
– 960 –

Journal of Siberian Federal University. Engineering & Technologies, 2016, 9(7), 960-971 
~ ~ ~

УДК 519.24

The Numerical Probabilistic Approach  
to the Processing and Presentation  
of Remote Monitoring Data

Boris S. Dobronets and Olga A. Popova*
Siberian Federal University

79 Svobodny, Krasnoyarsk, 660041, Russia

Received 17.02.2016, received in revised form 18.03.2016, accepted 29.05.2016

The paper deals with a numerical probabilistic analysis as a method of processing and presentation 
of remote monitoring for the aggregation large amounts of data. For the aggregation we used 
histograms, polygons and splines. On the basis of aggregated data to identify relationships 
between the input and output characteristics are studied the theoretical and the practical aspects 
of regression modeling. On the basis of numerical examples we demonstrated the efficiency and 
reliability of the proposed methods.

Keywords: numerical probabilistic analysis, remote monitoring, data processing, histogram 
aggregation, frequency polygon, spline, regression.

Citation: Dobronets B.S., Popova O.A. The numerical probabilistic approach to the processing and presentation of remote 
monitoring data, J. Sib. Fed. Univ. Eng. technol., 2016, 9(7), 960-971. DOI: 10.17516/1999-494X-2016-9-7-960-971.

 © Siberian Federal University. All rights reserved
* Corresponding author E-mail address: BDobronets@yandex.ru



– 961 –

Boris S. Dobronets and Olga A. Popova. The Numerical Probabilistic Approach to the Processing and Presentation…

Численный вероятностный подход  
к обработке и представлению данных  
дистанционного мониторинга

Б.С. Добронец, О.А. Попова
Сибирский федеральный университет 

Россия, 660041, Красноярск, пр. Свободный, 79

В статье рассматривается численный вероятностный анализ как метод обработки и 
представления дистанционного мониторинга для агрегации больших объемов данных. 
Для агрегации мы использовали гистограммы, частотные полигоны и слайны. На основе 
агрегированных данных для выявления взаимосвязей между входными и выходными 
характеристиками изучаются теоретические и практические аспекты регрессионного 
моделирования. На основе численных примеров демонстрируются эффективность и 
надежность предлагаемых методов.

Ключевые слова: численный вероятностный анализ, дистанционный мониторинг, обработка 
данных, гистограммная агрегация, частотный полигон, сплайн, регрессия.

