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An algorithm of stochastic simulation of covariance matrix and nodal power load curves is developed
for electric distribution networks based on factor analysis. Statistical stability of factor power load
model is confirmed. Application of this model is able to identify a general regularity of nodal power
changing, and to simplify the analysis of multivariate operating conditions in operational problems of
electric distribution networks and their optimization.
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Introduction

The adoption of automated meter reading (AMR) systems in the industry makes it possible to store
statistical data about power transmission and consumption. Based on the above-mentioned systems
and modern mathematical methods, it is possible to solve a series of problems: multifactor simulation,
prediction and standardization of energy consumption and some integral characteristics of power
systems; production activity analysis and optimization of power system functioning; diagnostics of
electrical equipment in electric power supply systems etc. [1-3].

Power supply continuity and safety of electric power supply depend on a stability of a whole chain:
“electric power generation — transmission — distribution”. Electric distribution networks, which are the
master link in that chain, are the most problematic ones and outlay elements influence not only the electricity
tariffs, but also the economic efficiency. About half of the current power sector’s basic assets are related
to electric distribution networks, and most of the energy is lost just in these networks. However, the role
of the electric distribution networks is still often underestimated on the background of global construction

problems. Thus, dangerous and far reaching consequences, both economic and social, may arise [4].
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Recently, taking into account the new computer technologies and the development of modern
control measuring systems, the models of power consumption have been mainly developed by
means of stochastic methods of component analysis, which include the principal component method
[1, 5-12]. The models of power consumption or, in other words, the models of power load curves
are able to decrease the volume of initial information needed for problem solving, and to simplify
analysis of multivariate operating conditions in electric distribution systems. The problems include
determination of power integral characteristics (energy losses, ranges of changing the operating
condition parameters in the electric nodes and between power systems etc.), and reactive power
compensation, both of which are very important when it comes to the complex optimization of
power system and energy saving.

Deterministic methods, statistical simulation of power operating conditions, and determination
of integral characteristics in power engineering have been advocated by different authors for some
years [1, 5—8, 10—12]. The related research studies faced some difficulties: large dimension of the nodal
power covariance matrix, large volume of information about power loads and operating condition
parameters, complicated processing of initial information as well as underdevelopment of measuring
systems, computers and programming. Therefore, the application area of stochastic analysis methods
was limited. More recently, taking into account the adoption of SCADA and AMR systems, the
above-mentioned disadvantages have been gradually disappearing, and the development of stochastic

methods, partially the methods based on the principles of factor analysis, is more promising [13].

Conceptual Description of Principal Component Method

A component analysis as a method was developed by Pearson'; he proposed a method of databank
compression which allocates a maximal variance. This method was also developed by Hotelling?.

The factor analysis is a multivariate analysis which researches an internal structure of the
covariance or correlation matrices. It is applied for the statistical research of a system of random
variables which have a correlation by means of stable random or nonrandom factors [9].

The principal component method is based on simple and ordinary conceptions, which depend on
the covariance matrix analysis and the matrix linear transformation.

The modeling, characterizing the behavior of a random variable, is implemented by different ways
of regression and factor analysis. In regression analysis the factors and model structure are entered a
priori; in factor analysis we assume that, factors exist while their exact number and the model structure
are only determined during the process of problem solving.

The principal component method is a dismemberment of a covariance matrix on the orthogonal
vectors (components) or directions corresponding to the number of variables. These vectors correspond
to the eigenvalues and the eigenvectors of the matrix. We agree that by a characteristic value we mean
the set of eigenvalues and eigenvectors of the matrix.

Based on this method, the characteristic values are formed in descending order, which is important
since only few components have to be used for the description of the initial data. The vectors are

pairwise orthogonal ones, and their components are uncorrelated. A few components can reflect most

! Pearson, K. On lines and planes of closest fit to systems of points in space. — Phil. Mag. — 1901. #6, p. 559-572.

2 Hotelling, H. Analysis of complex of statistical variables into principal components. — Jep, #24, 1933. — p. 417441,
498-520.
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of the sum variance of initial variables; however, all components are required for accurate reproduction
of correlations between variables.

The principal component method is used for total simulation of initial random variables. However,
we do not need to put forward the hypotheses about variables because the variables do not even have
to be random variables. In practice the observations of random variables are samples from some
population.

In order to decrease the complexity of the statistical calculations we can replace an n-dimensional
random variable by k<n linear functions from the initial variables. The simulation is called a
reconstruction of function using a linear predictor’, which is implemented by means of eigenvectors of
the covariance matrix [12].

