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In this paper presente some approaches to solving the problems of flow past a wing profile near the
interface. Studies on the flow in the vicinity of separation boundaries (solid walls and free surfaces)
show that in a confined flow liquid turns into a bubble mixture of liquid and gas. This complicates
the flow analysis and introduces additional losses resulting in impaired energy performance
of the concerned mechanisms. In a general case the problem of a two-phase compressible flow
around various types of vane mechanisms is substantially nonlinear (even under no-vortex flow
assumption,).
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Pemienue 3a1a4u 00TeKaHUsl KPbLJIOBOro npoduis

BOJIN3M rPaHULBI pa3jesa

JI.B. Kyaaruna“, B.A. Kynarun®, ®.-U. JIn’
“Cubupckutl pedepanvbHblil yHUBepcumem
Poccus, 660041, Kpacnospck, np. Ceob600nbitl, 79
°[lIkona sHepeemuuecKux HayK u MexHuKu

Xapounckuii mexHon02u4ecKull UHCMumym
Xapoun 150001, Kumaii

B nacmosweii pabome npedcmasienvl Hexomopvie HOOX00bl K peuleHuio 3a0aiy obmexauus
Kpbli08020 npouna 66ausu epanuysl pazoeia. Mcciedosanus nomoka 601u3u epanuy pazoenda
(cnnowHvle cmenku U c80600HBIE NOBEPXHOCMU) NOKA3BIGAIOM, YMO 6 3AMKHYMOM HOMOKe
AHCUOKOCMb NPespawaemcs 8 ny3vlpbKo8y cMech HCUOKOCMU U 2a3d. DMO YCAOHCHAEM AHATU3
NOMOKA U 6HOCUM OONOIHUMENbHbIe NOmMepU, NPpUsodauue K YXYOUleHUio HepeemuyecKux
Xapaxkmepucmux cOOmeemcmsayowmux mexanusmos. B obwem ciayuae npobaema 08yxgasmoeo
CHCUMACMO20 MeYeHUs GOKPYZ DA3IUYHBIX MUNO0E JONACHLIX MEXAHUSMO8 CYUeCmB8eHHO
HeauHelHa (0adxce npu NPeonoN0HCeHUY OMCYMCMEUs 8UXPe8o20 NOMOoKaA).

Kniouesvle cnosa: obmekanue Kpbvlilo6020 npogbwm, cynepkasumayuoHnble MEXAHU3MbL, cPpAHUYbL
pa3()eﬂa, meopust nomernyuaia, Memoo peuteHusl.

Introduction

Most of the problems in potential theory [1] can generally be reduced to solving integral or integral
differential equations or sets of such equations.
In the case of small perturbations, the solution to the problem comes down to solving the integral

equation [3, 4]

;riv(s){ais—Gl}dsz—Fcp(&)—;Tjlx(s)czds, "

where y and F,, are functions of the hydrofoil shape and kernels D, and G, are given by
G, =(§—S)/A; G, =¢/A; A(&—s)z +&%; ¢ =4i7(0). The foil shape is defined as F' = F, £ F,, where
F,, is the centerline equation and F, is the thickness distribution. In the first approximation of the

no-penetration boundary condition we obtain:

an n+l .
n+1 ’

a) F, ( )——a+2a§ if F,=

b «'(g)=2 ()Zi”W()

sharp leading edge and w = \/1—-&? for a rounded one.

M
b—zlsnn if F = Z b+1 ”+1w(<‘;), where w = 1 for a
n T n

OM§ OMZ

Equation (1) is an integral Fredholm equation of the first kind with a singularity in its kernel

[k(& 5 epls)ds=1(2)- @
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The solution y of Eq. (2) is known [6] to be unstable even at small errors in f{&) data and sensitive
to errors in the kernel (&, s) and it is virtually independent of the solving technique.

The problem itself, (1), is essentially ill-defined and requires proper regularization techniques to
enable its solution [6]. What makes it ill-posed when 4 — 0 is that integral equation (1) degenerates to
a differential equation that is linear with respect to the higher derivative. By means of unsophisticated

mathematics [3, 4] integral equation (1) of the flow boundary-value problem is rewritten as

2 _1" n n 1
;;( n!) v (&)W (& &)+ 5 v(8) W (&)= 0 (4), (3)
here ®(&)=—F, (€)= (E)7, (& B () iy £
where () =~Fy (€)= 1(E) (& 8) o > AW ().
\ " Umdu
wi (5 ¢) g M

(& 8)=J.]{§1S—Gl}ds=ln1:§ Los) T

+1
1- 1+
Wy(& )= Il G,ds = arcthé+ arcthé :

+1
Wy (& €)= [(&—5)Gyds, &=4h(0).
|

From Eq. (3) it follows that when % —0, problem (1) reduces to a boundary-layer-type
problem, which sheds light on why the problem is ill-posed. The physical conditions impose
limitation on N.

