
– 39 –

Journal of Siberian Federal University. Engineering & Technologies 1 (2012 5) 39-56 
~ ~ ~

УДК 621.316.11

Stochastic Simulation of Covariance Matrix  
and Power Load Curves  
in Electric Distribution Networks

Ivan V. Shulgina,  
Aleksey A. Gerasimenkoa* and Zhou Su Quanb*

a Siberian Federal University,
79 Svobodny, Krasnoyarsk, 660041 Russia

b Harbin Institute of Technology
China 150001, Harbin, 92 West Dazhi Street,  

Nan Gang District 1

Received 6.02.2012, received in revised form 13.02.2012, accepted 20.02.2012

An algorithm of stochastic simulation of covariance matrix and nodal power load curves is developed 
for electric distribution networks based on factor analysis. Statistical stability of factor power load 
model is confirmed. Application of this model is able to identify a general regularity of nodal power 
changing, and to simplify the analysis of multivariate operating conditions in operational problems of 
electric distribution networks and their optimization.
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Introduction

The adoption of automated meter reading (AMR) systems in the industry makes it possible to store 
statistical data about power transmission and consumption. Based on the above-mentioned systems 
and modern mathematical methods, it is possible to solve a series of problems: multifactor simulation, 
prediction and standardization of energy consumption and some integral characteristics of power 
systems; production activity analysis and optimization of power system functioning; diagnostics of 
electrical equipment in electric power supply systems etc. [1–3].

Power supply continuity and safety of electric power supply depend on a stability of a whole chain: 
“electric power generation – transmission – distribution”. Electric distribution networks, which are the 
master link in that chain, are the most problematic ones and outlay elements influence not only the electricity 
tariffs, but also the economic efficiency. About half of the current power sector’s basic assets are related 
to electric distribution networks, and most of the energy is lost just in these networks. However, the role 
of the electric distribution networks is still often underestimated on the background of global construction 
problems. Thus, dangerous and far reaching consequences, both economic and social, may arise [4].
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Recently, taking into account the new computer technologies and the development of modern 
control measuring systems, the models of power consumption have been mainly developed by 
means of stochastic methods of component analysis, which include the principal component method 
[1, 5–12]. The models of power consumption or, in other words, the models of power load curves 
are able to decrease the volume of initial information needed for problem solving, and to simplify 
analysis of multivariate operating conditions in electric distribution systems. The problems include 
determination of power integral characteristics (energy losses, ranges of changing the operating 
condition parameters in the electric nodes and between power systems etc.), and reactive power 
compensation, both of which are very important when it comes to the complex optimization of 
power system and energy saving.

Deterministic methods, statistical simulation of power operating conditions, and determination 
of integral characteristics in power engineering have been advocated by different authors for some 
years [1, 5–8, 10–12]. The related research studies faced some difficulties: large dimension of the nodal 
power covariance matrix, large volume of information about power loads and operating condition 
parameters, complicated processing of initial information as well as underdevelopment of measuring 
systems, computers and programming. Therefore, the application area of stochastic analysis methods 
was limited. More recently, taking into account the adoption of SCADA and AMR systems, the 
above-mentioned disadvantages have been gradually disappearing, and the development of stochastic 
methods, partially the methods based on the principles of factor analysis, is more promising [13].

Conceptual Description of Principal Component Method

A component analysis as a method was developed by Pearson1; he proposed a method of databank 
compression which allocates a maximal variance. This method was also developed by Hotelling2.

The factor analysis is a multivariate analysis which researches an internal structure of the 
covariance or correlation matrices. It is applied for the statistical research of a system of random 
variables which have a correlation by means of stable random or nonrandom factors [9].

The principal component method is based on simple and ordinary conceptions, which depend on 
the covariance matrix analysis and the matrix linear transformation.

The modeling, characterizing the behavior of a random variable, is implemented by different ways 
of regression and factor analysis. In regression analysis the factors and model structure are entered a 
priori; in factor analysis we assume that, factors exist while their exact number and the model structure 
are only determined during the process of problem solving.

The principal component method is a dismemberment of a covariance matrix on the orthogonal 
vectors (components) or directions corresponding to the number of variables. These vectors correspond 
to the eigenvalues and the eigenvectors of the matrix. We agree that by a characteristic value we mean 
the set of eigenvalues and eigenvectors of the matrix.

Based on this method, the characteristic values are formed in descending order, which is important 
since only few components have to be used for the description of the initial data. The vectors are 
pairwise orthogonal ones, and their components are uncorrelated. A few components can reflect most 

1 Pearson, K. On lines and planes of closest fit to systems of points in space. – Phil. Mag. – 1901. #6, p. 559–572.
2 Hotelling, H. Analysis of complex of statistical variables into principal components. – Jep, #24, 1933. – p. 417–441, 

498–520.
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of the sum variance of initial variables; however, all components are required for accurate reproduction 
of correlations between variables. 

The principal component method is used for total simulation of initial random variables. However, 
we do not need to put forward the hypotheses about variables because the variables do not even have 
to be random variables. In practice the observations of random variables are samples from some 
population.

In order to decrease the complexity of the statistical calculations we can replace an n-dimensional 
random variable by k<n linear functions from the initial variables. The simulation is called a 
reconstruction of function using a linear predictor3, which is implemented by means of eigenvectors of 
the covariance matrix [12]. 

Consider the multivariate random variable X which is an n-dimension sample data
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where K(X)=K – covariance matrix of initial random variables Х1, Х2, …, Хk; 

          k – rank of matrix K(X);  

          т – index of the transpose of a matrix; 

          m – total number of changing of the random variable Хi.        

