестовых точек, в среднем более 133 точек на класс. Общее значение каппа составило 0,93 для всех картосхем.

Согласование классификационных картосхем и анализ пространственно-временной динамики основных классов земной поверхности. На данном этапе выделены области пересечения картосхем и их логическое согласование. Решающие правила позволили устранить логически неправильные переходы классов, например, появление лесов, поврежденных сибирским шелкопрядом, на месте лиственных древостоев или перехода сомкнутых лиственных древостоев в сомкнутые темнохвойные древостои. Такие ошибки связаны с погрешностями в классификации и с геометрическими искажениями. Использовано более 50 решающих правил. В результате составлен временной ряд из картосхем (рис. 3). Построена диаграмма динамики площадей классов (рис. 4). Сформирована картосхема изменений (рис. 5) и оценена ее точность методом каппа-статистики (табл. 3). Подсчитаны изменения площадей классов наземного покрова (табл. 4). Рассчитаны матрицы переходов классов между различными годами (табл. 5, 6, 7, 8).

Рис. 3. Временной ряд классификационных картосхем: 1) drk_closed + pin; 2) mxd; 3) dcd_closed; 4) dcd_sparse; 5) rgn+srb; 6) grs; 7) swp; 8) agr; 9) cut; 10) urb; 11) mrl; 12) slk+fre; 13) wtr

Рис. 4. Динамика площадей основных классов наземного покрова: 1) pin, 2) rgn, 3) fre, 4) srb, 5) grs, 6) cut, 7) drk_closed, 8) mxd, 9) dcd_closed+dcd_sparse, 10) agr, 11) slk. Ошибки оценивались как проценты от площадей классов, выраженные через ошибки пропуска (верхняя граница) и включения (нижняя граница). Для класса srb 1978 и 1989 годов ошибка бралась в 5%

Рис. 5. Картосхема произошедших изменений за период 1978 – 2000 гг.

Таблица 3. Оценка точности картосхемы изменений за период 1978 – 2000 гг.

Классы с картосхемы	Точность	Точность	Каппа	
Классы с картосхемы	классификатора,%	пользователя,%	rainiu	
Undisturbed	100,00	60,23	0,51	
Changes 1989-1978	62,50	100,00	1,00	
Changes 2000-1989	67,86	88,37	0,86	
Stands killed by Siberian silkmoth 2000	89,02	100,00	1,00	

Мо	Класс		Площадь, га	Разность п	лощадей, га		
<u>_</u> 14⊡	Класс	1978	1989	2000	1989-1978 гг.	2000-1989 гг.	
1	drk_closed	321968,8	321968,8 292100,6		-29868,2	-31393,0	
2	pin	19611,9 16461,9		17252,4	-3150,0	790,5	
3	mxd	397652,4	358376,1	294134,4	-39276,3	-64241,7	
4	dcd_closed	282976,9	326603,5	319461,7	43626,7	-7141,9	
5	dcd_sparse	93629,0	112474,1	99429,3	18845,1	-13044,8	
6	rgn	23311,3	21585,3	31140,4	-1726,0	9555,1	
7	fre	0,0	0,0	3796,3	0,0	3795,3	
8	srb	443,2	1070,7	2567,9	627,5	1497,2	
9	grs	21628,0	29146,1	49598,4	7518,1	20452,3	
10	agr	198993,0	198459,6	182570,7	-533,4	-15888,9	
11	cut	960,1	4069,9	564,4	3109,8	-3505,4	
12	urb	17936,3	17751,6	17765,5	-184,6	13,8	
13	swp	10098,1	10098,1	10098,1	0,0	0,0	
14	mrl	326,9	969,4	2466,7	642,5	1497,3	
15	wtr	7702,1	8071,0	7883,9	368,9	-187,1	
16	slk	0,0	0,0	97800,2	0,0	97799,2	

