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We investigate the electronic structure of the two-dimensional t-J model in a transverse external static

magnetic field with canted long-range magnetic order using cluster perturbation theory. Distribution of spec-

tral weight in the whole range of fields from zero to ferromagnetic saturation is explored. We demonstrate

the possibility of a sharp change in a distribution of spectral weight in the Brillouin zone at the Fermi level

associated with the magnetic correlations when varying magnetic field.

INTRODUCTION

The electronic structure and Fermi surface (FS) of

two-dimensional (2D) strongly correlated electron sys-

tems are sensitive to various reconstructions induced

by symmetry breaking, complicating thus even more

the puzzle of electronic properties of such compounds.

Considerable attention is drawn to this problem by the

investigations of quantum oscillations in high-tempera-

ture superconductors (HTSC).

Quantum oscillations in HTSC were first observed

in the hole-underdoped yttrium compounds [1–4], then

in the hole-overdoped Tl2Ba2CuO6+δ [5–7], electron-

underdoped Nd2−xCexCuO4 [8] and hole-underdoped

HgBa2CuO4+δ [9]. The summary data of these exper-

iments show that oscillation frequencies in the under-

doped and overdoped compounds differ by an order of

magnitude, this way revealing the drastic transforma-

tion of the FS with doping. A similar result was re-

cently obtained within the strong coupling approach to

the Hubbard model [10]. In general, a comparable con-

clusion follows from the experiments on angle-resolved

photoemission spectroscopy (ARPES) [11]. However,

as for hole-underdoped cuprates, on the one hand, there

are Fermi arcs of ARPES [12, 13] which are consis-

tent with the calculations within the Hubbard and t-J

models resulting in a hole pocket in the nodal direction

[14–19]. On the other hand, it was shown that Hall

and Seebeck coefficients become negative in high mag-

netic fields [2,20], indicating at the existence of electron

pocket(s). Resent data [21] on quantum oscillations

in YBa2Cu3Oy for hole doping p = 0.108 agrees with

the FS consisting of a nodal electron pocket (which was

first proposed in [22]) accompanied by two small hole
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pockets as it was obtained from the calculations [23]

within the charge-density wave (CDW) phase. Long-

range CDW was in turn reported to emerge in a mag-

netic field [24] in La2−xBaxCuO4 and YBa2Cu3Oy in

the vicinity of p = 1/8.

Therefore, it is interesting to study the magnetic

field-driven evolution of the FS of 2D strongly corre-

lated systems at fixed doping. Although the energy of

reasonably strong magnetic fields is rather small com-

pared to the scale of the electronic structure, it may

be important that strictly speaking, the experiments on

quantum oscillations are accompanied by the change of

symmetry with a net magnetic moment due to an ap-

plied magnetic field, while in the absence of external

field there is short-range antiferromagnetic (AFM) order

without total magnetization or long-range AFM. More-

over, the charge ordering in the vicinity of hole concen-

tration p = 1/8 complicated the FS even more. Due to

the intrinsic interrelation of electron hopping and un-

derlying magnetic or charge order in strongly correlated

materials the field-induced change of magnetic symme-

try may result in a strong effect on the electronic struc-

ture and Fermi surface.

In this paper, inspired by the experiments on quan-

tum oscillations, we study the evolution of the FS in

the whole range of magnetic fields from zero to satu-

ration field, at which ferromagnetic alignment of spins

is achieved, although for undoped cuprates such fields

h ∼ J (where J is the interatomic exchange interaction

between neighboring spins, J ∼ 0.1eV) are far out of

reach of the present experimental abilities. The situa-

tion in hole-doped cuprates becomes extremely complex

at doping levels p & 0.05 due to the presence of incom-

mensurate magnetic [25] and charge-density wave or-
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ders. We do not account for such density wave phases

and investigate only the case of lower dopings relating

to long ranged AFM order or short-range order with sig-

nificant correlation length, both relevant for hole-doped

cuprates [26]. Particularly, we examine whether a con-

stant transverse magnetic field may cause a noticeable

effect on the FS of hole-doped cuprate superconductors

in experimentally achievable fields by means of the un-

derlying magnetic order, focusing on the AFM under-

doped case at zero temperature in the absence of the

field. We apply a slightly modified version of the clus-

ter perturbation theory (CPT) [27] to take into account

long-range canted magnetic order and short-range near-

est neighbor correlations simultaneously and study the

2D t-J model [28,29]. We obtain a radical field-induced

evolution of the FS in the whole range of fields from zero

to saturation field (8SJ in the Heisenberg model [30],

where S is the value of on-site spin).