Introduction

Control of complex systems, such as the distributed natural-technical objects, are classified as 
optimal control problems of a strategic nature. Typically, distributed natural-technical systems are 
characterized the interdisciplinary and interregional interaction of elements distributed over a large 
area. A distinctive feature of the management of such systems is to ensure their safety in the conditions 
of dangerous natural and man-made processes. An important problem to ensure the security of these 
systems is the preventively control of emergency and crisis states of the managed object. To increase 
the effectiveness of preventive control of distributed systems is necessary to calculate the assessment 
of potential risks based on remote monitoring data of the systems and the processes occurring in them, 
taking into account the impact of different types of uncertainty. For example, such methods include 
observation as land remote sensing. Remote sensing provides information about the object based on 
measurements taken at a distance from the object, that is, without direct contact with the object. An 
important aspect of remote monitoring is the ability to control large areas. It provides information 
generalizing the processes at the regional or all planet level. The information obtained on the basis 
of remote monitoring data are usually characterized by large volumes, varied methods of registration 
and the transfer forms. This information must be presented and properly processing to obtain useful 
knowledge. Preparation and data processing for research system processes includes a number of 
computational procedures. They must meet the requirements, such as reducing the uncertainty level 
, the accuracy and clarity of the results. By building a database for forecasting the state of complex 
distributed systems must be approached systematically, without losing a single opportunity to improve 
predictive accuracy of conclusions. Consider the features of the representation and data processing 
remote monitoring. Remote monitoring data are diverse in their qualitative and quantitative composition, 
the specificity of the methods of measurement, registration, submission. With access to a huge volume 
of remote monitoring data, researchers often need effective data processing technology and analysis. 
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This contributes to the development of new numerical methods and approaches to representation, 
numerical modeling and data analysis of remote monitoring in terms of different types of uncertainty. 
The variety of ways of presenting data determines the choice of methods of processing, modeling and 
analysis. The classical approach to data processing and analysis usually assumes that each value is the 
only point in n-dimensional space Rn [1]. In addition to such data in many practical problems of storage, 
processing, analysis, have to deal with “multi-value” data, examples of which include: a list of values, 
interval date and other types. A more complex type is modal − valued data containing the probability 
of weight, or any other related matter. A good example of a modal-valued data is a histogram. Such data 
gets to a data class, called “symbol” data [1]. An important difference between the symbol data is the 
presence of internal structures. It is does not apply the classical statistical theory and methods of data 
processing and analysis for symbolic data. Therefore, development of new methods for the analysis of 
such data and construct mathematical fundamentals are more important. Note that the large amount 
of information on the one hand, provides a more precise description of the object of research, on the 
other hand makes the difficulties for the search for solutions to the challenge. One way to solve this 
problem is to use a variety of data preprocessing procedures. For example, the aggregation method 
is a method of compressing large data. Procedures for the conversion of input data arrays into arrays 
of smaller dimension while maintaining useful information are the basis of aggregation. This article 
discusses the methods of presenting the data as a histogram, polygons, splines, histogram time series. 
On the basis of data representation methods we are solving the problem of data aggregation. Applying 
the numerical probabilistic analysis we are studying the existing relationships and trends in the data 
and are considering the questions of construction histogram regression models. For this purpose, the 
aggregated data we are presenting in the form of histograms and polygons.

Data representation

We will use a numerical probabilistic analysis for the processing and analysis of remote monitoring 
data, using such representation as histograms, polygons and splines. Histograms are one of the best 
known methods for presenting data.

Histograms. The histogram is called a random variable density which is represented piecewise 
constant function. Histogram P is defined grid { 0 }ix i … n| = , , , on each interval 1[ ]i ix x− , , 1i … n= , ,  
histogram takes constant value of pi. Histograms are widely used for the processing and analysis of 
remote sensing data. For example, in [2] is considered the problem of the study of natural processes 
on the basis of space and ground monitoring data. In addition to histograms we discuss the piecewise 
linear functions (polygons) and splines.

The piecewise linear function (Frequency Polygons). Piecewise linear functions can considered 
as a tool of approximation of the density function random variable. A piecewise linear function is 
a function composed of straight-line sections. The frequency polygon (FP) is a continuous density 
estimator based on the histogram. In one dimension, the frequency polygon is the linear interpolant of 
the midpoints of an equally spaced histogram.

Spline. A spline is a sufficiently smooth polynomial function that is piecewise-defined, and 
possesses a high degree of smoothness at the places where the polynomial pieces connect (which are 
known as knots). We will consider the probability density of the random variables are approximated 
spline. 
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Data aggregation

Aggregation can be considered as a data conversion process with a high degree of detail to a more 
generalized representation, by computing so-called aggregates or values obtained as a result of this 
conversion to a certain set of facts related to a specific dimension. An example of such procedures is 
a simple summation, calculation of the average, median, mode and range of maximum or minimum 
values. Application of aggregation procedures has its own advantages and disadvantages. Detailed 
data are often very volatile due to the impact of different random factors. It is making difficulties for 
detecting the general trends and patterns. It is important to bear in mind that the use of such procedures 
as averaging procedure, the exclusion of extreme values   (emission), the smoothing procedure can lead 
to loss of important and considerable part of the useful information. 

There are two typical situations where this happens [3]:
• If a variable is measured through time for each individual of a group, and the interest does not 

lie in the individuals but in the group as a whole. In this case, a time series of the sample mean of the 
observed variable over time would be a weak representation.