Consider the multivariate random variable X which is an n-dimension sample data

Xy Xpp oo Xy
X = Xy Xy oo Xp
xlm x2m o xnm

For the analysis of other random variables depending on X, it is necessary to determine the
mathematical expectations, for instance, sample mean or average values MX,, MX,, ..., MX,, and
variations (changing) of initial random variables in the neighborhood of their average values AX,, AX;,
..., AX,. A characteristic of a random variable variation in the neighborhood of their average values is
a variance. It may be that the linear combination of initial random variables has the maximal variance
(certainly, we should compare only the normalized linear combination of random variables because
any random variable can be multiplied by a large number, so any large variance can be obtained).

The linear transformation of initial variables is implemented by means of uncorrelated and

normalized linear variables v.

Linear Combination of Random Variables

with Maximal Variance

Consider the possible linear combinations of random variables X,

G:XX1)=[Xl...Xk]X[Ul...Uk], M
where o o
X Xr1 Uy Un
X, Xy Uy, Ups
Xy=|x,; |5 Xy =Xy 0= |0 |50, =0y |,
Xin X _Ulm i _Ukm i

taking into account a limitation which fulfills the following condition of normalization

ZU; =1, i=12,..k )

j=1

m
Jj=

3 Predictor is a superior system of variables
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The variance of the linear combination (1) is determined by the following formula based on [7,

12]
Uy Uy e Uy, U Uy ... Uy
6:G =DG = Dy Uy oo Uy x K(X) % U, Uy oo Uy, _
Uy Uy e Uy, Oy, Uy o Uy
©)

A, 00 .. 00
0.0 4, 0.0

=v" xKX)xv= ,
0.0 00 .. 4,

where K(X)=K - covariance matrix of initial random variables X, X, ..., X};
k — rank of matrix K(X);
T — index of the transpose of a matrix;
m — total number of changing of the random variable X..
We assume that the matrix’s elements k(X,.X) are the estimations calculated from samples: x;,
Xiy -y Xim and X;1, X, ..., X;,. Thus, the selection of a random factor having a maximal variance is
found through a minimum of function (3) satisfying condition (2). The optimization problem is solved
by a method of Lagrange multipliers. Introduce an auxiliary objective function, which is Lagrange
function
®:02G+llzm:(uf/.—l), @
j=1
where /; — the Lagrange multiplier.
An absolute minimum of the function (4) corresponds to the conditional minimum of function (3)
subject to condition (2). The function including all variables is differentiated; the minimum condition

is obtained as

oP _ 2) K0, -2lv, =0;r=12,..k; D v =1. 5)
aUr Jj=1 Jj=1

The solutions of system (5) are all normalized eigenvectors of the matrix K(X). Every solution
determines an extreme point or specific point of the function. The coordinates of the eigenvector
corresponding to the maximal eigenvalue A, correspond to the global minimum.

In factor analysis the components of the vector G are new random variables which are the linear
combination of initial X or centered AX random variables.

The eigenvalues A and eigenvectors U of power covariance matrix have useful properties
which are applied in component analysis. The eigenvalues are real values and the eigenvectors can
be chosen as perpendicular to each other. The eigenvectors define an undergoing pure tension or
compression direction of the linear transformation corresponding to the matrix K(X). These vectors
are also named the principal components of the matrix [12], and the eigenvalue A is a coefficient
of the transformation. The variance of the i-th principal component is equal to the eigenvalue A; of
matrix K(X).

It is known that the eigenvalues A and eigenvectors U of matrixes satisfy the following

expression
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Kxv=vxA. (©)
By multiplying both sides of the expression (6) on the left of the matrix v, we will arrive at
L=v"'xKxv. (7

Expression (7) is considerably simplified when the original matrix K is defined as positive, which
is the case for the power covariance matrix [7]. Thus, all eigenvectors can be made orthonormal ones,

i. e. satisfying the expressions
=T - _ . =T = P
U x0; =0 when i# j; 0 x0, =1 when i=j.

It is easy to verify that the inverse matrix v is equal to the conjugate one, and expression (7) can

be rewritten as (3)

A=v"xKxv, (®)

where v — an orthonormal matrix whose columns consist of eigenvectors U, U,, ..., U,. Condition (2) is
satisfied for every column of the orthonormal matrix.

Inverse expression between the original matrix K and the matrix A

K=[o, 0,..0,]xax[D, D, .0, =,

Uy Dy .Uy 4, 0.0..0.0 Uy Uy ..Uy,
_|P2 VnVa | 0.0 4,..0.0 |V On Oy | ©)
Uy, Doy oo Up 0.0 0.0..4, Uy Uy oo Uy

The method allows us to select the orthogonal factors among the factors-arguments, i. e.
statistically-independent components, which provide a linearity of the method and additive efficiency.