We assume that the matrix’s elements )( ji XXk are the estimations calculated from sam-
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The variance of the linear combination (1) is determined by the following formula based on [7, 
12]
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where l1 – the Lagrange multiplier. 
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The solutions of system (5) are all normalized eigenvectors of the matrix K(X). Every so-

lution determines an extreme point or specific point of the function. The coordinates of the ei-

genvector corresponding to the maximal eigenvalue λ1 correspond to the global minimum. 

In factor analysis the components of the vector G are new random variables which are the 

linear combination of initial X or centered ΔХ random variables. 

The eigenvalues λ and eigenvectors υ of power covariance matrix have useful properties 

which are applied in component analysis. The eigenvalues are real values and the eigenvectors 

can be chosen as perpendicular to each other. The eigenvectors define an undergoing pure ten-

sion or compression direction of the linear transformation corresponding to the matrix K(X). 

These vectors are also named the principal components of the matrix [12], and the eigenvalue λ 

is a coefficient of the transformation. The variance of the i-th principal component is equal to the 

eigenvalue λi of matrix K(X). 

It is known that the eigenvalues λ and eigenvectors υ  of matrixes satisfy the following 

expression 
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By multiplying both sides of the expression (6) on the left of the matrix 
1−υ , we will arrive 

at 
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Expression (7) is considerably simplified when the original matrix K is defined as positive, 

which is the case for the power covariance matrix [7]. Thus, all eigenvectors can be made ortho-

normal ones, i. e. satisfying the expressions 
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 is equal to the conjugate one, and expression (7) can 
be rewritten as (3)

It is easy to verify that the inverse matrix 1−υ  is equal to the conjugate one, and expression 

(7) can be rewritten as (3) 

υKυλ ××= т ,     (8) 

where υ – an orthonormal matrix whose columns consist of eigenvectors kυυυ ...,,, 21 . Condi-

tion (2) is satisfied for every column of the orthonormal matrix.  

Inverse expression between the original matrix K and the matrix λ 
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The method allows us to select the orthogonal factors among the factors-arguments, i. e. 

statistically-independent components, which provide a linearity of the method and additive effi-

ciency. 

The above-mentioned properties of the eigenvectors show that the full totality of them is 

equivalent to the original probabilistic model corresponding to the vector X. Moreover, both sets 

of variables X and G define the same vector space. 

However, from the set of vectors G, it is sufficient to select a small number of M principal 

components (factors) explaining most of the relationships between all components of the ini-

tial vector of random variables X. The main factors are not directly observed, but they character-

ize the change in the original variables. Therefore, we can get the task of obtaining a linear pre-

dictor of dimension M (M <k). For each k, the best predictor is the first M eigenvectors of K, cor-

responding to the maximal eigenvalues. As a result of studying the internal structure of the ma-

trix K, the selection of main factors is made in such order that at the beginning the first of them 

makes the greatest contribution to the variance of the variables, then the second one is the largest 

contribution to the variance of the variables remaining after taking into account the main factor, 

etc. Ultimately, these vectors constitute a set of linearly independent basis vectors, oriented in 

such a way that each of them makes the maximum contribution to the variance of the original 

variables Х. 

On the practical side, the factor model makes it possible to adequately estimate the cova-

riance structure between the relatively large number of observed variables by means of a smaller 

number of common factors. Evaluation of the factor structure is carried by the required number 

of factors explaining the correlations between variables and load factors in these va-
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is most useful when all variables xi are measured in the same units.  If not, the method is much more 
difficult to validate [9]. 

Factorial or component methods of statistical analysis are used in the computation of operational 
energy losses [13, 14], as well as for short-term forecasting and optimization [15, 16]. When solving 
the problem of factorial simulation of electric loads via a stochastic approach, the information about 
the characteristics of the random variable is approximately determined by a partial sample from the 
general population. In the factor simulation of power loads [5–7, 10, 11] the curves of active and reactive 
nodal powers are considered as a training sample having 2n-dimension. In operational computations 
the scope of the method is limited to the modeling of daily power load curves of an unobservable 
network.

The modeling of electric power loads on the basis of factor analysis allows us to: 
– find hidden regularities, which are determined by many internal and external causes of load 

changing;
– carry out the compression of information by describing all curves by means of the common 

factors or principal components, whose number is much smaller than the number of initial 
curves;

– identify the statistical dependence between the power load curves and the main factors; 
– predict the random component curves based on the regression equation constructed on the 

basis of factor analysis;
– simplify the methods for determining the integral characteristics of power systems. 

Determination Methods of Principal Components

The problem of determination of the principal components is a classical problem of determining 
the characteristic values from a covariance matrix of random variables, as which the nodal power 
loads are considered. The determination of eigenvalues and eigenvectors of matrices in linear algebra 
is called the problem of characteristic values, and it is a complicated task which is implemented in 
several statistical software applications. The value λ is called the eigenvalue of K, if there is a nonzero 
vector (eigenvector of K) satisfying the equation
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where nββ ,...,1  – coefficients of the characteristic polynomial. 

The methods for determining the eigenvalues and eigenvectors can be divided into two 

groups [11]: the first group includes iterative methods which often use a similarity transforma-

tion and solve a linear system of equations (10); the second group includes the direct methods 

that calculate the characteristic polynomial (11). The problems (10) and (11) have different con-

ditionality, as the roots of polynomials (11) are often highly sensitive to errors which are inevita-

bly arising in the calculation of polynomial coefficients. That was the main reason of the almost 

complete exclusion of direct methods. 

The direct application of covariance matrix in various algorithms is greatly complicated by 

its dimension. In order to compensate the above-mentioned disadvantage, the modeling of cova-

riance matrix is implemented by using modern computer software interactive systems, such as 

MATLAB, MATCAD, C++, ANSYS, FORTRAN, etc. 