• When a variable is observed at a given frequency (say minutes), but has to be analyzed at a lower 
frequency (say days). In this case, if the variable is just sampled at the lower frequency, or if only the 
highest and lowest values between consecutive lower-frequency instants are represented (as is done 
when summarizing the intra-daily behavior of the shares in the stock markets), a lot of information is 
neglected.

These two situations describe contemporaneous and temporal aggregation, respectively.
Consider the histogram approach to data aggregation. This approach is useful for the following 

reasons. The histogram can be regarded as a mathematical object that is easy to describe and calculate the 
mathematical procedures and operations, while maintaining the essence of the frequency distribution 
of the data.

There is histogram arithmetic [4, 5], which allows you to perform various arithmetic operations 
on histogram variables, including the operation of calculating the maximum and minimum, raising 
to a power, the comparison procedure. Currently, histograms are used extensively in various fields. 
For example, histograms are widely used in databases and in the problems of approximating data, 
pattern recognition. Histograms are widely used in image processing problems, since the histogram 
characterizes the statistical distribution the number of pixels in the image depending on their values. 

We note an important property of the histogram, which is associated with the aggregation of 
information. Note that the histogram adequately represents the distribution of random variables. Despite 
its simplicity, the histogram covers all possible ranges of probability density function estimation. 
Simple and flexible structure of histograms greatly simplifies their use in numerical calculations and 
has a clear visual image, which is useful for analytical conclusions.

Consider one example of a histogram approach to aggregate large amounts of data. Assume 
that the characteristics is monitored some of the observed object. For clarity, let it be temperature. 
Monitoring is carried out over the area Ω, which is represented as a union of subareas Ωi. It is assumed 
that the temperature measurement points distributed uniformly in each of the subareas. Temperature as 
input parameter of standard model is described to average values xi in the subarea Ωi.

Remote sensing allows you to submit Ni temperature values for each subarea Ωi. Where i is number 
of subarea, j is number of measurement. Thus, each xi is represented as an average value
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It is proposed to reduce the level of uncertainty in the data and instead of the average values of 
input parameters to use histogram representation for each subarea.

Consider the histogram Px for the value x. Suppose that for the value x is known sample

1 2( )Nx x … x, , , . Denote by nj the number members xi of the re-sampling 1 2( )Nx x … x, , ,  got into interval 
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Thus, for each input variable xi may be known, not only the average value ix  but also the 
histogram Pi.

Fig. 1 shows a model example histogram Pi by values in a certain area Ωi.
Assume that the area Ωi is rectangle region. It is composed of 100 × 100 pixels. For each pixel 

value is put in appropriate value Pi,j. For clarity in Fig. 1 values xi,j are shades of gray. Lighter colors 
correspond to a higher temperature. Thus, the histogram describes the frequency distribution of the 
temperature into Ωi

Considered approach demonstrates an effective way to aggregate data. So instead of 104 values 
represented in the subarea Ωi for histogram is used only about 102 values. Moreover, histograms include 
a lot more information as interval of value change, the mean value, frequency and etc.

The frequency polygon (FP) is a continuous density estimator based on the histogram, with some 
form of linear interpolation. Transformation histogram in the frequency polygon can be represented 
graphically Fig. 2. [6].

In one dimension, the frequency polygon is the linear interpolant of the midpoints of an equally 
spaced histogram.

Theoretical basis of numerical probabilistic analysis

The subject of the NPA is to solve the various problems with data stochastic uncertainties using 
numerical operations on the probability densities of the random variables and functions with random 
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a)                                                    b) 

Fig. 1. a) – subarea iΩ , b) – histogram Pi 

The frequency polygon (FP) is a continuous density estimator based on the histogram, with 

some form of linear interpolation. Transformation histogram in the frequency polygon can be 

represented graphically Fig. 2. [6]. 

Fig. 1. a) – subarea Ωi, b) – histogram Pi
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arguments. To this end, were developed varied tools, including concepts such as arithmetic, histogram, 
probability, histogram, probabilistic extension, second order histogram, histogram time series.

