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This paper examines the D’Alembert’s paradox in the flow of ideal incompressible medium around a
cylinder when flow conditions are close to real ones. The velocity profile of incoming flow is specified on
a section at a finite distance from the cylinder. An additional parameter is introduced to determine the
degree of asymmetry of the incoming flow. Initially, the value оf this parameter is assumed to be small.
The parameter that determines the geometric dimensions of the cylinder is also introduced. Some cases
are identified when the situation is close to D’Alembert’s paradox in its classic version, and when it is
not. It depends on the values of introduced parameters.
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Introduction

D’Alembert’s paradox is a well-known phenomenon in fluid mechanics. Consider a continuous
unbounded steady flow of an ideal (inviscid) incompressible fluid around a body when flow
parameters are equalized far ahead and behind the body. The paradox lies in the fact that the
drag calculated on the basis of equations of motion vanishes.

For the flow around a cylinder, this phenomenon was discovered by French mathematician
D’Alembert in 1744. For the flow around the body of an arbitrary shape similar result was
obtained by L.Euler in 1745.

By virtue of the Galilean principle of relativity one can assume that similar phenomenon exists
when a body moves with constant velocity in an unbounded volume of an ideal incompressible
fluid that is at rest at infinity. In this case the drag calculated on the basis of equations of motion
is equal to zero as well.

This theoretical result is rather strange from the point of view of the theory and common
sense. Numerous experiments argued against this phenomenon. When a body moves in a con-
tinuous medium there is non-zero resistance force. So the phenomenon, on which the attention
of D’Alembert was drawn, is not supported by experimental results. The term "paradox" was
first used in relation to this phenomenon by D’Alembert in 1768. As a result, this phenomenon
received the name D’Alembert’s paradox. There are also other names: the Euler paradox or the
paradox of D’Alembert-Euler.
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The phenomenon was considered in many studies [1–6]. Conditions of problem formulation
that lead to the paradox were found in these papers. The following factors are indicated among
others: setting velocity at infinity, infinite domain, symmetry of incoming flow, stationary motion
and non-zero viscosity.

However, it is not clear whether this phenomenon occurs in reality if the assumptions are
slightly changed. It is almost impossible to create a symmetrical steady flow of infinite extent.
In addition, the motion of any real flow always occurs in the presence of gravity. So, in practice
there are always some deviations from those idealized conditions that originally are assumed
when dealing with this phenomenon. The question arises whether the D’Alembert’s paradox
would occur in more realistic conditions. If the drag is not equal to zero it is important to
determine the value of its deviation from zero.

The study of the D’Alembert’s paradox under more realistic conditions is the purpose of the
paper.

1. Problem Statement

To study the D’Alembert’s paradox it is necessary to calculate the drag resulting in the flow
of an ideal incompressible medium around a body. In addition, it is suggested to calculate the
lift because it is convenient to determine the ratio of drag to lift. Initially we need to solve the
flow problem and determine flow velocities and pressure.

Let us consider an ideal incompressible medium. We assume that there is the stationary flow
without separation around a circular cylinder of radius R. We change some of the conditions
wherein the D’Alembert’s paradox is usually considered [3–6]. The velocity of the incoming
flow is not set at infinity but at some finite distance L from the cylinder. Thus, together with
the radius R, additional parameter L is introduced which determines the location where initial
velocity profile is defined. The condition of infinite flow is relaxed.

We assume that the incoming flow is parallel and it has a predetermined velocity profile in
the section located at a distance L from the body. Moreover, the velocity profile is assumed to
be slightly asymmetrical. Then the condition of the absolute symmetry of the incoming flow is
also relaxed.

We propose to take into account the effect of gravity. This is not a resistance force but it
contributes to the vertical component of the force acting on the streamline body. This means
that it affects the ratio between horizontal and vertical components of the forces acting on the
body so in the analysis of the D’Alembert’s paradox under real conditions the force of gravity
must be taken into account.

