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Load unbalance and modern office equipment result in a significant neutral current in three-phase 
four-wire low-voltage power systems. This paper considers a new configuration of hybrid power 
filter for power quality management in three-phase four-wire low voltage power systems. The 
proposed hybrid filter is composed of a single-phase power converter and a three-phase passive 
filter connected in series. The hybrid filter can be operated in both passive and hybrid mode.
The compensating performance of the filter is confirmed with computer simulation using MATLAB 
software. Analysis and simulation proved that the hybrid filter is an effective solution for neutral 
current mitigation.
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Современное офисное оборудование и несимметрия нагрузок являются основной причиной 
увеличения токов нейтральных проводников в трехфазных четырехпроводных сетях низкого 
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напряжения. В статье рассмотрена новая конфигурация силового гибридного фильтра для 
управления качеством электроэнергии в трехфазных четырехпроводных сетях. Предложенный 
гибридный фильтр образован последовательным соединением трехфазного пассивного 
фильтра, настроенного на частоту доминирующей третьей гармоники, и однофазного 
инвертора. Фильтр может работать как в пассивном, так и в гибридном режиме. 
Компенсационные характеристики предложенного фильтра проанализированы с помощью 
моделирования в MATLAB. Анализ показал, что предложенный гибридный фильтр является 
эффективным средством ослабления гармоник и токов нейтральных проводников. 

Ключевые слова: трехфазная четырехпроводная сеть, гибридный силовой фильтр, ток 
нейтрального провода.

Introduction

Three-phase four-wire distribution power systems are widely used in office buildings and 
commercial complexes to supply single-phase and three-phase loads. These loads include office 
equipment, computer systems, fluorescent and diode lighting systems, adjustable-speed drivers 
and have nonlinear characteristics. Nonlinear loads create problems of high current harmonics and 
excessive neutral current since triplen harmonics are summed in the neutral conductor. Under the 
worst case, the neutral current could be 1.73 times exceed the phase current [1, 2]. High level of neutral 
harmonic current results in transformer and conductor overheating, voltage distortions [3]. Single-
phase loads may be distributed unequally, which results in serious load unbalance and excessive 
neutral-line fundamental current. Therefore excessive neutral currents are becoming a significant 
problem in modern low voltage power distribution systems.

Different neutral current compensation techniques have been proposed [4-8]. A passive neutral 
current suppressor in the form of zig-zag transformer connected in parallel to the load was considered 
in [4]. However, the effectiveness of passive neutral-current suppressors depends on the ratio between 
the impedance of the distribution system and the passive filter. Furthermore the zig-zag transformer 
provides a low impedance path for zero-sequence components of the utility voltage.

A hybrid neutral-current suppressor consisting a zig-zag transformer connected in parallel 
with the load and a single-phase active filter which in its turn is connected in series with the neutral 
conductor was proposed in [5]. However, a converter inserted at the neutral line may cause fluctuations 
of the voltage between neutral points of the load and the distribution system [8]. The neutral voltage 
variations may cause improper operation of the sensitive electronic equipment.

Several neutral current compensation systems in the form of three-phase four-wire active power 
filter were proposed in [5, 6]. But this configurations has the disadvantage of complexity of control and 
a big number of semiconductor switches. The capacity and cost of three-phase four-wire converters are 
very high as compared with other types of power filters. This limits wide application of active power 
filters. Hybrid power filters (HPF) may be more attractive solution for neutral current mitigation.

In this paper the new configuration of the hybrid filter for neutral-line current and voltage 
mitigation in tree-phase four-wire distribution power systems is considered.

System configuration of hybrid power filter

The configuration of the proposed power filter is shown in Fig. 1. It comprises a three phase 
passive filter tuned for third harmonic and a single-phase power converter connected in series. Power 
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converter acts as an active filter. The voltage rating of the power converter can be significantly reduced 
because major part of the phase to neutral voltage drops on the passive filter. The hybrid filter can 
operate in either passive or hybrid mode. In Fig. 1 ADC – analog to digital converter, CB – control 
block.

Computation of the output voltage of the power converter is performed by the digital two-
band frequency-dividing filter which realizes bandpass and band-stop magnitude characteristics. 
The output voltage of the active filter is proportional to harmonic components of the neutral-line 
current IN:

ratio between the impedance of the distribution system and the passive filter. Furthermore the zig-

zag transformer provides a low impedance path for zero-sequence components of the utility voltage. 

A hybrid neutral-current suppressor consisting a zig-zag transformer connected in parallel 

with the load and a single-phase active filter which in its turn is connected in series with the neutral 
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fluctuations of the voltage between neutral points of the load and the distribution system [8]. The 

neutral voltage variations may cause improper operation of the sensitive electronic equipment. 