The above-mentioned properties of the eigenvectors show that the full totality of them is
equivalent to the original probabilistic model corresponding to the vector X. Moreover, both sets
of variables X and G define the same vector space.

However, from the set of vectors G, it is sufficient to select a small number of M principal
components (factors) explaining most of the relationships between all components of the initial vector of
random variables X. The main factors are not directly observed, but they characterize the change in the
original variables. Therefore, we can get the task of obtaining a linear predictor of dimension M (M <k).
For each £, the best predictor is the first M eigenvectors of K, corresponding to the maximal eigenvalues.
As a result of studying the internal structure of the matrix K, the selection of main factors is made
in such order that at the beginning the first of them makes the greatest contribution to the variance
of the variables, then the second one is the largest contribution to the variance of the variables
remaining after taking into account the main factor, etc. Ultimately, these vectors constitute a set
of linearly independent basis vectors, oriented in such a way that each of them makes the maximum
contribution to the variance of the original variables X.

On the practical side, the factor model makes it possible to adequately estimate the covariance
structure between the relatively large number of observed variables by means of a smaller number
of common factors. Evaluation of the factor structure is carried by the required number of factors

explaining the correlations between variables and load factors in these variables. Component analysis
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is most useful when all variables x; are measured in the same units. If not, the method is much more
difficult to validate [9].

Factorial or component methods of statistical analysis are used in the computation of operational
energy losses [13, 14], as well as for short-term forecasting and optimization [15, 16]. When solving
the problem of factorial simulation of electric loads via a stochastic approach, the information about
the characteristics of the random variable is approximately determined by a partial sample from the
general population. In the factor simulation of power loads [5—7, 10, 11] the curves of active and reactive
nodal powers are considered as a training sample having 2n-dimension. In operational computations
the scope of the method is limited to the modeling of daily power load curves of an unobservable
network.

The modeling of electric power loads on the basis of factor analysis allows us to:

— find hidden regularities, which are determined by many internal and external causes of load

changing;

— carry out the compression of information by describing all curves by means of the common
factors or principal components, whose number is much smaller than the number of initial
curves;

— identify the statistical dependence between the power load curves and the main factors;

— predict the random component curves based on the regression equation constructed on the
basis of factor analysis;

— simplify the methods for determining the integral characteristics of power systems.

Determination Methods of Principal Components

The problem of determination of the principal components is a classical problem of determining
the characteristic values from a covariance matrix of random variables, as which the nodal power
loads are considered. The determination of eigenvalues and eigenvectors of matrices in linear algebra
is called the problem of characteristic values, and it is a complicated task which is implemented in
several statistical software applications. The value 4 is called the eigenvalue of K, if there is a nonzero

vector (eigenvector of K) satisfying the equation
(K-AxE)xv=0, (10)

where E — unity matrix; 0 — null vector.
The system (10) is a homogeneous system of liner equations because the free members of its

equations are zeros. It has nontrivial solutions if the determinant of matrix K — A xE| equals zero, i. e.
A+ B+ AT+ A+ B A+B, =0, (11)

where f,,..., §, — coefficients of the characteristic polynomial.

The methods for determining the eigenvalues and eigenvectors can be divided into two groups [11]:
the first group includes iterative methods which often use a similarity transformation and solve a linear
system of equations (10); the second group includes the direct methods that calculate the characteristic
polynomial (11). The problems (10) and (11) have different conditionality, as the roots of polynomials
(11) are often highly sensitive to errors which are inevitably arising in the calculation of polynomial

coefficients. That was the main reason of the almost complete exclusion of direct methods.



Ivan V. Shulgin, Aleksey A. Gerasimenko... Stochastic Simulation of Covariance Matrix and Power Load Curves...

The direct application of covariance matrix in various algorithms is greatly complicated by its
dimension. In order to compensate the above-mentioned disadvantage, the modeling of covariance
matrix is implemented by using modern computer software interactive systems, such as MATLAB,
MATCAD, C++, ANSYS, FORTRAN, etc.

The main criterion for the normalization of the eigenvectors in MATLAB consists of

v xv=E. (12)

Small changes in matrix elements, such as rounding errors, can cause large changes in the
characteristic values. The power covariance matrix is a square matrix that is easier to use for matrix

transformations in comparison with other matrices.

Stochastic Model of Covariance Matrix
and Electric Power Loads

Most of the research [5—8] conducted in this field was aimed at the modeling of power loads and
its application for a daily time interval. This is due to the peculiarities of the energy business and
information support of power utilities during the development of this technique. Structural changes that
have occurred in the management of an integrated power grid led to the need of periodic computations
between separate power business entities. Today, the main period of the financial settlement is one
month. The modeling of power consumption on a monthly time interval was proposed for the first time
in [10, 11]. At the moment the technique and its possible application are implemented insufficiently and
therefore further research and elaboration is needed.