Таблица 4. Динамика площадей классов наземного покрова

Таблица 5. Состав классов 1989 г. из классов 1978 г., %

	1978														
1989	drk_ closed	pin	mxd	dcd_ closed	dcd_ sparse	rgn	fre	srb	grs	agr	cut	urb	swp	mrl	wtr
drk_closed	83,8	0,0	16,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
pin	0,0	94,4	5,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
mxd	16,2	0,5	71,2	9,0	3,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
dcd_closed	0,0	0,0	20,6	67,9	11,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
dcd_sparse	0,0	0,0	16,5	16,8	36,2	18,9	0,0	0,1	0,0	10,6	0,8	0,0	0,0	0,1	0,0
rgn	26,1	0,7	3,9	3,7	3,3	1,9	0,0	0,0	57,3	2,7	0,1	0,1	0,0	0,2	0,0
fre	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
srb	8,6	3,3	4,2	20,4	15,7	0,2	0,0	26,3	17,9	0,0	0,0	0,0	0,0	0,3	3,2
grs	29,4	6,3	17,6	4,8	5,3	5,4	0,0	0,2	28,4	1,8	0,2	0,3	0,0	0,1	0,4
agr	0,2	0,0	1,1	3,8	1,2	0,0	0,0	0,0	0,0	93,6	0,0	0,1	0,0	0,0	0,0
cut	94,5	0,4	4,9	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
urb	0,1	0,0	0,3	0,2	0,0	0,1	0,0	0,0	0,2	0,4	0,0	98,6	0,0	0,0	0,0
swp	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0
mrl	21,7	4,4	3,1	4,7	3,5	2,5	0,0	0,3	36,0	10,9	0,0	0,7	0,0	10,9	1,2
wtr	0,0	0,0	0,0	0,0	1,1	0,2	0,0	0,4	5,1	0,9	0,0	0,8	0,0	0,5	91,1

	1989														
2000	drk_ closed	pin	mxd	dcd_ closed	dcd_ sparse	rgn	fre	srb	grs	agr	cut	urb	swp	mrl	wtr
drk_ closed	71,4	0,0	28,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
pin	0,0	86,0	13,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
mxd	4,4	0,1	64,0	26,2	5,1	0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
dcd_ closed	0,0	0,0	11,7	69,6	17,1	1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
dcd_ sparse	0,0	0,0	12,1	16,5	29,1	11,4	0,0	0,2	14,3	13,3	3,0	0,1	0,0	0,1	0,0
rgn	18,5	0,6	7,7	5,9	17,1	10,8	0,0	0,0	10,8	25,5	2,2	0,2	0,0	0,8	0,0
fre	52,2	3,3	28,2	3,9	2,3	0,3	0,0	0,0	9,1	0,4	0,1	0,1	0,0	0,1	0,0
srb	8,4	0,2	8,6	16,6	15,3	3,5	0,0	21,1	10,7	9,3	0,2	0,1	0,0	0,6	5,3
grs	23,4	1,4	27,1	15,5	8,4	2,1	0,0	0,6	18,8	1,1	0,8	0,0	0,0	0,2	0,4
agr	0,1	0,0	0,6	0,3	2,0	0,0	0,0	0,0	0,1	96,6	0,0	0,1	0,0	0,1	0,0
cut	86,0	0,4	8,0	0,6	0,2	0,0	0,0	0,0	0,0	0,0	4,8	0,0	0,0	0,0	0,0
urb	0,5	0,1	0,8	0,2	0,2	0,1	0,0	0,0	0,2	0,5	0,0	97,4	0,0	0,0	0,1
swp	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0
mrl	13,0	11,0	4,6	1,6	4,6	3,3	0,0	0,8	48,7	0,5	0,6	0,1	0,0	10,0	1,3
wtr	0,0	0,0	0,0	0,0	0,3	0,1	0,0	0,3	1,9	0,5	0,0	0,3	0,0	0,9	95,8
slk	74,0	0,0	25,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1

