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Classical recurrent Newton’s identities give relations between sums of powers of the roots of
a polynomial and the coefficients of this polynomial (see, e.g., [1–3]). These formulas can be
obtained with the use of the Cauchy integral formula [4, Ch.1]. This fact allows us to expand
the class of functions for which these recurrent formulas are valid. Namely, for the class of entire
functions of finite order of growth one can obtain relations between the coefficients of a Taylor
expansion of a given function and sums of negative powers of zeros of the function [4, Ch.1].

Using the methods of complex analysis, we introduce the concept of the resultant for an entire
function and an entire function with finite number of zeros and establish its properties. The
proposed approach can be useful, for example, in studies of equations of chemical kinetics where
exponential polynomials arise [5, 6]. It also allows us to apply this approach to the elimination
of unknowns from systems of non-algebraic equations on the basis of the Zel’dovich-Semenov
scheme [7].

Let us consider two polynomials f and g. The classical resultant R(f, g) can be defined in
several ways:

a) by using the Sylvester determinant (see, e.g., [1–3]);
b) by virtue of the product formula R(f, g) =

∏
{x:f(x)=0}

g(x) (see, e.g., [1–3]);

c) by using the Bézout-Cayley formula (see, e.g., [8]).
The product formula and the Sylvester resultant are used in the proposed approach. It is

motivated by the fact that entire functions are natural generalization of polynomials in complex
analysis.

A number of papers [9–13] has been devoted to the generalization of the notion of resultant
for analytic functions in annuli, matrices, meromorphic functions on a complex Riemann surface
and for systems of algebraic equations. However, it is assumed in all these studies that the
number of zeros or singular points (poles) is finite. We assume that an entire function can have
an infinite number of zeros. The downside of this is that a closed formula can not be obtained.

An approach to determine the resultants of two entire functions was proposed [14]. The case
when one of the functions is entire, and the second is a polynomial (or an entire function with a
finite number of zeros) was considered.

Let f(z) and g(z) be entire functions on complex plane C of the form

f(z) = a0 + a1z + a2z
2 + . . .+ anz

n + . . . , a0 = 1, (1)
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and
g(z) = b0 + b1z + b2z

2 + . . .+ bnz
n + . . . . (2)

In what follows we consider transcendental functions f(z) and g(z),that is, entire functions
for which infinitely many coefficients aj and bj are not equal to zero. It is of interest to find out
when these functions have at least one common zero.

If f and g are polynomials then the answer is given by the Sylvester classical resultant (see,
for example, [2]). The case when f(z) is a polynomial, and g(z) is a transcendental function
was considered before [14]. The purpose of this paper is to consider transcendental functions f
and g.

The main approach to solve this problem is based on the formula for the logarithmic residue
(see, for example, [15]).

Let γR = {z : |z| = R} be a circle centred at the origin and of radius R. Suppose that zeros
of f(z) do not lie on γR. Let us consider the following integral

IR =
1

2πi

∫
γR

g(ζ)
df(ζ)

f(ζ)
. (3)

By the formula of the logarithmic residue (see, for example, [15]), the integral is equal to

IR =

NR∑
k=1

g(αk),

where NR is the number of zeros of f(z) in the disk CR = {z : |z| < R} (zeros are counted
together with their multiplicities), and αk are zeros.

If we consider integrals

ImR =
1

2πi

∫
γR

gm(ζ)
df(ζ)

f(ζ)
, m ∈ N,

then

ImR =

NR∑
k=1

gm(αk).

Applying the classical Newton recurrence formulas (see, for example, [2]) to the sequence ImR ,
m = 1, . . . , NR, one can obtain the following expression

NR∏
s=1

g(αs). (4)

Thus, if expression (4) is equal to zero then functions f(z) and g(z) have common zeros in
the disk CR.

If we now increase R unlimitedly then two options are possible: either for some R expression
(4) tends to zero, i.е., f and g(z) have a common zero in CR; or expression (4) does not tend to
zero for any R, i.e., f and g(z) do not have common zeros in C.

Thus, to construct the resultant of functions f(z) and g(z) one need to compute integrals (3)
and (4) for any R without finding zeros of function g(z). Here we consider one approach to solve
this problem.