By this means three conditions assumed in the classical formulation are significantly changed.
The obtained formulation is much closer to the real conditions.

Let us consider two dimensional problem and introduce the Cartesian coordinate system
XOY . The origin of the coordinate system is on the cylinder axis.

Let us consider the classical Euler equations for 2D steady-state motion of an ideal (non-
viscous) incompressible medium. For the case when the external mass force is the gravity these
equations are

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
, (1)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
− g, (2)
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∂u

∂x
+

∂v

∂y
= 0. (3)

Let us introduce dimensionless variables. We assume that L is the length scale, U0 is the

velocity scale, ρU2
0 is the pressure scale and

U2
0

L
is the scale of acceleration. All dimensionless

variables have the same notation as the corresponding dimensional variables.
In the chosen coordinate system the streamline body is given by the equation x2 + y2 = r2,

where r =
R

L
and 0 < r < 1.

The major unknowns are the longitudinal and transverse velocities u, v and pressure p. We
also introduce the stream function Ψ1(x, y) [1–3]. Then

u =
∂Ψ1

∂y
, v = −∂Ψ1

∂x
. (4)

Solution is constructed in the form of power expansion

Ψ1(x, y) =
N∑

n=0

N−n∑
m=0

anmxnym, (5)

where anm are some coefficients and N is the maximum power in the expansion.
Let us consider boundary conditions. The first one is the condition of impermeability on the

surface of streamline body [1–3]. In our case, the stream line along the contour of the streamlined
body is defined by the equation x2 + y2 = r2 and the impermeability condition has the form

(
−→
U · −→n )|

r2=x2+y2 = 0, (6)

where
−→
U (u, v) is the velocity vector and −→n (xr ,

y
r ) is the normal vector to the stream line.

For the second boundary condition we define the velocity profile in cross-section located at
a finite distance from the streamlined body. We choose a cross-section parallel to the OY axis
located on the left side from the cylinder at the distance L from the origin. In dimensionless
variables such section is determined by equation x = −1. We assume that in this section the flow
is parallel to the OX axis. Then transverse velocity is zero. The second boundary condition is

v(−1, y) = 0. (7)

To solve the problem it is suggested to use not the Euler equations but the first integral of
these equations. The first integral of the Euler equations contains additional information on
relationships between variables, and allows us to consider the flow problem and D’Alembert’s
paradox from another point of view. The first integral in the case of 3D motion of a viscous
imcompressible medium is given in [7–11]. In the case of 2D steady-state motion of an ideal

imcompressible medium one need to put
1

Re
= 0,

∂

∂t
= 0 and

∂

∂z
= 0.

Then the first integral of the Euler equations takes the form

p− p0 = −gy − U2

2
− d, (8)

u2 − v2 = −∂2Ψ2

∂x2
+

∂2Ψ2

∂y2
, (9)

uv = −∂2Ψ2

∂x∂y
. (10)
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Here p0 is an additive pressure constant, Ψ2 is new unknown variable due to integration, U
is the velocity value and d is the vortex energy. The last is defined by the following expression

d = −1

2

(
∂2Ψ2

∂x2
+

∂2Ψ2

∂y2

)
. (11)

Equations (8–10) are simpler than original equations (1–2). Derivatives of unknowns u, v, p

are absent in (8–10) so it is easier to find the solution of the problem. It is necessary to satisfy
continuity equation (3), boundary conditions (6–7) and to solve equations (9–10).

Unknown value of p is determined from (8) and (11). When pressure function p(x, y) is
known one can determine drag and lift and begin to study the D’Alembert paradox.

2. Solution of the flow problem

Preliminary analysis shows that it is sufficient to set N = 5 and assume 0 6 n +m 6 5 in
the right-hand side of expression (5).

Then, according to (4), velocities are defined by the fourth degree polynomials. The first
term for u(x, y) is a01. Let us assume for simplicity that a01 = 1. This means that the first term
in the expansion of dimensional longitudinal velocity is equal to U0.