Таблица 6. Состав классов 2000 г. из классов 1989 г., %

Таблица 7. Распределение классов	1989 г. по классам 2000 г., %	

	1989														
2000	drk_ closed	pin	mxd	dcd_ closed	dcd_ sparse	rgn	fre	srb	grs	agr	cut	urb	swp	mrl	wtr
drk_ closed	63,7	0,0	20,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,9	0,2
pin	0,0	90,2	0,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,5	0,1
mxd	4,5	1,6	52,5	23,6	13,3	2,5	0,0	0,0	0,0	0,0	0,0	0,2	0,0	1,4	0,4
dcd_ closed	0,0	0,0	10,4	68,1	48,6	23,2	0,0	0,0	0,0	0,0	0,0	0,5	0,0	0,3	0,2
dcd_ sparse	0,0	0,0	3,3	5,0	25,8	52,7	0,0	15,1	48,7	6,6	72,2	0,5	0,0	15,2	0,2
rgn	2,0	1,2	0,7	0,6	4,7	15,5	0,0	1,0	11,6	4,0	16,5	0,3	0,0	24,7	0,1
fre	0,7	0,8	0,3	0,0	0,1	0,1	0,0	0,1	1,2	0,0	0,1	0,0	0,0	0,5	0,0
srb	0,1	0,0	0,1	0,1	0,3	0,4	0,0	50,6	0,9	0,1	0,1	0,0	0,0	1,7	1,7
grs	4,0	4,4	3,8	2,4	3,7	4,7	0,0	29,1	32,1	0,3	10,2	0,1	0,0	11,8	2,7
agr	0,0	0,2	0,3	0,2	3,3	0,4	0,0	0,0	0,8	88,9	0,0	0,7	0,0	10,5	0,3
cut	0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	0,0	0,0	0,0	0,0
urb	0,0	0,1	0,0	0,0	0,0	0,1	0,0	0,0	0,1	0,0	0,0	97,5	0,0	0,2	0,2
swp	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0
mrl	0,1	1,6	0,0	0,0	0,1	0,4	0,0	1,9	4,1	0,0	0,3	0,0	0,0	25,4	0,4
wtr	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,1	0,5	0,0	0,0	0,1	0,0	7,2	92,8
slk	24,8	0,0	7,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,9

							19	978							
1989	drk_ closed	pin	mxd	dcd_ closed	dcd_ sparse	rgn	fre	srb	grs	agr	cut	urb	swp	mrl	wtr
drk_ closed	76,1	0,0	11,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,6
pin	0,0	79,3	0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,2
mxd	18,1	9,7	64,2	11,4	11,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,3	1,2
dcd_ closed	0,0	0,0	16,9	78,4	39,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
dcd_ sparse	0,0	0,0	4,7	6,7	43,5	91,3	0,0	18,1	0,0	6,0	90,2	0,3	0,0	22,5	0,0
rgn	1,7	0,7	0,2	0,3	0,8	1,7	0,0	0,3	57,2	0,3	2,2	0,2	0,0	16,4	0,0
fre	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
srb	0,0	0,2	0,0	0,1	0,2	0,0	0,0	63,4	0,9	0,0	0,0	0,0	0,0	0,9	0,4
grs	2,7	9,4	1,3	0,5	1,6	6,7	0,0	10,4	38,2	0,3	7,4	0,4	0,0	8,7	1,6
agr	0,1	0,5	0,6	2,6	2,5	0,0	0,0	0,0	0,0	93,3	0,0	1,2	0,0	0,0	0,2
cut	1,2	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,0	0,0
urb	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,2	0,0	0,0	97,6	0,0	0,1	0,1
swp	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0
mrl	0,1	0,2	0,0	0,0	0,0	0,1	0,0	0,8	1,6	0,1	0,0	0,0	0,0	32,3	0,1
wtr	0,0	0,0	0,0	0,0	0,1	0,1	0,0	7,0	1,9	0,0	0,0	0,3	0,0	13,5	95,5

Таблица 8. Распределение классов 1978 г. по классам 1989 г., %

Рис. 6. Распределение классов с картосхемы 2000 г. по классам карты повреждений 1996 г. Классы степени повреждений согласно карте 1996 г.