It is a non-parametric approach can be successfully applied for the probabilistic description of 
systems as part of an interactive visual simulation, thereby increasing the quality of research systems 
[4]. In the test cases and some practical problems were proved the advantage of this approach to the 
Monte Carlo method [5].

Consider the basic theoretical aspects of the NPA. Arithmetic for different data types is one of 
the important components of numerical probabilistic analysis. NPA-arithmetic reduces the uncertainty 
level in the data and helps to obtain the additional information on the distribution of random variables. 
These are operations “+”, “–”, “·”, “/”, “↑”, “max”, “min”, as well as binary relations “≤”, “≥” and 
some others. The numerical operations of the histogram arithmetic constitute the major component of 
NPA. 

In [4, 5] developed numerical approaches to the various operations of the histogram variables, 
including the arithmetic operations, comparison operations, the procedure of calculating the maximum 
and minimum.

It is noted that the number of arithmetic operations to compute the procedure x*y by the histogram 
method over the variables x and y is near the order 2( )O n , where n is dimension of the histogram.

A histogram is a piecewise constant function approximates the probability density with an 
accuracy (1 )O n/ . However, even midpoints of histogram are approximated the probability density 
function with precision 2(1 )O n/ . Consequently, the frequency polygon approximates the function with 
the accuracy 2(1 )O n/ . Note that the arithmetic complexity does not increase.

Let us consider histogram operations. Let ( )p x y,  be a joint probability density function of two 
random variables x and y. Let zp  be a histogram approximating the probability density of the operations 
between two random variables x y∗ , where { }∗∈ +,−,⋅, /,↑ . Then the probability to find the value z 
within the interval 1[ ]i iz z +,  is determined by the formula [4, 5] 

1( ) ( )
k

k kP z z z p x y dx dy+ Ω
< < = , ,∫  

where 1{( ) }k k kx y z x y z +Ω = , | ≤ ∗ ≤  and the value kP  of the histogram on the interval 1[ ]k kz z +,  is 
defined as 

1( ) ( )
k

k k kP p x y dx dy z z+Ω
= , / − .∫  

Fig. 2. The frequency polygon in a typical bin, (-h/2; h/2), which is derivedfrom two adjacent histogram bins
 

Fig. 2. The frequency polygon in a typical bin, (‐h/2; h/2), which is derivedfrom two adjacent histogram bins. 

In one dimension, the frequency polygon is the linear interpolant of the midpoints of an 

equally spaced histogram. 

 

Theoretical basis of numerical probabilistic analysis 

The subject of the NPA is to solve the various problems with data stochastic uncertainties 

using numerical operations on the probability densities of the random variables and functions with 

random arguments. To this end, were developed varied tools, including concepts such as arithmetic, 

histogram, probability, histogram, probabilistic extension, second order histogram, histogram time 
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It is a non-parametric approach can be successfully applied for the probabilistic description 
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In [4, 5] developed numerical approaches to the various operations of the histogram 

variables, including the arithmetic operations, comparison operations, the procedure of calculating 

the maximum and minimum. 

It is noted that the number of arithmetic operations to compute the procedure x*y by the 

histogram method over the variables x and y is near the order 2( )O n  , where n is dimension of the 

histogram. 

A histogram is a piecewise constant function approximates the probability density with an 

accuracy (1 )O n/ . However, even midpoints of histogram are approximated the probability density 
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Then we extend the order relation { }∈ <,≤,≥,>  to random variables [7]: 

if and only if for allx y x y x x y y∈ , ∈ .   

If the support of x, y are intersected, then we can talk about the probability of x y  

( ) ( )P x y p x y dxdy
Ω

= , ,∫
 

where {( ) }x y x yΩ = , |   is the set of points 2( )x y R, ∈  such that x y , ( )p x y,  is the joint probability 
density of x, y. 

For example, consider the operation max( )x y, . The probability (max( ) )P x y z, <  is determined 
by the formula 

( ) ( )
z

P z p x y dxdy
Ω

= , ,∫  

where {( ) ( ) and ( )}z x y x z y zΩ = , | < <  and the value Pi of the histogram on the interval 1[ ]i iz z +,  is 
defined as 

1 1( ( ) ( )) ( )i i i i iP P z P z z z+ += − / − .  