The simulation of the power covariance matrix is based on several properties of eigenvalues and
eigenvectors of amatrix which is expanded by 2x eigenvalues and eigenvectors; the first few M characteristic
values (M <<2n) accurately reflect the total variance of the initial power load curves [5-7, 10—12].

Statistical analysis of power operating conditions uses information about variances of power loads
o’P, c’Q, and cross-covariance functions k(BP), k(FQ,), k(Q,Q;) between random variables of

different power nodes

d
2
c’P =

d P
(P, ~MP)': 0°0, == 30, ~ MO . i=Ln;

m=1

QU=

m=1

Ju—

d —_

S (B, ~MP)Q,, ~MQ,)). i.j=Tn,

m=1 (13)
d

k(RR-)Z%Z(P,-m “MP)P, ~MP). i.j=1n, i%

jm

k(PO =—

m=1

K0.0) = 30 ~MOXQ,. ~MQ,). ij=Tun. i# .
where i, j — indexes of nodes; m — index of every time interval for the T period; n — the number of nodes
of power distribution systems with known or simulated power load curves.

The elements (13) of a power covariance matrix characterize the degree of irregularity of power
load curves, which remains approximately constant over a long period. The degree may be determined
on the basis of daily measurements performed on different days in power system sectors. This is an

important advantage of the statistical method.
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The variances and cross-covariance functions of power loads form the square covariance matrix

K=K(P,Q) as follows

K(P _ K11 K12 _
P, Q)= K, K|
[6°R K(BP)....k(RP) | [K(P,O,) K(PO,)....k(PO,)
k(P,P) 0°P,....k(P,P) | | K(P,Q) K(P,0,)...k(P,Q,)
..................................... o 14
_|Lk(B,R) K(P,P,)....0°P, k(P,0)) k(P,0,)....k(F,0,)
[K(Q,P) K(O\P,)...k(Q,P) ]| 070, Kk(Q,0))....k(Q,0,)
k(Q,R) kQyP)....k(Q,P) || K(Q,0) °0,.....k(0,0,)

The simulation of the covariance matrix is implemented corresponding with expression (9), which

may also be written in the usual form

M
K=Y 4,x0,x0,".

i=1

(15)

Every eigenvalue of covariance matrix corresponds to a general load diagram of power (GLD) T,

which is a linear combination of 2# initial nodal power load curves centered at expectation MP;, MO,
I, =[AP..AP, AQ,.AQ,|x[v, ] =[F, T, T;..T, ) i=1,..n, (16)

where [v,, | — the transposed matrix of eigenvectors obtained from the covariance matrix of statistical
sample for initial power loads, which has 2nx2n dimension;
AP, AQ, — the deviations centered at expectation of active and reactive power in the node # 1 for

a certain time period 7'

Ap,, Ag,,
Apy, Aq,,

AP, =|Ap; |, AQ, =|Aq; |, m=1,2,...d.
Aplm Aqlm

The obtained GLDs can be considered as new independent centered random variables with zero
mathematical expectations. The GLDs have a property of orthogonality, i. e. cross-covariance functions
k(I',I";), k(I",I';) are equal to zero. These new random variables (factors) are a suitable coordinate

system for accurate simulation of initial random variables P;, Q;; therefore, using M of them

T, =|l..T,|<<T,,, k=1,..M << 2n, 17)

which corresponds to the maximal eigenvalues of power covariance matrix, allow us to simulate initial
load changing with a sufficient accuracy for a certain time interval T
S; ~ONE,, | x[MPB,...MP, MOQ,..MO,]+[AP,..AP, AQ,..AQ,]|=
(18)

=ONE, , x[MP,..MP, MQ,.MQ,|+T, x[v.|' =[R..P, 0,..0,], k=1,..n,
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where ONE,, | — a column vector consisting of units, and which have m = 1, 2,..., d rows.

[‘Dk ]T — the transposed matrix of prime k eigenvectors p, corresponding to the first maximal
eigenvalues 4, of the power covariance matrix K(P,Q) (14);

MQ, — a mathematical expectation of reactive power curve in the node #1 for the accounting
period T.

P, — possible variation of active power in i node for the accounting period T.

The simulation of the power loads allows us to track the variation of load parameters. It should be
noted that initial power load curves are fully simulated on formula (18) using all GLDs. The eigenvalues
A of the initial covariance matrix K(P,Q) are variances of GLDs (3). Hence, any power load curve can
be represented as a linear combination of the GLDs which reflect the general regularities of power
expectation changing for the initial collection of power nodes.

The following daily/monthly samples of the power load curves have been analyzed:

1) 36 simple weekday and weekend power curves [24 hrs] of a 10 kV electric distribution network
(d=4); the unit of active power is kW; the unit of reactive power is kvar.