Then we have the following expressions for longitudinal and transversal velocities

u =1 + a11x+ 2a02y + a21x
2 + 2a12xy + 3a03y

2 + a31x
3 + 2a22x

2y+

+ 3a13xy
2 + 4a04y

3 + a41x
4 + 2a32x

3y + 3a23x
2y2 + 4a14xy

3 + 5a05y
4,

(12)

v =− (a10 + a11y + 2a20x+ 3a30x
2 + 2a21xy + a12y

2 + 4a40x
3 + 3a31x

2y+

+ 2a22xy
2 + a13y

3 + 5a50x
4 + 4a41x

3y + 3a32x
2y2 + 2a23xy

3 + a14y
4),

(13)

where anm are some coefficients introduced in (5).
Equalities (12–13) satisfy continuity equation (3), and we need to determine coefficients anm.

It is convenient to divide the solution of the flow problem into three stages. In the first stage
one need to satisfy boundary conditions (6–7). Then, one should solve equations (9–10) with
respect to unknown Ψ2. In the last stage one need to determine p, according to (8), and calculate
the drag and lift.

2.1. Boundary conditions

Let us consider relations (12–13). They contain undetermined coefficients anm. These coeffi-
cients are treated as basic ones. They are chosen so that boundary conditions (6–7) are satisfied.
To satisfy (6) the following relation must be true

ux+ vy =(r2 − x2 − y2)(ξ00 + ξ10x+ ξ01y + ξ20x
2 + ξ11xy+

+ ξ02y
2 + ξ30x

3 + ξ21x
2y + ξ12xy

2 + ξ03y
3),

(14)

where ξkl are some auxiliary coefficients.
Relation (14) allows us to determine the values of auxiliary coefficients ξkl in terms of basic

ones and to express coefficients anm with bigger values of (n,m) in terms of coefficients with
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smaller values of (n,m). Coefficients ξkl depends on anm. They play an auxiliary role and are
not used. Upon some rearrangement, we obtain

a50 = − 1

r2
(a30 +

a10
r2

), a41 = − 1

r2
(a21 +

1

r2
), a05 = − 1

r2
(a03 +

1

r2
),

a32 = − 1

r2
(a12 + a30 +

2a10
r2

), a14 = − 1

r2
(a12 +

a10
r2

),

a23 = − 1

r2
(a21 + a03 +

2

r2
), a40 =

1

2
(a22 +

a02 − a20
r2

),

a31 = a13 = −a11
r2

, a04 =
1

2
(a22 −

a02 − a20
r2

).

(15)

Taking into account (15), expressions for longitudinal and transversal velocities take the form

u(x, y) = 1 + a11x+ 2a02y + a21x
2 + 2a12xy + 3a03y

2 − a11x
3

r2
+ 2a22x

2y − 3a11xy
2

r2
+

+ 2(a22 −
a02 − a20

r2
)y3 − 1

r2
(a21 +

1

r2
)x4 − 2

r2
(a12 + a30 +

2a10
r2

)x3y−

− 3

r2
(a21 + a03 +

2

r2
)x2y2 − 4

r2
(a12 +

a10
r2

)xy3 − 5

r2
(a03 +

1

r2
)y4,

(16)

v(x, y) =− a10 − 2a20x− a11y − 3a30x
2 − 2a21xy − a12y

2 − 2(a22 +
a02 − a20

r2
)x3+

+
3a11x

2y

r2
− 2a22xy

2 +
a11y

3

r2
+

5

r2
(a30 +

a10
r2

)x4 +
4

r2
(a21 +

1

r2
)x3y+

+
3

r2
(a12 + a30 +

2a10
r2

)x2y2 +
2

r2
(a21 + a03 +

2

r2
)xy3 +

1

r2
(a12 +

a10
r2

)y4.