Probabilistic extension. One of the most important problems that NPA deals with is to construct 
probability density functions of random variables. Let us start with the general case where 1( )nx … x, ,  
is a system of continuous random variables with the joint probability density function 1( )np x … x, ,  and 
the random variable z is a function 1( )nf x … x, ,  

1( )nz f x … x= , , .  

By probabilistic extension of the function f, we mean the probability density function of the 
random variable z.

Let us construct the histogram F approximating the probability density function of the 
variable z. Suppose the histogram F is defined on a grid { | 0 }iz i … n= , , . The domain is defined as 

1 1 1{( ) | ( ) }i n i n ix … x z f x … x z +Ω = , , < , , < . Then the value Fi of the histogram on the interval 1[ ]i iz z +,  
is defined as 

1 2 1 2 1( ) ( )
i

i n n i iF p x x … x dx dx …dx z z+Ω
= , , , / − .∫  (1)

By histogram probabilistic extension of the function f, we mean the histogram F constructed 
according to (1). 

Let 1( )nf x … x, ,  be a rational function. To construct the histogram F, we replaced the arithmetic 
operation by the histogram operation, while the variables x1, x2, …, xn are replaced by the histogram of 
their possible values. It makes sense to call the resulting histogram of F as natural histogram extension 
(similar to “natural interval extension”). 

Case 1. Let x1, …, xn be independent random variables. If 1( )nf x … x, ,  is a rational expression 
where each variable xi occurs no more than once, then the natural histogram extension approximates 
a probabilistic extension. 

Case 2. Let the function 1( )nf x … x, ,  admit a change of variables, so that 1( )kf z … z, ,  is a rational 
function of the variables 1 kz … z, ,  satisfying the conditions of Case 1. The variable zi is a function 
of xi, ii Ind∈  and the iInd  are mutually disjoint. Suppose for each zi it is possible to construct the 



– 967 –

Boris S. Dobronets and Olga A. Popova. The Numerical Probabilistic Approach to the Processing and Presentation…

probabilistic extension. Then the natural extension of 1( )kf z … z, ,  is approximated by the probabilistic 
extension of 1( )nf x … x, , . 

Case 3. We have to find the probabilistic extension for the function 1(f x , 2 )nx … x, , , but the 
conditions of Case 2 are not fulfilled. Suppose for definiteness that only x1 occurs a few times. 

If, instead of the random variable x1, we substitute a determinate value t, then it is possible to 
construct the natural probabilistic extension for the function 2( )nf t x … x, , , . 

Suppose that t is discrete random value approximating x1 as follows. Let t take the value ti with 
probability Pi and for each function 2( )i nf t x … x, , ,  it is possible to construct the natural probabilistic 
extension. 

Then the probabilistic extension f of the function 1( )nf x … x, ,  can be approximated by the 
probability density φ as follows [4] 

1
( ) ( )

n

i i
i

Pϕ ξ ϕ ξ
=

= .∑  

Metrics for the probability density function

Due to the nature of histograms for numerical simulation of histogram regressions will use special 
approaches to quantify the distances between the probability density function. To this end, consider a 
few metrics that should be used in the histogram regression models 

For this pulpous we consider the metric for the probability density function of the random variables 
[3]

Let f(x) and g(x) are two probability density functions. Then distances between f(x) and g(x) are 
defined as

1 1 1

0
( ) ( ) ( )W f g F t G t dtρ − −, = | − | ,∫  (2)

1 1 1 2 1 2

0
( ) ( ( ( ) ( )) )M f g F t G t dtρ − − /, = − ,∫  (3)

respectively, where 1( )F t− , 1( )G t−  – are the inverse cumulative distribution functions f(x) and g(x), 
respectively.