2) 18 atypical real daily active and reactive power curves of a 10 kV electric distribution network
(d=24) [11]; the unit of active power is kW; the unit of reactive power is kvar.

3) 42 typical daily power curves for different industries (d=12) [12]; the unit of power is relative
unit [r. u.].

4) 30 monthly active power load curves for 110-220 kV overhead lines for August—September in
2009 [11]. Number of intervals d of period T was reduced from 744 to 31 by calculating the average
power for each day. The unit of active power is MW.

Computational results of eigenvalues and GLDs (17) from the above-mentioned samples of data
#1—4 are presented in Table 1-3, and in Fig. 1-2.

The original power load curves characterize a different degree of irregularity, therefore every
sample data #1-4 has its own principal factors linking the power load curves to the system of
characteristic values. In all cases, the error of simulation of power load curves is, in a dozen times

and sometimes more, less than the error of the covariance matrix simulation (9) taking into account

Table 1. The Six Maximal Eigenvalues Obtained from Sample Data #1-4 for Simulation of Covariance Matrix
and Power Load Curves

Sammo] Contribution of principal Eigenva?ues of the'original sample data
]zgr;lge components to the total in decreasing sequence
variance of loads M Ay A Ay As Ao
N A 45806.73 | 25494.41 | 5039.49 | 4.64:10" - -
0, % 60.00 33.40 6.60 0.0 - -
2 A 17699.71 | 9289.16 2247.51 1136.81 595.20 502.52
0, % 53.28 27.96 6.77 3.42 1.79 1.51
3 A 1.06705 | 0.432602 | 0.104090 | 0.102429 |0.0284292 | 0.0157218
0,% 60.10 24.36 5.86 5.77 1.60 0.885
4 A 1510.38 369.29 172.26 80.00 68.83 47.70
0,% 65.06 15.91 7.42 3.45 2.96 2.05
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Table 2. Six Daily Nonnormalized GLDs Corresponding to the Maximal Variances Obtained from Typical Daily
Power Curves for Different Industries (Sample Data #3) [r. u.]

t, hrs fl I_“z f3 f4 f5 1:6
0-2 -1.58281 0.107604 -0.184982 0.0774817 -0.00315256 |0.0536194
2-4 -1.63002 0.111508 -0.193562 0.0402251 0.0274119 0.0268668
4-6 -1.00645 -0.0537509 0.339956 -0.721240 0.201227 -0.130268
6—8 0.826063 0.369511 -0.435288 -0.464289 -0.383642 0.0144767
8-10 0.965881 0.888987 0.169168 0.111077 -0.0132479 -0.241056
10-12 0.186023 0.684827 0.589090 -0.0899582 -0.0842728 0.267227
12-14 0.671946 0.990801 0.0328418 0.464211 0.1607393 0.00610122
14-16 1.33107 -0.155875 -0.588556 -0.189836 0.303330 0.0769681
1618 0.832963 -1.12614 0.168255 0.0598246 0.0587576 0.125265
18-20 0.687673 -0.991643 0.289502 0.0722762 -0.101288 -0.107512
20-22 -0.0217858 -0.704435 0.00610245 0.325773 -0.0908384 -0.0676617
22-24 -1.26054 -0.121393 -0.192526 0.314455 -0.0750239 -0.0240258

the same number of characteristic values and GLDs. The reason for this is that the elements of
the power covariance matrix are relatively small values compared with the values of the initial
power load curves. The maximal error of simulation of power load curves does not exceed 25%,
and the average one is 8.83% for sample data #3 taking into account only six maximal characteristic
values.

The obtained GLDs can also be used to determine the total normalized or weight average GLDs
which are used for the simulation of unknown power load curves.

By the means of MATLAB system using all GLDs and characteristic values for the sample data,
the power covariance matrix (9) and power load curves (18) are simulated with high accuracy. The
simulation on the basis of expression (18) is primarily designed for modern automated meter systems
and it uses operating condition information from them. The lack of the above-mentioned systems
in most distribution systems can be replaced by the power load simulation [7, 11] and so to use the

advantages of factor simulation.

Stability of Factor Power Load Model

Factor simulation of power loads has a practical application only if the estimations of factor values
(GLDs), which are obtained for different random processes of load changing, are statistically similar
ones, i. . have statistical stability. A research study of the statistical stability of the factor model, which
was based on real data on power load curves for different power utilities with large statistical volume of
information, showed the presence of a collective and dynamic stability for daily, weekly and monthly
power load curves [4, 5, 7, 10, 11].