This problem can be solved employing a hybrid approach. First, solutions to the exterior, (1), and
interior, (3), problems are found [2, 3] and then these are mutually adjusted.

There is yet another way to tackle the problem. It starts with constructing a perturbed exterior
solution and then this solution, which is ill-suited for # — 0, is transformed so that it is able to reveal
the nature of singularity. The resultant solution thus becomes uniformly valid everywhere and provides
good approximation to the true solution. The solution can be further improved quantitatively via
higher-order approximations and, finally, nonlinear methods can be applied to accelerate convergence
of the functional sequence [3, 4].

If the sequence is divergent, which depends on the class of the function f(§) in (1), then the linear
transformations and algorithms discussed above allow the main term of the sequence to be extracted.
Write the solution of integral equation (1) as y =, + v,. The first term is associated with the influence
of the centerline shape on circulation, while the second one is attributed to the dynamic curvature

resulting from the flow around a profile near the separation boundary.

The functional parameter method
Represent vy, solution in the form of a t=+1+4h%>—2h series obtained by mapping
EE[0,00J to re[l,O]:
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(1) _ 1) 22
Y= Z Yl(an)T " (4)
There is an expansion for the kernel with respect to parameter t such that:

N
G = k,™", )
m=1
with k,,, defined in [3].

Series (5) is convergent. Moreover, it is convergent over the entire actual range of variation of the
parameter r. Convergence of series (4) remains questionable because it is not possible to construct a
general term. It is however possible to evaluate a convergence domain for specific foil shapes.

Substituting (4) and (5) into (1) and resolving the solution into two terms (terms of the same t

power are taken equal) yields a system of singular integral equations with a Cauchy-type kernel:

J"Yl 2m &dss q)(’:ll)(a)’ mZO’ 17 2’ N’ n:L 29 (6)

Converting this equation into @ class functions we have

1 +1
2 \jl+

The function CD(,Z)(mzl, 2, .., N ) is found from the boundary conditions via the solutions

7

ygfz)m)(mzl, 2, ..., N—l). Let us now write the solutions for N = 13 and n = 1 for a plate when

Fll=—q.

cp

()=—27m (D I

+1
o= | {vﬁlgku +Y§12)kn}dS; (®)

0_"71.
@, = 1[1 {Zyl[z(kl]]kl(m—kﬂ)}ds'

Substituting (8) into (7) gives

T(g)=2a /1% é; Vo) = VW ©)
wherem=1,2, ..., 13;
WZ:%+§;
\=3-5E-28 -8
W6=}—2—§&——é2+3a3+§&4+a5;
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If we do not go beyond linearized formulation of the problem, then with (4) and (9) we can find
the resultant aecrodynamic characteristics — the lift force and pitching momentum coefficients — using
the following formulas

+1

+1
A =[y"ds; i = [+ (s)sds. (10)
|

-1
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In the first boundary conditions approximation, at n = 1 we get the functions of influence of the

distance parameter /z (0) on Cg,l) and CI(\:I) in the form of t-series:

1)
(1)_C _ 1 , 3 5 23 4, 11 5 39 4 163 5 5491 4
vy _C?l) —l+£+§s +Z£ +—328 +—16s +—64g +_2568 +—81928 +
’YOO

2244877 o 5379225 o 528804484515 ;, 7641989002175
32768 65536 524288 2097152
37205275391907 45
16777216 a1

- .

(1)
W_C L Lo T 15 0 15 o 29 899
V'm CIE/]I)OO +28+28 +168 +328 +328 +648 +20488+
+358788-‘1-19231589—1604301810+1282612866218”
8192 16384 6536 524288
2091064690271812+4259769570263813+
2097152 8388608 v

where £=1°, Cyo)o =2mna, C,(J[)OO =—TI0..

Under formal application of the discussed method, the solution y given by (4)(9) is
unstable [6]. It is considered that a coarse solution can be obtained taking just a few terms of
the series; a further increase in the number of terms will only enhance the instability and the
resultant multi-term series will have nothing to do with the true solution of Eq. (1). If however
this instability is treated as a transient process, then it can be asserted that increasing the
number of approximation terms provides additional information on the behavior of the true
solution.

Let y(e) be an analytical function, then expression (11) can be treated as a Taylor-series expansion.
The asymptotic behavior of coefficients of this expansion y = Xa,¢" is determined by the type of the
function singularity. So it is natural to look for a way to deduce singularity parameters from a limited
sequence {a,} of coefficients of the series [7].

The radius of convergence of the Taylor series is determined by the singularity of the function
y(e) that is closest to the point around which expansion is performed. Farther away singularities may
appear to influence the behavior of the series coefficients as well. If this is the case, one should find the
spectrum of singularities.