Let h(x) be the histogram. Then distribution functions H corresponding to this histogram can be 
represented as

( ) ( )
x

H x h dξ ξ
−∞

= .∫  

Due to the fact that the histogram is the piecewise constant function the calculation of the integral 
of it is not difficult. As a result, the distribution function is a piecewise linear function. Thus, the 
metrics (2) or (3) can be interpreted as the area between the distribution functions.

Numerical probabilistic approach to the representation  
of histogram time series

Histogram time series (HTS) describe the situations where for each time point are known 
histogram approximation of the probability density function of the studied parameter. It is important to 
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note that the forecast on the base of histogram time series presents the approximation of the probability 
density function of the studied process.

In order to construct the numerical procedures for data aggregation we define the histogram time 
series as a sequence of probability densities represented in the form of histograms. To construct and 
study the time histogram series will use tools of numerical probabilistic analysis. 

Further based on the NPA and the concept of time histogram series are studied data aggregation 
tasks and construction the information analytical models. 

Decomposition method of histogram time series. Consider the forecasting model construction 
based on the decomposition method of the histogram time series in the histogram subseries [8].

Denote by hi, 1i N= ,..., some histogram time series. Let for each histogram is defined uniform 
grid { 0 }i j

iz j kω = , = ,.., , and values 1j
ip j k, = ,.., . Define by 

0 1 1k j
i i iz z p j k i N, , , = ,..., , = ,..., .  (4)

auxiliary histogram time series. Next, consider the approach of building a predictive model based 
on the decomposition of the time series in the histogram contracts.

To construct the forecast 1ˆNh + will be used the last d-th values of histogram time series (4).
Thus, using one of the methods for constructing the forecast, we construct values 0

1 1ˆ ˆk
N Nz z+ +, , 1ˆ j

Np + . 
Для гистограммы 1ˆNh +  определим равномерную сетку 1

1{ 0 }ˆN j
N j kzω +
+= , = ,..,  

Then, let’s define an uniform grid 1
1{ 0 }ˆN j

N j kzω +
+= , = ,.., for histograms 1ˆNh + with values 1ˆ j

Np + . 
The final step in the construction of the forecast will be the normalization of the histogram 1ˆNh +  

1 1
1ˆ ˆnor

N Nh hβ+ +:= ,

 
where

1

0
1

1ˆ ( )
k
N

N

z

Nz
dhβ ξ ξ+

+
+= .∫  

1

0
1

1ˆ ( ) 1
k
N

N

z nor
Nz

dh ξ ξ+

+
+ = .∫  

Numerical example. Consider the historical data of the maximum temperature in the city of 
Krasnoyarsk in the last hundred years. Сгруппируем данные по дням и построим соответствующие 
гистограммы. 

To test the decomposition method we take histogram for 21−25 in August. According to the 
decomposition method we construct twelve auxiliary temporary series. Due to the properties of 
stationarity to construct forecast for the series 0 106 35o o

i iz z= , = , 1 5i = ,..., , is trivial. Using the 
least squares method to ten subseries j

ip , 1 10j = ,..., , 1 5i = ,..., , we can build a forecast for August 
29th. Fig. 3 is shown the comparison of the true value and the forecast for August 29th. As can be seen 
from the comparison, the predicted value is well matched with the true value.

Regression Modeling

Regression modeling is research method to identify the existence of the various correlations 
between input and output data.
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Fig. 3. True and predicted values
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Fig. 3. True and predicted values 

Numerical example. Consider the historical data of the maximum temperature in the city of 

Krasnoyarsk in the last hundred years. Сгруппируем данные по дням и построим 

соответствующие гистограммы.  

To test the decomposition method we take histogram for 21−25 in August. According to the 

decomposition method we construct twelve auxiliary temporary series. Due to the properties of 

stationarity to construct forecast for the series 0 106 35o o
i iz z= , = , 1 5i = ,..., , is trivial. Using the 

Regression analysis includes the following assumptions: the number of observations is sufficient 
to develop the statistical regularities concerning the factors and their interactions; processed data 
contains some errors (noise) due to measurement errors, and the influence of random factors; matrix 
of observations is the only information about the object being studied, the available before the start of 
the study.