(17)

Let us impose restrictions on coefficients to satisfy second boundary condition (7). It follows
from (7) that for x = −1 the transversal velocity should be equal to zero. Then all coefficients
at ym in expression for v(−1, y) must be equal to zero. In our case 0 6 m 6 4 and we have five
additional relations

a10 − 2a20 + 3a30 − 2a22 −
2

r2
(a02 − a20)−

5

r2
(a30 +

a10
r2

) = 0,

a11 − 2a21 −
3a11
r2

+
4

r2
(a21 +

1

r2
) = 0, a11 − 2(a21 + a03 +

2

r2
) = 0,

a12 − 2a22 −
3

r2
(a12 + a30 +

2a10
r2

) = 0, a12 +
a10
r2

= 0.

(18)

Let us consider the longitudinal velocity at x = −1. We have the following expression

u(−1, y) = 1 + e1y + e2y
2 + e3y

3 + e4y
4,

where ej are some coefficients.
As it follows from the preceding discussion, this expression must be an asymmetrical function

so the odd coefficients are not equal to zero, that is, e1 ̸= 0 and e3 ̸= 0. Then we have two
additional relations

a02 − a12 + a22 +
1

r2
(a12 + a30 +

2a10
r2

) =
e1
2
,

a22 −
1

r2
(a02 − a20) +

2

r2
(a12 +

a10
r2

) =
e3
2
,

(19)

where e1 and e3 are some non-zero parameters.
If equations (18–19) are satisfied then boundary condition (7) is also satisfied. There are seven
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equations for nine unknown coefficients. Three of them are chosen as basic ones. It is suggested
to choose a10, a02, a11 as basic coefficients and other coefficients are expressed in terms of basic
ones. Then relations (18–19) is the system of seven linear equations for six unknowns a20, a30,
a21, a12, a03, a22. Preliminary analysis shows that solution exists under additional condition

e3 =
e1

1− r2
. (20)

If condition (20) holds then the solution of linear system is unique and it has the following
form

a12 = −a10
r2

, a20 = 2a10 + a02(1 + 3r2) +
e1r

2(3r2 − 2)

2(2− r2)
,

a03 = − a11
2(2− r2)

+
2(r2 − 1)

r2(2− r2)
, a30 = 2r2a02 +

a10(r
2 − 1)

r2
− r2e1,

a21 =
1

2(2− r2)
(a11(3− r2)− 4

r2
), a22 = −3a02 −

2a10
r2

+
3e1
2

.

(21)

As a result, relations (16–17) and (21) satisfy both continuity equation (3) and boundary
conditions (6–7). The first stage of solution is completed.

2.2. Determination of associate unknown

Let us consider equations (9–10). These equations must be solved with respect to associate
unknown Ψ2. In the framework of the present approach Ψ2 is also represented in the form of
power expansion

Ψ2(x, y) =
5∑

n=0

5−n∑
m=0

bnmxnym, (22)

where bnm are some unknown coefficients, 0 6 n+m 6 5.
Let us find u2 − v2 and uv. To do this we equate coefficients at the same powers on both

sides of the relation. We arrive to a system of linear equations with respect to bnm. The system
has a solution if certain conditions of compatibility are satisfied. These conditions are

a11a10 + 12(2− r2)a02 +
2(4− 3r2)

r2
a10 − 6e1(2− r2) = 0,

(−r4 + 2r2 + 8)

r2
a11a10 + r2(13− 3r2)a11a02 +

4(r2 − 6)

r2
a10+

+
2(3r4 − 24r2 + 8)

r2
a02 + e1r

2 (−3r4 + 22r2 − 24)

2(2− r2)
a11 + e1

(3r4 − 36r2 + 44)

(2− r2)
= 0,

r2

2(2− r2)
a211 + 12r2a202 +

4

r2
a210 +

4(3r2 − 2)

r2
a02a10−

− 4

r2(2− r2)
a11 − 6e1r

2a02 − 3e1
(6− r2)

(2− r2)
a10 = 0.

(23)

Equations (23) are non-linear because Euler equations (1–2) are nonlinear. The solution of
(23) defines the values of three base coefficients a10, a11, a02. Knowing these coefficients, one
can determine all other quantities, namely, u, v and Ψ2.