Several neutral current compensation systems in the form of three-phase four-wire active 
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( ) ( )h
NAFhNAFAF iRiRu += 1

1 ,      (1) 

where ( )1
Ni  and ( )h

Ni  are fundamental and harmonic components of the neutral current, respectively; 

1AFR  and AFhR  are transfer resistances of the active filter on the fundamental and harmonics 

frequencies. The output signals of the two-band filter are amplified and sent to the PWM circuit as 

the modulation signal. 
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unbalanced utility voltage or nonsymmetrical linear load, 
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where A(z) is a second-order all-pass transfer function. F1(z) is a notch-type transfer function and F2(z) 
is a bandpass-type transfer function tuned to the fundamental frequency ω0.
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where 1k  is the adaptive coefficient, which should converge to 0cosω−  for reject a sinusoid with 

frequency 0ω . Suppression frequency of the notch filter can be modified by 1k  and stopband width 

by 2k . 

 

 
Fig. 5. Second-order FIR lattice filter 
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The polynomials of nominator and denominator of equation (6) have mirror symmetry. Ladder IIR 
filter (Fig. 4) realizes all-pass transfer function module of which is equal to 1 in the all frequency range. 
According to (4, 5), transfer functions of the two-band IIR filter, shown in Fig. 3, are the following:
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voltage source with small impedance [2, 12]. Common shunt passive and active filters have been shown 
in [12] to have different compensation characteristics for current-source nonlinear loads and voltage-
source nonlinear loads. In this section we consider compensation characteristics of the proposed filter 
for different rectifier loads.

Case A: diode rectifier has the RLC load. The MATLAB model of the distribution power system, 
hybrid filter and the load is shown in Fig. 6. The nonlinear load consists of three single-phase diode 
rectifiers with a LC smoothing filters. Each rectifier is connected between line and neutral point. 
The linear load is modeled by the series RL network in each phase. Parameters used in the computer 
simulation are shown in Table I.

Fig. 7 shows the simulation results for the neutral current in the case of applying the passive filter 
and the hybrid filter. The passive filter is connected in 0,2s. The filter works in the passive mode until 
0,4s when the power convertor starts. As seen in Fig. 7, the neutral current is attenuated from 30 A to 
less than 5.3 A (RMS).

The harmonic content of the neutral current is shown in Fig. 8. The total harmonic distortion 
(THD) of the PCC voltage is less than 4%.

Fig. 9, 10 show the simulation results for the unbalanced RLC load. In this case the neutral current 
contains both triplen and fundamental harmonics. Active power filter does not influence over neutral-
line fundamental harmonic.

Table 1. Model parameters used in the simulation (RLC load)

Parameter Value

RS, LS 0,1 Ω, 318 µH
RN 0,1 Ω

RL, LL, CL 40 Ω, 1.2 mH, 530 µF
RLL, LLL 15 Ω, 47.7 mH

VS 220 V, 50 Hz
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Case B: diode rectifiers have the RC load. The MATLAB model of the load, hybrid filter and 
the distribution power system is shown in Fig. 11. The nonlinear load consists of three single-phase 
diode rectifiers with a load of capacitor and resistor connected in parallel. The parameters used in the 
computer simulation are shown in Table 2.

The simulation results for the neutral current in the case of the balanced RC load are shown in 
Fig. 12. The neutral current is attenuated from 25 A to less than 3 A (RMS). The harmonic content of the 
neutral current is reported in Fig. 13. In this case the THD of the voltage in the PCC is less than 2.5 %.

Table 2. Model parameters used in the simulation (RC load)

Parameter Value

RS, LS 0,1 W, 318 µH
RN 0,1 Ω

RL, LL, CL 40 Ω, 937.5 µF
RLL, LLL 15 Ω, 47.7 mH

VS 220 V, 50 Hz
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The simulation results for the neutral current for the unbalanced RC load are shown in Fig. 14. The 
harmonic content of the neutral current is reported in Fig. 15.

Simulation results verify that the proposed hybrid filter is able to compensate for harmonic neutral 
currents in cases when nonlinear load has characteristics of current source or voltage source.

Conclusion

The overload of the neutral conductor is becoming a serious problem in modern three-phase four 
wire distribution low voltage power systems. In this paper, a hybrid filter is proposed to compensate 

Fig. 15. Spectrum of the neutral line current IN (unbalanced RC load)
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harmonics and neutral current in three-phase four-wire distribution power systems. The proposed filter 
is composed of a three-phase passive filter and a single-phase power converter connected in series. The 
output voltage of the active filter is proportional to harmonic components of the neutral-line current.

The simulation results verify that the proposed filter demonstrates good compensation 
characteristics for different nonlinear loads. It can provide a better neutral current mitigation than the 
passive filter.
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