BRIEF OVERVIEW OF THE METHOD

Let us consider the t-J model on a 2D square lat-

tice in an applied constant magnetic field omitting the

Peierls phase [31], since we are not interested in the

effect of quantum oscillations itself here. The Hamilto-

nian reads

Ht−J= −
∑
i,j,σ

ti,jc
†
i,σcj,σ +

J

2

∑
<i,j>

(
SiSj −

ni nj

4

)
− h

∑
i

Sz
i , (1)

where cj,σand c†i,σ are the annihilation and creation op-

erators (obeying quasi Fermi statistics [32] due to the

doublon prohibition by strong electron correlations) of

particle (electron or hole with respect to the chosen rep-

resentation) with spin σ on the site i , ni =
∑
σ
c†iσciσ

is the particle number operator, ti,j is the hopping in-

tegral, J is the nearest-neighbor exchange integral re-

lated with the on-site Coulomb repulsion in the Hub-

bard model as J = 4 t2

U , Si is the spin operator, h is the

energy of a magnetic field.

CPT is a hybrid technique, which provides an ef-

fective way to obtain the spectral function within the

models for strongly-correlated systems. Within CPT,

the first step is to cover the lattice by translations of

a cluster. Thus, the full Hamiltonian is represented as

H = Hc +Hcc, where Hc and Hcc are the intracluster

and intercluster parts. Hc is treated by means of ex-

act diagonalizaion to obtain the cluster Green function.

Intercluster interactions are considered then within the

Hubbard-I approximation to obtain the site-dependent

lattice Green function. Finally, one artificially restores

the translational invariance of the electron Green func-

tion by transiting to the original Brillouin zone. In such

formulation CPT was proposed for the Hubbard model

[27, 33]. In comparison to Quantum Monte Carlo [34]

Hubbard-I approximation is qualitatively expected to

work in the regime of strong electron correlations t ≪ U .

Since the t-J model is a low-energy effective model for

the Hubbard model with parameter J ∼ t2

U , the ap-

proximation should be applicable for the t-J model at

J ≪ t.

Here, we apply a modification of the theory called

norm-conserving CPT (NC-CPT), which allows us to

keep control over the total quasiparticle weight during

the calculation [19,35], covering the lattice with trans-

lations of a 2× 2 square cluster. We also introduce the

mean fields to consider the canted spin structure, in the

same manner as it was done in the papers [36,37] for the

Heisenberg model. In the presence of a constant trans-

verse magnetic field applied along the z-axis there are

two components of magnetization, namely, an in-plane

staggered part σx and a uniform part along the field σz.

The inclusion of mean fields is consistent with the gen-

eral logic of generalizing CPT in the case of long-ranged

order and is needed to break the symmetry of local part

Hc. Particularly, such procedure was shown to produce

a correct spin-wave spectrum for the 2D Heisenberg an-

tiferromagnet [36].

Finally, let us introduce the parameters of the t-J

model used to obtain the results presented below. We

will use the values of hopping integrals t, t′ and t′′ be-

tween the sites of the first, the second and the third

coordinate spheres similar to the obtained by fitting the

tight binding dispersion curves to the Fermi surfaces of

ARPES on LSCO compound: t ∼ 0.25eV, t′ ∼ −0.15t

and t′′ ∼ −0.5t′ [12]. We measure the energy in units

of t implying t = 0.25eV. We fix J = 0.333t (U = 12t

in the Hubbard model), so it corresponds to the typ-

ical values J ∼ 0.1eV for hole-doped cuprates [38].