Анализ распределения классов 2000 г. по категориям повреждений сибирским шелкопрядом 1996 г. Интерес представляют изменения, произошедшие после вспышки массового размножения сибирского шелкопряда. Для этого картосхемы поврежденных сибирским шелкопрядом древостоев 1996 г. сопоставлены с классификацией 2000 г. (рис. 6).

Результаты и обсуждение

Изучение динамики лесного покрова Нижнего Приангарья ранее проводилось с использованием мелкомасштабной космической съемки MODIS (2002 г.) Результаты были опубликованы в работах [3, 12]. Использовался 16-дневный композит с 28 июля по 12 августа 2002 г., изображения с четырьмя слоями: NDVI, красный, ближний и средний ИКканалы MODIS. В районах вспышки были выделены погибшие темнохвойные и смешанные насаждения (рис. 7).

Использование среднемасштабной космической съемки Landsat имеет большие преимущества, так как позволяет провести более детальный анализ изменения растительного покрова в районе вспышки.

Большинство изменений связано со вспышкой массового размножения сибирского шелкопряда, гарями и вырубками. Наблюдается значительное уменьшение площади темнохвойных и смешанных сомкнутых древостоев к 2000 г. по сравнению с 1989 г. Почти 25 % темнохвойных древостоев погибло, и 7 % смешанных древостоев было повреждено сибирским шелкопрядом (табл. 7). К 2000 г. примерно 13 % древостоев, поврежденных в 1996 г., восстановили свою жизнеспособность (рис. 6).

Отмечается также уменьшение площади вспаханных земель и их зарастание лиственным редколесьем и травяной растительностью (6 % к 1989 г., 10 % к 2000 г., табл. 7, 8). Данный факт обусловлен экономической депрессией 90-х гг. Также выявлено значительное уменьшение площади вырубок и увеличение площадей гарей в 90-х годах по сравнению с 80-ми (табл. 7, 8).

Рис. 7. Картосхема лесного покрова Нижнего Приангарья по данным съемки MODIS 2002 г. 1 – погибшие, 2 – темнохвойные, 3 – смешанные насаждения, 4 – фон

Заключение

За анализируемый период на исследуемой территории произошли значительные изменения наземного покрова, которые связаны с деятельностью как человека, так и самой природы. В результате этих изменений наблюдается значительное уменьшение запасов темнохвойных лесов, которые частично замещаются лиственными древостоями.

В данном исследовании применена методика разделения снимков на фрагменты с доминантными классами, что позволило снизить ошибки классификации. Как показывает практика, разработанный подход достаточно трудоемок, так как требует составления множества масок. Следующим этапом будет апробация методики, основанной на обнаружении изменений при помощи различных индексов во временном ряду, которая позволит уменьшить несогласованность получаемых классификационных картосхем.

В дальнейшем планируется также провести анализ связи рассмотренной пространственновременной динамики растительного покрова с 3-D-моделью местности, что позволит выявить элементы рельефа, для которых характерны изменения покрова.

Работа выполнена при финансовой поддержке междисциплинарного интеграционного проекта СО РАН № 86.