The main criterion for the normalization of the eigenvectors in MATLAB consists of 

Eυυт =×      (12) 

Small changes in matrix elements, such as rounding errors, can cause large changes in the 

characteristic values. The power covariance matrix is a square matrix that is easier to use for ma-

trix transformations in comparison with other matrices. 

 

Stochastic Model of Covariance Matrix and Electric Power Loads 

Most of the research [5–8] conducted in this field was aimed at the modeling of power 

loads and its application for a daily time interval. This is due to the peculiarities of the energy 

business and information support of power utilities during the development of this technique. 

Structural changes that have occurred in the management of an integrated power grid led to the 

need of periodic computations between separate power business entities. Today, the main period 

of the financial settlement is one month. The modeling of power consumption on a monthly time 

interval was proposed for the first time in [10, 11]. At the moment the technique and its possible 

application are implemented insufficiently and therefore further research and elaboration is 

needed. 

The simulation of the power covariance matrix is based on several properties of eigenva-

lues and eigenvectors of a matrix which is expanded by 2n eigenvalues and eigenvectors; the 

first few M characteristic values (M <<2n) accurately reflect the total variance of the initial pow-

er load curves [5–7, 10–12]. 
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The direct application of covariance matrix in various algorithms is greatly complicated by its 
dimension. In order to compensate the above-mentioned disadvantage, the modeling of covariance 
matrix is implemented by using modern computer software interactive systems, such as MATLAB, 
MATCAD, C++, ANSYS, FORTRAN, etc.

The main criterion for the normalization of the eigenvectors in MATLAB consists of
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where i, j – indexes of nodes; m – index of every time interval for the T period; n – the number of 

nodes of power distribution systems with known or simulated power load curves. 

The elements (13) of a power covariance matrix characterize the degree of irregularity of 

power load curves, which remains approximately constant over a long period. The degree may 

be determined on the basis of daily measurements performed on different days in power system 

sectors. This is an important advantage of the statistical method. 

The variances and cross-covariance functions of power loads form the square covariance 

matrix K= K(P,Q) as follows 
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The simulation of the covariance matrix is implemented corresponding with expression (9), 

which may also be written in the usual form 
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where i, j – indexes of nodes; m – index of every time interval for the T period; n – the number of 

nodes of power distribution systems with known or simulated power load curves. 

The elements (13) of a power covariance matrix characterize the degree of irregularity of 

power load curves, which remains approximately constant over a long period. The degree may 

be determined on the basis of daily measurements performed on different days in power system 
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where i, j – indexes of nodes; m – index of every time interval for the T period; n – the number of nodes 
of power distribution systems with known or simulated power load curves.

The elements (13) of a power covariance matrix characterize the degree of irregularity of power 
load curves, which remains approximately constant over a long period. The degree may be determined 
on the basis of daily measurements performed on different days in power system sectors. This is an 
important advantage of the statistical method.
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The simulation of the covariance matrix is implemented corresponding with expression (9), 

which may also be written in the usual form 

т

1
i

M

i
iiK υυλ ××= ∑

=

     (15) . (15)

Every eigenvalue of covariance matrix corresponds to a general load diagram of power (GLD) 

Every eigenvalue of covariance matrix corresponds to a general load diagram of power 

(GLD) iГ , which is a linear combination of 2n initial nodal power load curves centered at ex-

pectation MPi, MQi 
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where [ ]т2nυ  – the transposed matrix of eigenvectors obtained from the covariance matrix of sta-

tistical sample for initial power loads, which has 2n×2n dimension; 

      ΔР1 , ΔQ1 – the deviations centered at expectation of active and reactive power in the node # 

1 for a certain time period T 
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The obtained GLDs can be considered as new independent centered random variables with 

zero mathematical expectations. The GLDs have a property of orthogonality, i. e. cross-

covariance functions )( jiГГk , )( ij ГГk  are equal to zero. These new random variables (factors) 

are a suitable coordinate system for accurate simulation of initial random variables Pi, Qi; there-

fore, using M of them  

[ ] 2nk ГГ <<= kГГ ....1 , nMk 2,...,1 <<=     (17) 

which corresponds to the maximal eigenvalues of power covariance matrix, allow us to simulate 

initial load changing with a sufficient accuracy for a certain time interval T 

[ ] [ ] =ΔΔΔΔ+×≈ nnnnm QQPPMQMQMPMPONE .............. 11111,iS  
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where 1,mONE  – a column vector consisting of units, and which have m = 1, 2,..., d rows. 

     [ ]тkυ – the transposed matrix of prime k eigenvectors kυ  corresponding to the first maximal 

eigenvalues kλ  of the power covariance matrix K(P,Q) (14); 

       MQ1 – a mathematical expectation of reactive power curve in the node #1 for the accounting 

period T. 

       Рi – possible variation of active power in i node for the accounting period T.  

The simulation of the power loads allows us to track the variation of load parameters. It 

should be noted that initial power load curves are fully simulated on formula (18) using all 
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       MQ1 – a mathematical expectation of reactive power curve in the node #1 for the accounting 

period T. 

       Рi – possible variation of active power in i node for the accounting period T.  

The simulation of the power loads allows us to track the variation of load parameters. It 

should be noted that initial power load curves are fully simulated on formula (18) using all 

,
 (18)



– 47 –

Ivan V. Shulgin, Aleksey A. Gerasimenko... Stochastic Simulation of Covariance Matrix and Power Load Curves...
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zero mathematical expectations. The GLDs have a property of orthogonality, i. e. cross-
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are a suitable coordinate system for accurate simulation of initial random variables Pi, Qi; there-

fore, using M of them  
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where 1,mONE  – a column vector consisting of units, and which have m = 1, 2,..., d rows. 