In particular, the coefficients bnm that define Ψ2 are the solution of inhomogeneous linear
system of equations. Unknown function Ψ2 includes three still unknown coefficients a11, a02, a10.
The second stage of solution is completed.
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2.3. Determination of pressure, drag and lift

In the third stage of solution one need to determine p and values of drag and lift. To do this
we use expressions (8) and (11). The unknown p is defined by u, v, Ψ2, and they depend on base
coefficients a11, a02, a10.

Within the framework of the used approximation with N = 5, expression for p has the form

p = −gy + (p00 + p10x+ p01y + p20x
2 + p11xy+p02y

2 + p30x
3+

+ p21x
2y + p12xy

2 + p03y
3),

(24)

where pnm are some coefficients which also depend on base coefficient a11, a02, a10.
Let us now consider drag and lift. Given the assumption of the flow without separation we

have [1–3]

Fx = −
∫ 2π

0

p(r cosφ; r sinφ)r cosφdφ,

Fy = −
∫ 2π

0

p(r cosφ; r sinφ)r sinφdφ.

(25)

The integrand is defined by (24) with the substitution x = r cosφ, y = r sinφ.
Note that following pattern is detected. The terms of the form xnym with odd number n+m

give a non-zero contribution to right-hand sides of (25). For Fx such terms are x, xy2, x3. For
Fy such terms are y, x2y, y3. Then relations (25) are taransformed to

Fx = −πr2
(
p10 +

r2

4
(p12 + 3p30)

)
,

Fy = πr2
[
g − p01 −

r2

4
(p21 + 3p03)

]
.

(26)

Coefficients pnm given in (26) should be calculated with the use of (8) and (11). Relations
for u and v (Sec. 2.1) and relations for odd coefficients bnm (Sec. 2.2) should also be used. We
obtain the following results

p10 = −a11 + 2a02a10, p01 = −a11a10 + 2(1 + 3r2)a02 + 4a10 + e1r
2 (3r

2 − 2)

(2− r2)
,

3p30 + p12 =
(7r2 − 24)

4(2− r2)
a211 + 18r2a202 −

10

r2
a210 − 6

(r2 + 2)

r2
a02a10+

+ e1
(26− 15r2)

2(2− r2)
a10 +

10

r2(2− r2)
a11 − 9e1r

2a02,

3p03 + p21 = −3r2(9 + r2)

2(2− r2)2
a11a02 +

(−r4 − 28r2 + 20)

2r2(2− r2)
a11a10 +

(75r4 − 72r2 − 24)

r2(2− r2)
a02+

+
10(5r2 − 6)

r2(2− r2)
a10 + e1

r2(−30r4 + 91r2 − 90)

4(2− r2)2
a11 + e1

(75r4 − 156r2 + 92)

2(2− r2)2
.

(27)

The right hand side of (27) contains still unknown coefficients a11, a02, a10. To determine
them one need to solve the system of nonlinear equations (23). The analytical solution of (23)
is rather difficult. Let us consider the case r2 ≪ 1. It means that the radius of the cylinder is
small in comparison with the size of incoming flow. Let us construct a solution of (23) in the
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form of expansion in term of the small parameter r2 [12]. Then unknown base coefficients are
represented in the form

anm = a(0)nm + r2a(1)nm + r4a(2)nm + r6a(3)nm + . . . . (28)

Preliminary analysis shows that in our case it is necessary to set a
(0)
nm = 0. Coefficients a

(1)
nm,

a
(2)
nm, a

(3)
nm are as follows

a
(1)
11 = 0, a

(1)
02 =

7e1
8

, a
(1)
10 =

3e1
2

,

a
(2)
11 = −15e21

2
, a

(2)
02 = −11e1

16
, a

(2)
10 = −9e1

4
,

a
(3)
11 =

123e21
8

, a
(3)
02 =

45e31
8

+
53e1
64

, a
(3)
10 =

27e1
16

.