The algorithms considered above offer a solution to the problem of y(g) synthesis.

Numerical solution of Eq. (1).

Integral equation (1) can be solved by reducing it to a set of algebraic equations (discrete
singularities method, collocation method and others). The mentioned methods are strongly unstable
[6] as they use conventional quadrature formulas. Attempts to improve the result by increasing the
number of nodes when eé—0 only aggravate the situation.

Solution of singularity equation (4) relies on regularization techniques, hence a proper choice of
regularizator can essentially enhance stability of the computation scheme.

The structure of the solution y(%) =4/(1—§)/(1+§) -V(&), where V(%) is a non-zero regular
function for § = +1, is determined by a specific behavior of the edge flow. After substitution of this

solution into (1) and some simple manipulations we have
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&2 1 [[—g v(s)\y(i, s)ds B
+EJ1 I+s E—s _(D(EJ)’
where (&, s)=1/A and @ (&) is the right-hand side of Eq. (1).

With the nodes, reference points and quadrature coefficients chosen by the formulas
g =cosh, ; s;=cosb,; 0,=m(2i-1)/(2N+1), (i=1, 2, .., N); 0,=2m/(2N+1);

A;=2m 1= J2N+1), (=1, 2, .. N)

we get the following set of algebraic equations

ZALJ'Y/' =b, (i,j=1,2,.., Nisthe number of nodes), 12)
where
4;=v( ,.,si,s)/(&i—sj) ; Yj:(l—Sj)V(Sj)/(2N+l) ;
b=—F, (&) sz—ix(%) 1—sj2-w(§,.,sj,a)/s(2N+l); y=1/A ; A=(§i—sj)2+82

J=1

Aerodynamic characteristics of a foil are derived from formulas (10). Switching to the quadrature

formulas gives
C,=213Y, and C, =21¥Ys,. (13)
Jj=1 Jj=1

The BCF algorithm is a powerful tool to handle integrals and resolve sets of algebraic equations

due to the quadrature and cubature formulas

S=T[ZP,{S(xk)J+R, (14)

(13,( — weights, X, — nodes, R — remainder) and the Nedashkovsky-Skorobogatko BCF method [§]
acting as regularizators in the process. The advantage of this technique [8, 9] is that it is inherently self-
regularized because of mutual cancellation of computational errors and as such it is little sensitive to
adverse changes in the coefficient matrix conditioning. A good result is obtained when the BCF method
is employed to accelerate convergence or find an antilimit of sequences. To that end, a set of equations

is constructed with matrixes of Toeplitz type [10]. So, for finding the Shanks-Schmidt transformation

oy, we have
LAS, . AS,. . ][z 1S,
1, AS;HI AS}’H—k Z, _ Sn+1 (15)
L ASr1+k ASrHZk—l Zk+l Sn+k

Once (15) has been solved, transformation follows the formula

Gk,nzl/(zl+22+'"+zk+l)‘ (16)
The T, , transformation is implemented using the following system
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L A4, 4,/n; . An/n]H v S,
k-1
1’ A)Hl; A)1+l/n+1; T An+l/(n+1) YZ — Sn+l (17)
Sn+k

1; 4

n

s Ay ks s A, (n+ k)’” Vit

where A4, =AS,, A4,=nAS,, A4,=AS,AS, [A’S, for Levin’s -, w-, and v-transformations,
respectively.
Actually, we can limit ourselves to finding only the first two components of solutions, z; and vy;, as

the rest £ components are required for analysis of the transformation spectrum.

Transformation

of divergent sequences and series

If solution of Eq. (I) has been obtained in the form of a series, the sequence v,,,,
(m=0,1,2,..),asarule, is divergent. Summation of such series and sequences is done using
nonlinear transformations. Since representation S(t):§+ i a.e®, where o, is an arbitrary

k

complex number, holds for {S,}, then by analogy with the Fc:nllrier-series, the Fire summation

is applied:
1 n
=—>» 5. 18
Gn nZI: k ( )
For the series
Ln—i+l
c, =Y ——as.
=Y (19)

Sometimes we know the location of the singularity [1], giving rise to divergence of the series,
on the axis or in the domain of variation of the parameter €. A divergent series can be converted
into an absolutely or conditionally convergent one by introducing some other comparison function.
The Euler transformation [8] 528/(1-1—8)(56[0,0.5]) applied to the series in (11) yields new

series

=3 (1) Ake e (1-7)
k=0 0 ' ‘

where Agy=a,—ay; Aay=a,-2a,+ay; ..; Aay=) €_, (-1)"¢/; A" is the operator of finite

J=0
differences of order k, and C/ are the binomial coefficients. Reiterating the procedure & = E/ (1 +§) itis
feasible to eventually obtain a uniform approximation for the solution at the extremes of the specified

N
_ k
interval 4. The source series is to be represented in the form Y = Z(—l) akSk.