     [ ]тkυ – the transposed matrix of prime k eigenvectors kυ  corresponding to the first maximal 

eigenvalues kλ  of the power covariance matrix K(P,Q) (14); 

       MQ1 – a mathematical expectation of reactive power curve in the node #1 for the accounting 

period T. 

       Рi – possible variation of active power in i node for the accounting period T.  

The simulation of the power loads allows us to track the variation of load parameters. It 

should be noted that initial power load curves are fully simulated on formula (18) using all 

 corresponding to the first maximal 
eigenvalues λk of the power covariance matrix K(P,Q) (14);

MQ1 – a mathematical expectation of reactive power curve in the node #1 for the accounting 
period T.

Рi – possible variation of active power in i node for the accounting period T. 
The simulation of the power loads allows us to track the variation of load parameters. It should be 

noted that initial power load curves are fully simulated on formula (18) using all GLDs. The eigenvalues 
λ of the initial covariance matrix K(P,Q) are variances of GLDs (3). Hence, any power load curve can 
be represented as a linear combination of the GLDs which reflect the general regularities of power 
expectation changing for the initial collection of power nodes.

The following daily/monthly samples of the power load curves have been analyzed:
1) 36 simple weekday and weekend power curves [24 hrs] of a 10 kV electric distribution network 

(d=4); the unit of active power is kW; the unit of reactive power is kvar.
2) 18 atypical real daily active and reactive power curves of a 10 kV electric distribution network 

(d=24) [11]; the unit of active power is kW; the unit of reactive power is kvar.
3) 42 typical daily power curves for different industries (d=12) [12]; the unit of power is relative 

unit [r. u.].
4) 30 monthly active power load curves for 110–220 kV overhead lines for August–September in 

2009 [11]. Number of intervals d of period T was reduced from 744 to 31 by calculating the average 
power for each day. The unit of active power is MW.

Computational results of eigenvalues and GLDs (17) from the above-mentioned samples of data 
#1–4 are presented in Table 1–3, and in Fig. 1–2.

The original power load curves characterize a different degree of irregularity, therefore every 
sample data #1–4 has its own principal factors linking the power load curves to the system of 
characteristic values. In all cases, the error of simulation of power load curves is, in a dozen times 
and sometimes more, less than the error of the covariance matrix simulation (9) taking into account 

Table 1. The Six Maximal Eigenvalues Obtained from Sample Data #1–4 for Simulation of Covariance Matrix 
and Power Load Curves

Sample
Data

Contribution of principal 
components to the total 

variance of loads

Eigenvalues of the original sample data
in decreasing sequence

λ1 λ2 λ3 λ4 λ5 λ6

1)
λ 45806.73 25494.41 5039.49 4.64·10-12 - -

Θ, % 60.00 33.40 6.60 0.0 - -

2)
λ 17699.71 9289.16 2247.51 1136.81 595.20 502.52

Θ, % 53.28 27.96 6.77 3.42 1.79 1.51

3)
λ 1.06705 0.432602 0.104090 0.102429 0.0284292 0.0157218

Θ, % 60.10 24.36 5.86 5.77 1.60 0.885

4)
λ 1510.38 369.29 172.26 80.00 68.83 47.70

Θ, % 65.06 15.91 7.42 3.45 2.96 2.05



Fig. 1. Two Principal Daily GLDs Corresponding to the Maximal Variances for Sample Data #1 in the Same Units 
as the Initial Variables
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Fig. 2. Three Principal Daily GLDs Corresponding to the Maximal Variances Obtained from 

Sample Data #2 in the Same Units as the Initial Variables 
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the Same Units as the Initial Variables
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the same number of characteristic values and GLDs. The reason for this is that the elements of 
the power covariance matrix are relatively small values compared with the values of the initial 
power load curves. The maximal error of simulation of power load curves does not exceed 25%, 
and the average one is 8.83% for sample data #3 taking into account only six maximal characteristic 
values. 

The obtained GLDs can also be used to determine the total normalized or weight average GLDs 
which are used for the simulation of unknown power load curves. 

By the means of MATLAB system using all GLDs and characteristic values for the sample data, 
the power covariance matrix (9) and power load curves (18) are simulated with high accuracy. The 
simulation on the basis of expression (18) is primarily designed for modern automated meter systems 
and it uses operating condition information from them. The lack of the above-mentioned systems 
in most distribution systems can be replaced by the power load simulation [7, 11] and so to use the 
advantages of factor simulation. 

Stability of Factor Power Load Model

Factor simulation of power loads has a practical application only if the estimations of factor values 
(GLDs), which are obtained for different random processes of load changing, are statistically similar 
ones, i. e. have statistical stability. A research study of the statistical stability of the factor model, which 
was based on real data on power load curves for different power utilities with large statistical volume of 
information, showed the presence of a collective and dynamic stability for daily, weekly and monthly 
power load curves [4, 5, 7, 10, 11].

Statistical stability describes the possibility of using GLDs derived from one learning sample for 
the simulation of powers which were not included in the learning sample. Dynamic stability describes 
the comparison of different time realizations of the factor model for constant power utilities; collective 
stability is the comparison of GLDs belonging to different power utilities.