(29)

Transforming relations (26) and taking into account (28) and (29), we obtain relations for
drag and lift

Fx = πr2[r4(
51

8
e21) + r6(−45

4
e21) + . . . ],

Fy = πr2
[
g + r2

(17
4
e1

)
+ r4

(
− 59

8
e1

)
+ r6

(135
16

e31 +
117

32
e1

)
+ . . .

]
.

(30)

Relations (30) are new. They allow us to calculate the values of Fx and Fy in relation to
parameter r and asymmetry parameter e1.

3. The D’Alembert’s paradox

The obtained above relations are convenient to analyze the D’Alembert’s paradox under close
to real conditions. Let us compare drag and lift values obtained according to (30).

Fx depends on parameters r and e1. Whereas Fy depends also on g. The latter is the con-
tribution from the buoyancy force. We designate the buoyancy force as Farh. The dimensionless
value of Farh is

Farh = πr2
9.8L

U2
0

. (31)

The force Farh is directed vertically upward. Let us calculate the value of this force for some

real flow. Suppose, for example, L = 10(m) and U0 = 20( m
sec ) then

Farh

πr2
= 2.45 · 10−1.

It seems logical to compare the value of Farh and the value of actual lifting force caused by
the incoming flow. We designate this force as Ry. It follows from (30) that

Fy = Farh +Ry. (32)

Let us calculate the value of lifting force for some values of r and e1. Let consider r = 0.2

and r = 0.6. The asymmetry parameters are e1 = 0.1, e1 = 1.0, e1 = 2.0. Calculated values of
Ry

πr2
are presented in Tab. 1.

Let us compare the values of | Ry | and Farh in the real flow for the given above values of

parameters. The values of the ratio
| Ry |
Farh

are presented in Tab. 2.
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Table 1. Value of
Ry

πr2
in relation to r and e1

r \ e1 0.1 1.0 2.0
0.2 1.58·10−2 1.59·10−1 3.21·10−1

0.6 7.49·10−2 1.13 4.64

Table 2. Value of
| Ry |
Farh

in relation to r and e1

r \ e1 0.1 1.0 2.0
0.2 6.47·10−2 6.51·10−1 1.31
0.6 3.06·10−1 4.65 18.93

Tab. 2 shows that there is a range of values of r and e1 where | Ry | is much smaller than
Farh. This occurs, for example, when r = 0.2 and e1 = 0.1. In contrast, for r = 0.6 and
e1 = 2.0 the value of | Ry | far exceeds Farh and the contribution of the buoyancy force in Fy

can be neglected.
Let us proceed to the analysis of the drag force Fx. In our case it is described by first

relation (30). Comparison of obtained relations for Fx and Ry leads to the following conclusions.
1. The first terms in these relations have different orders with respect to r2. The first term

in relation for Fx is proportional to r6 while in relation for Ry is proportional to r4. It means
that the value of the drag Fx is far less than the magnitude of the force Ry for small values of r2.
Since we assume that the value of r2 is small then the assertion is true for our case. One should
note that it is valid only for sufficiently small values of e1.

2. The first terms in relations for Fx and Ry depend variously on parameter e1. The first
term in relation for Fx is proportional to e21 while the first term in relation for Ry is proportional
to e1. If the asymmetry parameter is greater than 1 then the relation between Fx and Fy can be
changed even for a small value of r2. Then Fx may be comparable to Ry in magnitude.

Calculations confirm this analysis. The values of
Fx

πr2
calculated from (30) for various values

of r and e1 are presented in Tab. 3.