Statistical stability describes the possibility of using GLDs derived from one learning sample for
the simulation of powers which were not included in the learning sample. Dynamic stability describes
the comparison of different time realizations of the factor model for constant power utilities; collective
stability is the comparison of GLDs belonging to different power utilities.
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Table 3. Six Monthly GLDs Corresponding to the Maximal Variances Obtained from Sample Data #4 [MW]

d I I, T Ty Ts T
1 -61.0910 -19.4337 -5.91616 0.987755 -17.5551 2.85404
2 -49.9621 -17.3637 0.624555 6.63003 -10.2079 -7.32189
3 -56.1344 -11.5625 10.9850 9.11488 -9.88028 -11.2969
4 -44.3974 -8.20962 10.8664 5.96288 0.0544416 -17.9550
5 -29.6979 2.44294 -19.8471 8.92353 -2.01733 2.65349

6 7.69728 16.7571 -23.6115 8.33256 -4.15039 9.31310

7 50.0524 42.8409 0.189204 471245 -14.7875 -3.14985
8 51.1595 42.7496 -11.1642 -6.21158 -10.4222 -7.43516
9 54.5808 14.4466 -22.6867 -2.33433 6.02504 -11.5762
10 43.7955 -33.5056 -13.8767 415772 2.12694 -4.75286
11 42.7563 -28.2635 -14.5850 4.16292 2.03908 -4.62368
12 22.2479 0.475527 -4.00582 -13.7653 -16.9796 3.54289
13 -82.9028 22.9289 8.61478 -27.3533 -3.32166 -0.580486
14 -89.8760 32.9555 -14.5703 2.33812 20.4750 4.03684
15 -64.0213 8.74729 -18.2781 11.1739 4.56532 4.64756
16 24.1308 -4.13785 -10.5377 8.70718 8.82819 0.635262
17 7.18290 -15.8651 8.20768 -3.85646 7.90065 -5.18798
18 6.47624 -14.2352 3.61354 -9.05050 8.53147 -5.94042
19 11.5967 -4.96041 -1.97678 -11.5722 5.81598 -2.55565
20 13.6620 -8.57086 -3.04740 -12.5938 5.49477 -0.341653
21 9.67771 -13.5638 -3.17290 -11.0283 3.86244 2.55857
22 8.28646 -17.2128 1.59427 -6.97636 3.11115 2.62101
23 3.85626 1.39991 11.8803 0.615213 -1.67941 3.97740
24 11.9982 -10.1443 8.96102 4.82252 -3.59272 6.98522
25 14.4479 -15.7646 12.6704 5.13767 -0.285371 7.41964
26 14.5485 4.14165 10.7802 -1.09407 2.70395 8.33036
27 19.7817 15.1572 24.4290 9.36452 4.34313 -0.319466
28 19.8501 26.3028 27.7652 14.1172 2.67827 -0.136420
29 17.8695 5.40787 15.9846 1.12875 7.99281 1.50315
30 15.8722 5.87849 9.71566 -4.84532 5.26982 5.52796
31 6.55574 -19.8384 0.394553 0.291731 -6.93900 16.5671

The research studies of daily power load curves obtained by the AMR system in more than 100
points of head line sections in 6110 kV distribution networks for 13 days identified a strong statistical
relationship between the first GLDs, i. e. proximity of variances of the power load curves and close
correlation dependence [11]. This allows us to conclude that the factor model of the covariance matrix
and power load curves have statistical stability, and it is possible to apply it for the simulation of power
consumption irregularity for the posterior or previous analogous time periods.

The results of multiple computations indicate a rather large contribution of the three principal

components (70—-80%) to the total variance of the whole sample of original power load curves. The first
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principal components of GLDs indicate the presence of common internal reasons for daily irregularity
in power load curves and intersystem power flows [6].

The collective stability of the factor model allows us to suggest that GLDs reflect the main reasons
for power changing without specific factors. Therefore, in order to determine the GLDs, we do not need
to analyze the power load curves in all nodes; it is enough to take only some modeling subset of power
load curves into account, for instance, combined diagrams of consumer groups. These are formed on
the basis of check measurements of power consumption, which is carried out by an inspectorate. The
computation results showed that sets of GLDs which were obtained on the basis of analysis of large
samples of power load curves are quite close to each other [6].

Computations for different samples of daily and monthly power load curves have also confirmed
the statistical stability of the factor model (see above). The contribution of the first principal component
to the total variance of power loads is over 50%, while the significant contribution of the first three
components was also confirmed (see Table 1).

Wide application of factor analysis for power load simulation offers a possibility to limit the
volume of the statistical sample to not more than 100 elements [7, 8], which allows to manipulate not
large covariance matrices. In this case, the requirements of representativeness are carried out, and the

obtained GLDs are statistically stable diagrams.