Table 2. Six Daily Nonnormalized GLDs Corresponding to the Maximal Variances Obtained from Typical Daily 
Power Curves for Different Industries (Sample Data #3) [r. u.]

t, hrs

Table 2. Six Daily Nonnormalized GLDs Corresponding to the Maximal Variances Ob-

tained from Typical Daily Power Curves for Different Industries (Sample Data #3) 

[r. u.] 

t, hrs 1Г  2Г  3Г  4Г  5Г  6Г  
0–2 -1.58281 0.107604 -0.184982 0.0774817 -0.00315256 0.0536194 
2–4 -1.63002 0.111508 -0.193562 0.0402251 0.0274119 0.0268668 
4–6 -1.00645 -0.0537509 0.339956 -0.721240 0.201227 -0.130268 
6–8 0.826063 0.369511 -0.435288 -0.464289 -0.383642 0.0144767 

8–10 0.965881 0.888987 0.169168 0.111077 -0.0132479 -0.241056 
10–12 0.186023 0.684827 0.589090 -0.0899582 -0.0842728 0.267227 
12–14 0.671946 0.990801 0.0328418 0.464211 0.1607393 0.00610122 
14–16 1.33107 -0.155875 -0.588556 -0.189836 0.303330 0.0769681 
16–18 0.832963 -1.12614 0.168255 0.0598246 0.0587576 0.125265 
18–20 0.687673 -0.991643 0.289502 0.0722762 -0.101288 -0.107512 
20–22 -0.0217858 -0.704435 0.00610245 0.325773 -0.0908384 -0.0676617 
22–24 -1.26054 -0.121393 -0.192526 0.314455 -0.0750239 -0.0240258 
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Ivan V. Shulgin, Aleksey A. Gerasimenko... Stochastic Simulation of Covariance Matrix and Power Load Curves...

The research studies of daily power load curves obtained by the AMR system in more than 100 
points of head line sections in 6–110 kV distribution networks for 13 days identified a strong statistical 
relationship between the first GLDs, i. e. proximity of variances of the power load curves and close 
correlation dependence [11]. This allows us to conclude that the factor model of the covariance matrix 
and power load curves have statistical stability, and it is possible to apply it for the simulation of power 
consumption irregularity for the posterior or previous analogous time periods.

The results of multiple computations indicate a rather large contribution of the three principal 
components (70–80%) to the total variance of the whole sample of original power load curves. The first 

Table 3. Six Monthly GLDs Corresponding to the Maximal Variances Obtained from Sample Data #4  [MW]
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The original power load curves characterize a different degree of irregularity, therefore 

every sample data #1–4 has its own principal factors linking the power load curves to the system 

of characteristic values. In all cases, the error of simulation of power load curves is, in a dozen 

times and sometimes more, less than the error of the covariance matrix simulation (9) taking into 

account the same number of characteristic values and GLDs. The reason for this is that the ele-

ments of the power covariance matrix are relatively small values compared with the values of the 

initial power load curves. The maximal error of simulation of power load curves does not exceed 

25%, and the average one is 8.83% for sample data #3 taking into account only six maximal cha-

racteristic values.  

The obtained GLDs can also be used to determine the total normalized or weight average 

GLDs which are used for the simulation of unknown power load curves.  

By the means of MATLAB system using all GLDs and characteristic values for the sample 

data, the power covariance matrix (9) and power load curves (18) are simulated with high accu-

racy. The simulation on the basis of expression (18) is primarily designed for modern automated 

meter systems and it uses operating condition information from them. The lack of the above-

mentioned systems in most distribution systems can be replaced by the power load simulation [7, 

11] and so to use the advantages of factor simulation.  
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times and sometimes more, less than the error of the covariance matrix simulation (9) taking into 

account the same number of characteristic values and GLDs. The reason for this is that the ele-

ments of the power covariance matrix are relatively small values compared with the values of the 

initial power load curves. The maximal error of simulation of power load curves does not exceed 

25%, and the average one is 8.83% for sample data #3 taking into account only six maximal cha-

racteristic values.  

The obtained GLDs can also be used to determine the total normalized or weight average 

GLDs which are used for the simulation of unknown power load curves.  

By the means of MATLAB system using all GLDs and characteristic values for the sample 

data, the power covariance matrix (9) and power load curves (18) are simulated with high accu-

racy. The simulation on the basis of expression (18) is primarily designed for modern automated 

meter systems and it uses operating condition information from them. The lack of the above-

mentioned systems in most distribution systems can be replaced by the power load simulation [7, 