Table 3. Value of
Fx

πr2
in relation to r and e1

r \ e1 0.1 1.0 2.0
0.2 9.48·10−5 9.48·10−3 3.79·10−2

0.6 3.01·10−3 3.01·10−1 1.21

Let us compare the values of Fx and Ry presented in Tabs. 3 and 1 for the same values of
parameters. It is evident that situation characteristic of the D’Alembert’s paradox takes place.
The value of Fx is far less than Fy. This is true regardless of whether or not the contribution
from the buoyancy force in (32) is included. For example, if r = 0.2 and e1 = 0.1 we have
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Fx

πr2
= 9.48 ·10−5,

Ry

πr2
= 1.58 ·10−2,

Fx

Ry
= 6.0 ·10−3. So Fx is far less than Ry. However, when

parameters are close to r = 0.6 and e1 = 2.0 this trend is violated. In this case
Fx

πr2
= 1.21

and
Fy

πr2
= 4.64 (see Tabs. 3 and 1 ) and the drag and the lift are already comparable in

magnitude, so as
Fx

Ry
= 0.26. The D’Alembert’s paradox in its classic version does not arise.

The drag is less than lift but they are comparable in magnitude.
Analyzing relations (30), (32), one can find another case when the D’Alembert’s paradox does

not take place. This case corresponds to the negative value of the asymmetry parameter

e1 < 0. (33)

In this case the ratio between horizontal and vertical components of the force acting on the
streamlined body is changed. In fact, if inequality (33) is satisfied then the sign of Fx is not
changed because Fx is proportional to e21, according to the first relation (30). In contrast, the
sign of Ry is reversed, because Ry is proportional to e1. Since the buoyancy force Farh is always

positive the magnitude of Fy is decreased. This means that the ratio
Fx

Fy
is also decreased. Then

Fx and Fy are comparable in magnitude and situation characteristic of the D’Alembert’s paradox
does not arise.

Let us consider one example. Let r = 0.2, and e1 = −1. As it follows from Sec. 2.1 this
corresponds to the initial longitudinal velocity profile

u(−1, y) = 1− y + e2y
2 − 1.042y3 + e4y

4,

where e2 and e4 have arbitrary values.
The values of e2 and e4 may be well over the value of e1. For example, let us assume that

e2 = 103 and e4 = 103. Then we have slightly asymmetrical velocity profile.
Suppose that the values of L and U0 are identical to those used in previous calculations.

Then, as shown in Tab. 2,
| Ry |
Farh

= 6.51 · 10−1. In this case Ry = −0.651 · Farh. According to

(32), we have Fy = 0.349 · Farh = 8.55 · 10−2. As it is shown in Tab. 3, we have Fx = 9.48 · 10−3

for e1 = 1. The same result is obtained for e1 = −1 and hence,
Fx

Fy
= 1.11 · 10−1. The ratio of

the drag and the lift is of the order of 10−1, and the D’Alembert’s paradox is not observed.

Conclusion

The results of the study are as follows. When considering the D’Alembert paradox under
real conditions we assume that the incoming flow is symmetrical, the ratio of the streamlined
body size to the size of the incoming flow is small, and the extent of the flow is infinite in both
directions. If these assumptions are modified or relaxed then the D’Alembert’s paradox may not
occur in its classic version.

The D’Alembert’s paradox may also not occur if the influence of the gravity force is taken
into account.
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Парадокс Даламбера в условиях, приближенных
к реальным

Александр В. Коптев
Институт водного транспорта

Государственный университет морского и речного флота им. адм. С. О.Макарова
Двинская, 5/7, Санкт-Петербург, 198035

Россия

В статье представлено исследование парадокса Даламбера при обтекании цилиндра потоком иде-
альной несжимаемой среды при условиях, приближенных к реальным. Профиль скорости набега-
ющего потока задан в некотором сечении на конечном расстоянии от обтекаемого тела. Введен
дополнительный параметр, определяющий степень асимметричности набегающего потока. В
зависимости от значения этого параметра, который изначально предполагается малым, и в за-
висимости от параметра, определяющего геометрические размеры обтекаемого тела, выделены
случаи, когда ситуация близка к парадоксу Даламбера в его классическом варианте, а когда нет.

Ключевые слова: идеальная несжимаемая среда, обтекание цилиндра, уравнения Эйлера, инте-
грал, профиль скорости, асимметричность потока, подъемная сила, лобовое сопротивление.
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