Let Pn(z) be the Taylor polynomial of f(z) of order n, that is,

Pn(z) = a0 + a1z + a2z
2 + . . .+ anz

n,

and Qn(z) is the remainder f(z)− Pn(z).
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Let us suppose that for a given n there exists R > 0 such that

|Pn(z)| > |Qn(z)|, если |z| = R, (5)

i.e., inequality (5) holds on the circle γR = {z : |z| = R}, and in addition all the roots of
polynomial Pn(z) lie in the disk CR . In this case integrals of the form (3) can be calculated in
terms of the Taylor coefficients of functions f(z) and g(z).

Since for sufficiently large R the following inequality holds (lemma on the modulus of the
highest term)

|Pn−1(z)| < |an|Rn. (6)

If an ̸= 0 then by the Rouché theorem polynomial Pn(z) has exactly n roots in the disc
CR = {z : |z| < R} (counted together with their multiplicities), and it has no roots outside this
circle

Therefore, in what follows we assume that for a given R conditions (5) and (6) hold. Then
all roots of polynomial Pn(z) lie in the disk CR.

Let us consider the following integral

Js =
1

2πi

∫
γR

ζs
dζ

Pn(ζ)
, s ∈ N. (7)

Using the change of variables ζ → 1/w in integral (7), we obtain

Js = −
∫
γ 1

R

1

ws
·
d
(
1
w

)
Pn

(
1
w

) .
Since Pn(ζ) = a0 + a1ζ + . . .+ anζ

n then

Pn(1/w) = a0 + a1/w + . . .+ an/w
n =

1

wn
(a0w

n + a1w
n−1 + . . .+ an) =

1

wn
P ∗
n(w), (8)

where P ∗
n(w) = a0w

n + a1w
n−1 + . . . + an. Taking into account condition (5), polynomial

P ∗(w) has no roots in the disk C 1
R

. We have

Js =

∫
γ 1

R

1

ws
· dw
w2

· 1
1
wn · P ∗

n(w)
=

∫
γ 1

R

wn−s−2 · dw

P ∗
n(w)

.

Hence we obtain the following assertion.

Theorem 1. If n− s− 2 > 0 then Js = 0. If n− s− 2 < 0 then

Js =
2πi

(s− n)!
· ∂s+1−n

∂ws+1−n

1

P ∗
n(w)

∣∣∣∣
w=0

.

So with condition (5), integral Js can be calculated in a finite form. This theorem is the basis
for finding the resultant of two entire functions.

Let us now consider the fulfilment of conditions (5) and (6).
We give an estimate of R for which inequality (6) holds. Obviously, inequality (6) holds if

the inequality
n−1∑
k=0

|ak|Rk < |an|Rn
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holds.
Assuming R > 1, we obtain that inequality (6) holds if the inequality

n−1∑
k=0

|ak| < |an|R

holds. Thus the following assertion is valid.

Theorem 2. Let an ̸= 0, and the inequality

R >

n−1∑
k=0

|ak|

|an|
, (9)

holds for R > 1. Then all roots of polynomial Pn(z) lie in the disk CR.

Since
n−1∑
k=0

|ak| 6
∞∑
k=0

|ak| = K,

then the following is valid.

Corollary 1. Let an ̸= 0. If for some R the inequality

R >
K

|an|
holds then all roots of Pn(z) lie in the disk CR.

Let us find conditions on R when the inequality |Pn(z)| > ε|an|Rn holds for some 0 < ε < 1,
i.e.,

|a0 + a1z + . . .+ anz
n| > ε|an|Rn. (10)

It follows from (6) that

|Pn(z)| > |an|Rn − |Pn−1(z)| > 0.

Then for 0 < ε < 1 and for some sufficiently large R the inequality

|an|Rn − |Pn−1(z)| > ε|an|Rn

holds, i.e.,
|an|(1− ε)Rn > |Pn−1|.

Theorem 3. If for some R the inequality

R >

n−1∑
k=0

|ak|

|an|(1− ε)

holds then conditions (6) and (10) are satisfied.

Corollary 2. If

R >
K

|an|(1− ε)

then conditions (6) and (10) are satisfied.
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Подход к определению результанта двух целых функций
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Исследуется подход к определению результанта двух целых функций.

Ключевые слова: результант, целая функция конечного порядка роста.
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