11] and so to use the advantages of factor simulation.  
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1 -61.0910 -19.4337 -5.91616 0.987755 -17.5551 2.85404
2 -49.9621 -17.3637 0.624555 6.63003 -10.2079 -7.32189
3 -56.1344 -11.5625 10.9850 9.11488 -9.88028 -11.2969
4 -44.3974 -8.20962 10.8664 5.96288 0.0544416 -17.9550
5 -29.6979 2.44294 -19.8471 8.92353 -2.01733 2.65349
6 7.69728 16.7571 -23.6115 8.33256 -4.15039 9.31310
7 50.0524 42.8409 0.189204 4.71245 -14.7875 -3.14985
8 51.1595 42.7496 -11.1642 -6.21158 -10.4222 -7.43516
9 54.5808 14.4466 -22.6867 -2.33433 6.02504 -11.5762
10 43.7955 -33.5056 -13.8767 4.15772 2.12694 -4.75286
11 42.7563 -28.2635 -14.5850 4.16292 2.03908 -4.62368
12 22.2479 0.475527 -4.00582 -13.7653 -16.9796 3.54289
13 -82.9028 22.9289 8.61478 -27.3533 -3.32166 -0.580486
14 -89.8760 32.9555 -14.5703 2.33812 20.4750 4.03684
15 -64.0213 8.74729 -18.2781 11.1739 4.56532 4.64756
16 24.1308 -4.13785 -10.5377 8.70718 8.82819 0.635262
17 7.18290 -15.8651 8.20768 -3.85646 7.90065 -5.18798
18 6.47624 -14.2352 3.61354 -9.05050 8.53147 -5.94042
19 11.5967 -4.96041 -1.97678 -11.5722 5.81598 -2.55565
20 13.6620 -8.57086 -3.04740 -12.5938 5.49477 -0.341653
21 9.67771 -13.5638 -3.17290 -11.0283 3.86244 2.55857
22 8.28646 -17.2128 1.59427 -6.97636 3.11115 2.62101
23 3.85626 1.39991 11.8803 0.615213 -1.67941 3.97740
24 11.9982 -10.1443 8.96102 4.82252 -3.59272 6.98522
25 14.4479 -15.7646 12.6704 5.13767 -0.285371 7.41964
26 14.5485 4.14165 10.7802 -1.09407 2.70395 8.33036
27 19.7817 15.1572 24.4290 9.36452 4.34313 -0.319466
28 19.8501 26.3028 27.7652 14.1172 2.67827 -0.136420
29 17.8695 5.40787 15.9846 1.12875 7.99281 1.50315
30 15.8722 5.87849 9.71566 -4.84532 5.26982 5.52796
31 6.55574 -19.8384 0.394553 0.291731 -6.93900 16.5671
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principal components of GLDs indicate the presence of common internal reasons for daily irregularity 
in power load curves and intersystem power flows [6]. 

The collective stability of the factor model allows us to suggest that GLDs reflect the main reasons 
for power changing without specific factors. Therefore, in order to determine the GLDs, we do not need 
to analyze the power load curves in all nodes; it is enough to take only some modeling subset of power 
load curves into account, for instance, combined diagrams of consumer groups. These are formed on 
the basis of check measurements of power consumption, which is carried out by an inspectorate. The 
computation results showed that sets of GLDs which were obtained on the basis of analysis of large 
samples of power load curves are quite close to each other [6].

Computations for different samples of daily and monthly power load curves have also confirmed 
the statistical stability of the factor model (see above). The contribution of the first principal component 
to the total variance of power loads is over 50%, while the significant contribution of the first three 
components was also confirmed (see Table 1).

Wide application of factor analysis for power load simulation offers a possibility to limit the 
volume of the statistical sample to not more than 100 elements [7, 8], which allows to manipulate not 
large covariance matrices. In this case, the requirements of representativeness are carried out, and the 
obtained GLDs are statistically stable diagrams.

A Number of Principal Components

A recent review of the approaches to determine the required number M of eigenvalues and 
eigenvectors for covariance matrix simulation identified the absence of a consensus among specialists 
on the factor analysis [11]. One opinion is that this number is usually not higher than four. However, in 
some cases depending on the accuracy of the covariance matrix simulation, it is required to take into 
account a greater number of characteristic values and GLDs. Researches of power covariance matrix 
and power load curves showed that the required number of characteristic values depends on sample 
data properties and on the irregularity of power load curves. The maximal number is equal to the first 
six maximal characteristic values in MATLAB system. Most likely, this number was chosen after 
extensive analysis of covariance matrices and factor simulation.

A simple approach for the determination of a reasonable number of characteristic values is to 
estimate the overall contribution of the principal components’ sequence 

A recent review of the approaches to determine the required number M of eigenvalues and 

eigenvectors for covariance matrix simulation identified the absence of a consensus among spe-

cialists on the factor analysis [11]. One opinion is that this number is usually not higher than 

four. However, in some cases depending on the accuracy of the covariance matrix simulation, it 

is required to take into account a greater number of characteristic values and GLDs. Researches 

of power covariance matrix and power load curves showed that the required number of characte-

ristic values depends on sample data properties and on the irregularity of power load curves. The 

maximal number is equal to the first six maximal characteristic values in MATLAB system. 

Most likely, this number was chosen after extensive analysis of covariance matrices and factor 

simulation. 

A simple approach for the determination of a reasonable number of characteristic values is 

to estimate the overall contribution of the principal components’ sequence kГГГ ,...,, 21   to the 

total variance. If the summarized contribution to the total variance is 75–90%, we should stop on 

the value k=1, 2,…, М [5, 6]. The total percentage contribution Θ to the variance for fixed M is 

calculated by the following formula 

%1002

1

1 ⋅=

∑

∑

=

=
n

i
i

M

k
k

Θ
λ

λ
; %9075 ≤≤ Θ ,    (19) 

where ∑
=

n

i
i

2

1
λ  – the sum of eigenvalues of original power covariance matrix, which is called spur 

of matrix [7, 8]. Θ is a criterion for the accuracy of the covariance matrix simulation and the si-

mulation of original active and reactive power load curves. This criterion is sufficient to carry 

out the computations of the power integral characteristics and power system optimization. 

Component analysis is used to simulate both random and deterministic dependencies simi-

lar to the regression method of approximating the functions dependent on the time. The most ef-

fective test of statistical hypothesis and the determination of the required number of principal 

components is the repeated application of component analysis for various samples of the same 

general population. If the statistical hypothesis about the existence of common dominant trends 

in all random variables Хi is true, then the statistical characteristics, at least for the first principal 

component selected on the basis of different sample data, will be close to each other. 