=0
After grouping the terms with the same power € and dropping the terms of order 0(§N ) we
finally obtain the following approximating expressions for the foil lift force and pitching momentum

as an influence function of the / interval at small angles of attack:
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_ 35 115 1754 1775 1423 _¢ 11323 _, 715923 _
-1 Sz Mo 1704 1/7 o5 6 7 8
\2 +8+28 +48 +328+168+648+2568+ 3192 e+

41870829 _, + 56910769 + 530324997219 + 30926120625699 g2 4

32768 ' 65536 ° 524288 ¢ 2097152
1887973458979331 3,
16777216 o (20)
U, =1+l 4olge ¢ 121ae 23955 O5lag 006757 4835434
Vi =15 16° 7328 T32% T6a ® T 2048 8192
2108939 5 20321375, 128639927981 4, 7737516436603 »
16384 65536 524288 2097152
. 240090786810183 s,
8388608

While these series are slow to converge for large /4, they are uniformly valid in a larger
domain. Therefore when nonlinear methods of convergence acceleration are employed even Aitken’s
transformation can yield the best approximation, with an accuracy of up to 23 significant figures for
he [0.02, 0. 1]. The accuracy improves for larger / .

Let us now write an analytical expression for the sequence o, ,(n=0, 1, 2, ..., N=1) derived
from the series y = Zams”’.

Constructing a sequence of partial sums and substituting it into (—1)*A*S, >0,

k . . . . . .
where A* = z (—1) ¢} is the operator of central difference of order k, C; are the binominal coefficients,

we get /0

cw=§mwﬂ%—%@y @1

where b, =a,a,; b =aa,—aya

no > bm = aman _am—la

n+l > 0t n+l”

If in 21) a,—a,,,€=0, then the nominator of the fraction should be examined for zeroes.

Suppose, there is €, =a,/a,,, among the polynomial zeroes; this defect can be readily cured. When

n+
€ is apole, we should set 6, , =0, ;. Sometimes appearance of a pole indicates the limits of series

convergence. Thus for the yy series from (11) these are &, =a,/a,,,, which agrees with the results

ntl >
obtained by other techniques [3, 4].

The amount of information that can be derived for a given number of approximations does not
appear to be enough for a transformation to ensure the best approximation over the entire domain of
variation of parameter €. We then have to approach the true solution via various transformations for
each 7 value.

The Shanks-Schmidt-Levin transformations are based on rational approximation of the series
Za kxk . They complement each other as their representation error is associated with the Loran-series

expansion of the function

ﬂ@=gﬁﬁ+g@fﬁ (22)

The first term in (22) refers to errors under Shanks and second one under Levin transformations.
In a general case, it is necessary to have available these transformations along with the recursive

techniques for their evaluation to be able to automatically monitor the situation. If it appears that the
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> iy

Shanks transformation fails or is slow to converge for n, >0, i.e. (ck, n ~ Ok )>8, we should
then switch to the Levin transformation.

If Fire summation (19) is applied to series (11) and (20) followed by summation for each /4 using
Shanks-Schmidt and Levin’s algorithms then the result we obtain will agree with that of numerical
simulation. The best analytic approximations employing transformation of o, , series (20) are obtained
with rational fractions 6, 3; G, ¢; 02,7 O3.5; O3 5. The figure shows the influence function yy as evaluated
by (11). Also shown are the results of Fire summation applied to series (20) followed by summation
using the Shanks-Schmidt-Levin algorithm. Computational results based on this algorithm are in very
good agreement with the numerical result for integral equation (1) solved by the collocation technique
using BCF apparatus as prescribed by the given algorithm. The four-term expansion vy, from (11)
is uniformly valid over the interval / € (ﬁkg), l;k(;)), the quantitative result, however, being far from
exact.

Conclusion

Optimal asymptotics contains nine terms, and still it rapidly deviates from the exact solution;

however an approximation such as o; g for # < 0,01 already gives a relative error less than 1 %.

[
4 W, (=) ()

i l L T f?
(1] o1 0.2 gy ™

Fig. The function of influence of I interval on the lift force: L — influence function derived from (20) using

Levin’s transformation for each /1 — Numerical simulation results for Eq. (1) obtained by the collocation method
using the BCF apparatus
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The discussed algorithms have been implemented as computational programs for algebraic
(ALFA) and integral (OMEGA) equations, ordinary (SIMP) and improper (SECOB) integrals, including
the Cauchy integral (DSECOB) as well as summation programs for sequences and series (SHENKS,
AYTKEN), including divergent ones (EULER).

The reported study was funded by Russian Foundation for Basic Research, Government of
Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund to the research
projects No Ne 17-48-240386 p_a and 16-41-242156 p_ogpu_m.
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