Список литературы

- 1. Гродницкий Д. Л., Разнобарский В. Г., Ремарчук Н. П.,. Солдатов В. В. Деградация древостоев в таежных шелкопрядниках // Сибирский экологический журнал. 2002. № 1. С. 3 – 11.
- 2. Им С. Т., Харук В. И., Рэнсон К. Д., Солдатов В. В. Съемка Spot-Vegetation в анализе динамики повреждения горнотаежных лесов сибирским шелкопрядом // Исследование земли из космоса. 2007. № 1. С. 74 80.
- Им С. Т., Федотова Е. В.,. Харук В. И. Анализ очагов повреждения таежных лесов сибирским шелкопрядом по данным мелкомасштабной космосъемки // Вычислительные технологии. 2007. Т. 12. Спец. выпуск 1. С. 60 – 69.
- Исаев А. С., Кондаков Ю. П. Принципы и методы лесоэнтомологического мониторинга // Лесоведение. 1986. № 4. С. 3 – 9.
- Кондаков Ю. П. К изучению периодичности вспышек массового размножения сибирского шелкопряда // Исследования по защите лесов Сибири. М., 1965. С. 110 – 121.
- Сухинин А. И., Павличенко Е. Пожары в таежных шелкопрядниках //Приложение к «Сибирскому экологическому журналу». Новосибирск: изд-во СО РАН. 2002. Т. 9. – № 1. С. 13 – 16.
- Dottavio C. L., Williams D. L. Satellite technology an improved means for monitoring forest insect defoliation // J. Forestry. 1983. V. 81. № 1. P. 30 – 34.
- 8. Erdas Field Guide. 5th ed. Revised and Expanded. Atlanta, Georgia: Erdas Inc. 1999. 672 p.
- Gilli M.P., Gorla D. E. The spatio-temporal pattern of Delphacodes kuscheli (Homoptera: Delphacidae) abundance in central Argentina // Bulletin Entomological Research. 1997. № 87(1).
 P. 45 – 53.
- 10. Kharuk V. I., Ranson K. J., Kuz'michev V. V., Im S. T. Landsat-based analysis of insect outbreaks in southern Siberia // Canadian J. Remote Sensing. 2003. V. 29. № 2. P. 286 297.

- Kharuk V. I., Ranson K. J., Kozuhovskaya A. G., Kondakov Y. P., Pestunov I. A. NOAA-AVHRR Satellite Detection of Siberian Silkmoth Outbreaks in Eastern Siberia // International Journal of Remote Sensing. 2004. V. 20. № 24. P. 5543 – 5555.
- 12. Kharuk V. I., Ranson K. J., Fedotova E. V. Spatial pattern of Siberian silkmoth outbreak and taiga mortality. // Scandinavian Journal of Forest Research. 2007. V. 22. Issue 6. P. 531 536.
- 13. Nelson R. F. Detecting forest canopy change due to insect activity using Landsat MSS // Photogrammetric Engineering and Remote Sensing. 1983. № 49. P. 1303 1314.
- Radeloff V.C., Mladenoff D. J., Boyce M. S. Detecting Jack Pine budworm defoliation using spectral mixture analysis: Separating effects from determinants // Remote Sensing of Environ. 1999. V.69. №2. P. 156 -169.
- 15. Richards J. A. Remote sensing digital Image Analysis. Germany: Springer-Verlag, 1993. 340 p.
- 16. Swain P. H. Remote sensing: the quantitative approach Davis S. M. New-York: McGraw-Hill, 1978. 396 p.

Spectroradiometer Data in Siberian Silkmoth Outbreak Zone Analysis

Sergey T. Im, Elena V. Fedotova, and Vyacheslav I. Kharuk V. N. Sukachev Institute of Forest SB RAS, 50/28 Academgorodok, Krasnoyarsk, 660036 Russia

Temporal data set of Landsat scenes was applied to analyze vegetation cover dynamics within watershed of Angara and Yenisei rivers caused by Siberian silkmoth outbreak (1994 – 1996). yr). A method of generation of sketch-maps time series based on decomposition of scenes by dominating land cover types was developed and applied. It was found 25 % mortality of dark- needle stands. About 15 % of damaged stands recovered after outbreak. The burned area within outbreak zone increased. Decreases of clearcuts were observed, as well as transformation of agriculture land into sparse stands and grass-bushes communities.

Keywords: Landsat, silkmoth outbreaks, vegetation cover dynamics.