The statistical characteristics for principal components Гk not characterized by the proper-

ties of one general population differ substantially from sample to sample. Repeated factor simu-

  to the total 
variance. If the summarized contribution to the total variance is 75–90%, we should stop on the value 
k=1, 2,…, М [5, 6]. The total percentage contribution Θ to the variance for fixed M is calculated by the 
following formula

A recent review of the approaches to determine the required number M of eigenvalues and 

eigenvectors for covariance matrix simulation identified the absence of a consensus among spe-

cialists on the factor analysis [11]. One opinion is that this number is usually not higher than 

four. However, in some cases depending on the accuracy of the covariance matrix simulation, it 

is required to take into account a greater number of characteristic values and GLDs. Researches 

of power covariance matrix and power load curves showed that the required number of characte-

ristic values depends on sample data properties and on the irregularity of power load curves. The 

maximal number is equal to the first six maximal characteristic values in MATLAB system. 

Most likely, this number was chosen after extensive analysis of covariance matrices and factor 

simulation. 

A simple approach for the determination of a reasonable number of characteristic values is 

to estimate the overall contribution of the principal components’ sequence kГГГ ,...,, 21   to the 

total variance. If the summarized contribution to the total variance is 75–90%, we should stop on 

the value k=1, 2,…, М [5, 6]. The total percentage contribution Θ to the variance for fixed M is 

calculated by the following formula 

%1002

1

1 ⋅=

∑

∑

=

=
n

i
i

M

k
k

Θ
λ

λ
; %9075 ≤≤ Θ ,    (19) 

where ∑
=

n

i
i

2

1
λ  – the sum of eigenvalues of original power covariance matrix, which is called spur 

of matrix [7, 8]. Θ is a criterion for the accuracy of the covariance matrix simulation and the si-

mulation of original active and reactive power load curves. This criterion is sufficient to carry 

out the computations of the power integral characteristics and power system optimization. 

Component analysis is used to simulate both random and deterministic dependencies simi-

lar to the regression method of approximating the functions dependent on the time. The most ef-

fective test of statistical hypothesis and the determination of the required number of principal 

components is the repeated application of component analysis for various samples of the same 

general population. If the statistical hypothesis about the existence of common dominant trends 

in all random variables Хi is true, then the statistical characteristics, at least for the first principal 

component selected on the basis of different sample data, will be close to each other. 

The statistical characteristics for principal components Гk not characterized by the proper-

ties of one general population differ substantially from sample to sample. Repeated factor simu-

 (19)

where 

A recent review of the approaches to determine the required number M of eigenvalues and 

eigenvectors for covariance matrix simulation identified the absence of a consensus among spe-

cialists on the factor analysis [11]. One opinion is that this number is usually not higher than 

four. However, in some cases depending on the accuracy of the covariance matrix simulation, it 

is required to take into account a greater number of characteristic values and GLDs. Researches 

of power covariance matrix and power load curves showed that the required number of characte-

ristic values depends on sample data properties and on the irregularity of power load curves. The 

maximal number is equal to the first six maximal characteristic values in MATLAB system. 

Most likely, this number was chosen after extensive analysis of covariance matrices and factor 

simulation. 

A simple approach for the determination of a reasonable number of characteristic values is 

to estimate the overall contribution of the principal components’ sequence kГГГ ,...,, 21   to the 

total variance. If the summarized contribution to the total variance is 75–90%, we should stop on 

the value k=1, 2,…, М [5, 6]. The total percentage contribution Θ to the variance for fixed M is 

calculated by the following formula 

%1002

1

1 ⋅=

∑

∑

=

=
n

i
i

M

k
k

Θ
λ

λ
; %9075 ≤≤ Θ ,    (19) 

where ∑
=

n

i
i

2

1
λ  – the sum of eigenvalues of original power covariance matrix, which is called spur 

of matrix [7, 8]. Θ is a criterion for the accuracy of the covariance matrix simulation and the si-

mulation of original active and reactive power load curves. This criterion is sufficient to carry 

out the computations of the power integral characteristics and power system optimization. 

Component analysis is used to simulate both random and deterministic dependencies simi-

lar to the regression method of approximating the functions dependent on the time. The most ef-

fective test of statistical hypothesis and the determination of the required number of principal 

components is the repeated application of component analysis for various samples of the same 

general population. If the statistical hypothesis about the existence of common dominant trends 

in all random variables Хi is true, then the statistical characteristics, at least for the first principal 

component selected on the basis of different sample data, will be close to each other. 

The statistical characteristics for principal components Гk not characterized by the proper-

ties of one general population differ substantially from sample to sample. Repeated factor simu-

 – the sum of eigenvalues of original power covariance matrix, which is called spur of 

matrix [7, 8]. Θ is a criterion for the accuracy of the covariance matrix simulation and the simulation of 
original active and reactive power load curves. This criterion is sufficient to carry out the computations 
of the power integral characteristics and power system optimization.



– 52 –

Ivan V. Shulgin, Aleksey A. Gerasimenko... Stochastic Simulation of Covariance Matrix and Power Load Curves...

Component analysis is used to simulate both random and deterministic dependencies similar to 
the regression method of approximating the functions dependent on the time. The most effective test 
of statistical hypothesis and the determination of the required number of principal components is the 
repeated application of component analysis for various samples of the same general population. If the 
statistical hypothesis about the existence of common dominant trends in all random variables Хi is 
true, then the statistical characteristics, at least for the first principal component selected on the basis 
of different sample data, will be close to each other.

The statistical characteristics for principal components Гk not characterized by the properties 
of one general population differ substantially from sample to sample. Repeated factor simulation for 
different sample data is a universal method to select statistically stable principal components which 
characterize the properties of the general population.

The factor simulation of a set of random variables is a useful instrument of statistical   analysis 
if the dimension of the model space of M initial random variables is a sufficiently small one. Such a 
situation is typical for the simulation of nodal power loads. The application of factor analysis methods 
allows us to simulate hundreds of power load curves by the means of 2–3 GLDs [7, 8].