A Number of Principal Components

A recent review of the approaches to determine the required number M of eigenvalues and
eigenvectors for covariance matrix simulation identified the absence of a consensus among specialists
on the factor analysis [11]. One opinion is that this number is usually not higher than four. However, in
some cases depending on the accuracy of the covariance matrix simulation, it is required to take into
account a greater number of characteristic values and GLDs. Researches of power covariance matrix
and power load curves showed that the required number of characteristic values depends on sample
data properties and on the irregularity of power load curves. The maximal number is equal to the first
six maximal characteristic values in MATLAB system. Most likely, this number was chosen after
extensive analysis of covariance matrices and factor simulation.

A simple approach for the determination of a reasonable number of characteristic values is to
estimate the overall contribution of the principal components’ sequence I, I,,...I, to the total
variance. If the summarized contribution to the total variance is 75-90%, we should stop on the value
k=1, 2,..., M [5, 6]. The total percentage contribution @ to the variance for fixed M is calculated by the

following formula

M

2
0 ="—-100%; 75< 0 <90%, 19)
>4
i=1
2n
where Zl,. — the sum of eigenvalues of original power covariance matrix, which is called spur of
i=1
matrix [7, 8]. O is a criterion for the accuracy of the covariance matrix simulation and the simulation of
original active and reactive power load curves. This criterion is sufficient to carry out the computations

of the power integral characteristics and power system optimization.
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Component analysis is used to simulate both random and deterministic dependencies similar to
the regression method of approximating the functions dependent on the time. The most effective test
of statistical hypothesis and the determination of the required number of principal components is the
repeated application of component analysis for various samples of the same general population. If the
statistical hypothesis about the existence of common dominant trends in all random variables X; is
true, then the statistical characteristics, at least for the first principal component selected on the basis
of different sample data, will be close to each other.

The statistical characteristics for principal components I'; not characterized by the properties
of one general population differ substantially from sample to sample. Repeated factor simulation for
different sample data is a universal method to select statistically stable principal components which
characterize the properties of the general population.

The factor simulation of a set of random variables is a useful instrument of statistical analysis
if the dimension of the model space of M initial random variables is a sufficiently small one. Such a
situation is typical for the simulation of nodal power loads. The application of factor analysis methods
allows us to simulate hundreds of power load curves by the means of 2-3 GLDs [7, 8].

For a reliable application of the method, it is necessary that the first eigenvalues of the K are
significantly different from each other. The matrix K, which corresponds to the nodal power load
curves, usually satisfies this condition [12].

The required number of GLDs for the simulation of original power load curves or required number
of characteristic values for the simulation of power covariance matrix depends on the properties of
the concrete set of research random variables. The research studies on different collections of power
load curves confirmed the hypothesis about high quality simulation of power covariance matrix. This
simulation is based on a small number of characteristic values reflecting the maximal part of the total
variance for the whole general population; hereby a small number means 2+5 GLDs, the exact number

depending on the properties of the sample data, desired accuracy and purposes of simulation.

Stochastic Simulation of Covariance Matrix

and Power Load Curves’ Algorithm

Referring to the above-mentioned points we can formulate a simulation algorithm for covariance
matrix and power load curves:

1. The original power covariance matrix K(P,Q) is formulated on formulas (13), (14) based on
retrospective analysis of active and reactive power curves in distribution networks for a certain time
period T and control measuring data.

2. 2n eigenvalues and 2n eigenvectors of the K(P,Q) are determined by means of any suitable
software based on the principal component method. The characteristic values identify a degree of
statistical relationship between random deviations of powers P, P;, O;, O, from their mathematical
expectations MP;, MP;,, MO,, MQ,.

3. A selection of first M maximal eigenvalues of the K(P,Q) &; < A and eigenvectors v; < v is
arranged in descending order. The number of eigenvalues and GLDs needed for covariance matrix
simulation is an acceptable one for practical computations of integral characteristics and system
optimization if condition (19) is satisfied. In other words, we should stop on such value of M where

the contribution of sum of the first diagonal elements of the covariance matrix to the total variance
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of the general population of active and reactive powers is 75-90%. The recommended range of M is
2<M<5S.

4. The simulation of the power covariance matrix K(P,Q) is carried out on formula (9) by the
means of M characteristic values. Computations like that can be performed only once a month based
on the analysis of a training sample of power load curves.

5. The GLDs are determined on formula (16) for the whole collection of the corresponding sample
data.

6. The first M maximal GLDs I, are selected on (17), which correspond to the M eigenvectors
v, and eigenvalues 4, of K(P,Q). The original active and reactive power curves are simulated on the
expression (18) by the means of ;.