To search for interconnections into remote monitoring data are proposed to use the data aggregation 
procedure and then to construct the regression model on aggregated data. Regression model to construct 
on the basis of the histogram data representation we call histogram regression.

Let 1( )nX x x= ,..., be input data, and Y be output variable. Both, is represented as histogram 
variables. For 1( )nX x x= ,...,  we now joint probability density function 1( )np x x, ..., . 

Similarly classical nonparametric regression can be written for each pair ( )i iX Y,  by

( ) 1i i iY f X a i Nε= , + , = ,..., ,  

In the linear case the model can be defined as

0
1

1
n

i j ij i
j

Y a a x i Nε
=

= + + , = ,..., .∑  

Thus, for finding the unknown parameters the optimization problem can be represented as

2
0

1 1
( ) ( ) min,

N n

i j ji
i j

a Y a a xρ
= =

Φ = , + →∑ ∑  (5)

where p be a metric in the space of histograms. Note that due to the nonlinearity of the addition 
operations under histogram variables to solve the problem (5) can be use the steepest descent method 
[9]. To calculate the gradient ′Φ will use difference derivatives

0 1( ) ( )i n i n
i

a a h a a a a
h

Φ ,..., + ,..., −Φ ,..., , ...,
= ,′Φ  

where h be parameter. The initial approximation for the parameters vector can be obtained by solving 
the regression problem for mathematical expectations (M[ ]iX , M[ ])iY .
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Note that the histogram regression (5) can be regarded as a symbolic regression, since the input 
and output variables are histogram mathematical objects [1].

Numerical example. Consider the regression model based on the histogram time series 
aggregation. In this case, we know the measurements of the target variable Yi. Measurements of the 
input variable will be treated as real.

Consider the temperature data for the last hundred years in the Krasnoyarsk city. For each day 
from April to October, the data is aggregated in the form of histograms. In this case, the regression 
model can be represented in the form

Y = Aφ1(t) + Bφ2(t) + Cφ3(t), 

where A, B, C are the probability density functions, φ1, φ2, φ3 — quadratic functions. Functions A, B, 
C represented in the form of Hermite cubic splines. Splines are defined by mesh 1 2 3{ }x x x, , . Boundary 
conditions are 1( ) 0s x = , 1( ) 0s x′ = , 3( ) 0s x = , 3( ) 0s x′ = . In addition 2( ) 0s x′ =  and the value of s(x2) 
chosen from the conditions

3

1

( ) 1
x

x
s dξ ξ = .∫  

For variable x1, x3 is chosen by regression curves of minimum and maximum temperatures. 
For x2 is chosen by regression curve of average temperatures

In Fig. 4 shows the regression of the probability density functions of the temperature 
data for the last hundred years in the Krasnoyarsk city, from April to October. Shades of 
gray define the values of the probability density function. The top and bottom line represents 
maximum and minimum temperature on each day over the past hundred years respectively. 
Midline denotes the mean of daily temperature over the last hundred years. Each vertical 
section is the probability density function of the temperature corresponding to a certain day of 
the year, according to the observations of the day in the last hundred years. At the first stage, 
the data presented for each day in a histogram. The regression data are presented in the form 
of Hermite cubic splines.

Numerical example. Consider the regression model based on the histogram time series 

aggregation. In this case, we know the measurements of the target variable iY . Measurements of the 

input variable will be treated as real. 
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Conqlusion

Using NPA for preprocessing, processing and modeling of remote monitoring data based on the 
histogram aggregation contributes to the reliability of the study of natural systems and processes. 
The spatial and time aggregation procedures helps to reduced the amount of computation in data 
processing and are an important basis for the extraction of useful knowledge from large volumes of 
data. Developed on the basis of the NPA submission methods, processing and numerical regression 
modeling, reduce the level of uncertainty in the information flow, significantly reduce the processing 
time and the implementation of numerical procedures. 

This approach allows the mode of interactive visual modeling to provide the necessary data for 
operational decision making under remote surveillance techniques and distributed object systems.
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