For a reliable application of the method, it is necessary that the first eigenvalues of the K are 
significantly different from each other. The matrix K, which corresponds to the nodal power load 
curves, usually satisfies this condition [12]. 

The required number of GLDs for the simulation of original power load curves or required number 
of characteristic values for the simulation of power covariance matrix depends on the properties of 
the concrete set of research random variables. The research studies on different collections of power 
load curves confirmed the hypothesis about high quality simulation of power covariance matrix. This 
simulation is based on a small number of characteristic values reflecting the maximal part of the total 
variance for the whole general population; hereby a small number means 2÷5 GLDs, the exact number 
depending on the properties of the sample data, desired accuracy and purposes of simulation.

Stochastic Simulation of Covariance Matrix  
and Power Load Curves’ Algorithm

Referring to the above-mentioned points we can formulate a simulation algorithm for covariance 
matrix and power load curves:

1. The original power covariance matrix K(P,Q) is formulated on formulas (13), (14) based on 
retrospective analysis of active and reactive power curves in distribution networks for a certain time 
period T and control measuring data.

2. 2n eigenvalues and 2n eigenvectors of the K(P,Q) are determined by means of any   suitable 
software based on the principal component method. The characteristic values identify a degree of 
statistical relationship between random deviations of powers Pi, Pj, Qi, Qj from their mathematical 
expectations MPi, MPj, MQi, MQj.

3. A selection of first M maximal eigenvalues of the K(P,Q) λk < λ and eigenvectors υk < υ is 
arranged in descending order. The number of eigenvalues and GLDs needed for covariance matrix 
simulation is an acceptable one for practical computations of integral characteristics and system 
optimization if condition (19) is satisfied. In other words, we should stop on such value of M where 
the contribution of sum of the first diagonal elements of the covariance matrix to the total variance 
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of the general population of active and reactive powers is 75–90%. The recommended range of M is 
2 ≤ M ≤ 5.

4. The simulation of the power covariance matrix K(P,Q) is carried out on formula (9) by the 
means of M characteristic values. Computations like that can be performed only once a month based 
on the analysis of a training sample of power load curves.

5. The GLDs are determined on formula (16) for the whole collection of the corresponding sample 
data. 

6. The first M maximal GLDs Гk are selected on (17), which correspond to the M eigenvectors 
υk and eigenvalues λk of K(P,Q). The original active and reactive power curves are simulated on the 
expression (18) by the means of Гk.

This method is effective when the condition М <<2n can be limited to take into account only the 
first few υk  and Гk. In addition, the GLDs Гk obtained for the different random process realizations 
of power load changing must have statistical stability. The property of universality was confirmed by 
means of computations of the GLDs Гk of statistically representative sample data for different power 
utilities. In all cases, 3–4 Гk are usually sufficient for the reflection of up to 75–95 % of the total 
variance of original power loads (see tab. 1–3).

Thus, the original power load curves can be presented in the form of some characteristics: the 
mathematical expectations and the coefficients λk and υk. This is used for effective determination of 
integral characteristics and optimization algorithm in power distribution systems.

In order to obtain a more accurate model of covariance matrix and power load curves it is necessary 
to take into account a larger number of characteristic values and GLDs, and it is possible to use the 
expansion in a Fourier series or similar methods [8]. However, the component analysis differs from 
other statistical methods by offering a more economical and convenient way for system optimization 
and a good form for the presentation of information. One advantage of the component analysis is 
that it is determined in such way that the function package of simulation is not selected randomly, as 
for instance, in Fourier analysis, but on the basis of analyzing the principal regularity of power load 
changing. The indicated regularities obtained on the basis of the main factors, their number is less than 
in other simulation methods, determine the possibility of their application for small samples containing 
4–6 points of a daily curve. 

The methodology of the integral characteristic determination is developed on the basis of 
stochastic simulation of covariance matrix and power load curves particularly the load-dependent 
energy loss determination [13, 14] and optimization algorithms of operating conditions on reactive 
power in electric distribution networks [15, 16]. 

Conclusions

1. This paper proposes the factor model of power loads on daily and monthly time periods, which 
allows us to identify the general regularity of nodal power changing in electric distribution networks. 
The advantages and possibilities of the model application are described. 

2. The computational results of the general load diagrams are derived for different sample data of 
original active and reactive power curves for daily and monthly time periods T. The statistical stability 
of factor power load model is confirmed for 6–110 kV electric power networks. The contribution of the 
first principal component to the total variance of power loads is more than 50%.
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3. The simulation algorithm for covariance matrix and nodal power load curves is formulated by 
means of only a subset of the first main factors (2 ≤ М ≤ 5); it is possible to decrease the complexity 
of computations in comparison to traditional computation of multiple operating conditions and to 
simplify the determination of power integral characteristics.

4. The algorithms of energy loss determination and ranging of reactive power changing are 
developed on the basis of the proposed stochastic model of covariance matrix and power load curves 
[13–16]. This can be effectively used for solving the problems of energy saving and power system 
optimization.
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Разработан алгоритм стохастического моделирования матрицы корреляционных моментов и 
графиков активной и реактивной мощностей узлов распределительных электрических сетей 
на основе факторного анализа. Обоснована статистическая устойчивость факторной модели 
электрических  нагрузок. Применение данной модели позволяет выявить общие закономерности 
изменения мощностей нагрузочных узлов сети и упростить, сделать эффективными методы 
анализа и учёта многорежимности в задачах эксплуатации распределительных электрических 
сетей и оптимизации их режимов.

Ключевые слова: вероятностно-статистическое моделирование электрических нагрузок, 
матрица корреляционных моментов, распределительная электрическая сеть, метод главных 
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