This method is effective when the condition M <<2n can be limited to take into account only the
first few v, and I;. In addition, the GLDs I'; obtained for the different random process realizations
of power load changing must have statistical stability. The property of universality was confirmed by
means of computations of the GLDs T, of statistically representative sample data for different power
utilities. In all cases, 3—4 I, are usually sufficient for the reflection of up to 75-95 % of the total
variance of original power loads (see tab. 1-3).

Thus, the original power load curves can be presented in the form of some characteristics: the
mathematical expectations and the coefficients 4, and v,. This is used for effective determination of
integral characteristics and optimization algorithm in power distribution systems.

In order to obtain a more accurate model of covariance matrix and power load curves it is necessary
to take into account a larger number of characteristic values and GLDs, and it is possible to use the
expansion in a Fourier series or similar methods [8]. However, the component analysis differs from
other statistical methods by offering a more economical and convenient way for system optimization
and a good form for the presentation of information. One advantage of the component analysis is
that it is determined in such way that the function package of simulation is not selected randomly, as
for instance, in Fourier analysis, but on the basis of analyzing the principal regularity of power load
changing. The indicated regularities obtained on the basis of the main factors, their number is less than
in other simulation methods, determine the possibility of their application for small samples containing
4—6 points of a daily curve.

The methodology of the integral characteristic determination is developed on the basis of
stochastic simulation of covariance matrix and power load curves particularly the load-dependent
energy loss determination [13, 14] and optimization algorithms of operating conditions on reactive

power in electric distribution networks [15, 16].

Conclusions

1. This paper proposes the factor model of power loads on daily and monthly time periods, which
allows us to identify the general regularity of nodal power changing in electric distribution networks.
The advantages and possibilities of the model application are described.

2. The computational results of the general load diagrams are derived for different sample data of
original active and reactive power curves for daily and monthly time periods 7. The statistical stability
of factor power load model is confirmed for 6-110 kV electric power networks. The contribution of the

first principal component to the total variance of power loads is more than 50%.
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3. The simulation algorithm for covariance matrix and nodal power load curves is formulated by
means of only a subset of the first main factors (2 < M < 5); it is possible to decrease the complexity
of computations in comparison to traditional computation of multiple operating conditions and to
simplify the determination of power integral characteristics.

4. The algorithms of energy loss determination and ranging of reactive power changing are
developed on the basis of the proposed stochastic model of covariance matrix and power load curves
[13-16]. This can be effectively used for solving the problems of energy saving and power system

optimization.
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CroxacTuuyeckoe MOJeJTMPOBAHUE MATPHIIBI
KOPPeJISIIIHOHHBIX MOMEHTOB M I'Pa(pUKOB HAI'PY30K
MOILHOCTEH Y3J10B

PacCpeacaNTECIbHBIX JJICKTPUICCKUX cerTeil

N.B. lllyasrun?,

A.A. I'epacumenko?®, Cy-Uyan /I:xoy°

“ Cubupckutl ¢hedepanbHblil YHUSEpCUmem
Poccus 660041, Kpacnospck, np. Ceo600mbitL, 79
 Xapbunckuil nonumexnuieckuil yHugepcumem
KHP, Xapoun

Paszpaboman anecopumm cmoxacmuueckozo MoOeIUPOBAHUSL MAMPULbL KOPPETAYUOHHBIX MOMEHMO8 U
2paguro8 aKkmusHoU U peakmuHoll MOWHOCMEL Y3108 PACAPEOETUMENbHbIX INEKMPUYECKUX cemell
Ha ocHoge hakmopro2o ananuza. OboCHO8AHA CMAMUCMUYECKASL YCMOUYUBOCMb YAKMOPHOU MOOeU
anekmpuieckux Hazpy3ox. [lpumenenue 0annoi mooenu no3eosaem evla8ums 00ujue 3aKOHOMEPHOCMU
UBMEHEHUSI MOWHOCMEU HAZPY30YHBIX Y3106 CEMU U YAPOCMUMb, COe1ams IPHeKmusHbLMU Memoobl
aHanu3a u y4eéma MHO20PeHCUMHOCTU 8 3a0aUax IKCNAYAMAYUU pacnpeoeiumenbHblX INeKmpuieckux
cemetl U ONMUMUIAYUU UX PEHCUMOS.

Kniouesvie cnosa: 6EPOAMHOCMHO-cmamucmuiecKkoe Moc)eﬂupogaﬂue dNIeKmpudecKux Hacpy30K,
mampuya KoppeiayuoHHblX MOMEHMOE, pacnpedeﬂumeﬂbﬁaﬂ JJlekmpuvecKkas cemo, Memoo 21a6HbIX
KOMNOHeHm, nomepu 31eKmposIHepeUU, ONMUMUIAYUSL PEHCUMOB.