This value does not seem to be very small compared

to the hopping integral. Nevertheless, the comparison

of the spectral weight distribution in the Hubbard and

t-J models points at qualitative applicability of the t-J

model taken with this value of the exchange parameter

[39]. Another important parameter is hole doping p. It

should be pointed out that in the t-J model at fixed J

and zero field an increase in p reduces the Neel temper-

ature, so it goes to zero at some value pc [40]. For the

relevant parameters pc is similar to the values observed

in cuprates, where pc ∼ 0.03 [38]. Performing calcula-

tions at zero temperature, we simply fix a small value

of doping p < pc, assuming long-range order.
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RESULTS IN NEAREST-NEIGHBOR

APPROXIMATION

First, we discuss the nearest-neighbor case to reveal

the main features. In what follows, the amount of dop-

ing is p = 0.02. To obtain the figures presented below,

the delta-function was approximated by a Lorentzian

with a half-width δ for the purpose of presenting our

results in an ARPES-like manner with finite resolution

effects. This parameter is chosen to reproduce the ex-

perimental ARPES linewidth.

Fig.1 demonstrates the spectral weight (SW) distri-

bution in the low Hubbard band for different values of

a magnetic field, the expectation values of spin projec-

tions with respect to the cluster Hamiltonian are also

shown. The corresponding density of states (DOS) is

presented in Fig.2. It is illustrative to consider the mod-

ification of the electronic structure starting from the fer-

romagnetic case. At h = 4J , for the spin-up component

we observe the dispersion law specific to a spatially-ho-

mogeneous phase. SW is uniform along the dispersion

curve. The bandwidth is 8t, there is one Van-Hove sin-

gularity in the DOS. For spin-down projection there is

a narrow band with low SW and without SW at the

Fermi level, except the effect of artificial broadening.

Decreasing a magnetic field down to h = 3J , for exam-

ple, we observe how the spin-up dispersion is modified

by the admixture of different spin states, which causes

the redistribution of spectral weight with several dips in

the high-energy DOS and decreases the bandwidth. The

shape of a spin-down dispersion curve is pretty similar to

the spin-up one, but inverted with respect to the ω-axis.

It looks like a shadow band in the two-sublattice system.

We should emphasize the decreasing SW scale for spin-

down component with increasing magnetic field. De-

creasing a magnetic field further down to h = 0.5J when

magnetic moments form a slightly tilted AFM structure,

at low energy for spin-up component we can recognize

the picture similar to a dispersion strongly affected by

spin fluctuations as was obtained within different meth-

ods [18, 41–46]. The whole band can be considered as

split into two major subbands in agreement with quan-

tum Monte-Carlo calculations [34]. The distributions

of SW and DOS for different z-projections of spin at

this value of field are similar.

Fig.3 shows the field-induced reconstruction of the

FS with spectral line broadening and SW averaging over

the energy window similar to ARPES. We see no quali-

tative changes when varying a magnetic field from zero

to h ≈ 0.56J . Between h = 0.56J and h = 0.57J , as it

is evident from Fig.3, the FS undergoes a sharp modifi-

cation for both spin projections due to a change of the

ground state of a cluster in the Hilbert subspace with

3 particles with a jump in magnetization. We empha-

size that such small variations of a magnetic field lead to

negligible changes in the low-energy electronic structure,

except this case. Increasing a magnetic field further up

to h ∼ 3J , we see a gradual formation of a well-defined

hole pocket around (π, π) with a uniform SW distribu-

tion along its arc for spin-up component. For spin-down

at the same fields one can see a gradual redistribution of

SW at the Fermi level towards the similar hole pocket

around (0, 0), but with small SW. Fields from h ≈ 3J

to h ≈ 4J give no qualitative changes for spin-up com-

ponent at the Fermi level. Spin-down SW at the Fermi

level disappears in the vicinity of saturation.

RESULTS IN CASE OF NON-NEAREST

HOPPING

Let us discuss the case of more realistic model pa-

rameters for cuprates. In our calculations with 2 × 2

cluster it is possible to account for second-neighbor hop-

ping processes by means of exact diagonalization. Third

neighbors are also taken into account, but in terms of

perturbation theory. In the previous section we ob-

served the most crucial change of the low-energy struc-

ture happening when a cluster’s subspace with 3 parti-

cles changed its ground state at critical field hc. It ap-

pears that in case of hole doping an increase in second-

neighbor hopping integral t′ leads to a decrease in hc so

that at t′ ≈ −0.16t critical field goes to zero. Thus, it

is possible to observe significant field-induced modifica-

tion of the FS at fields corresponding to experimentally

achievable ones, as presented, for example, in Fig.4,

where more realistic hopping parameters are used. For

h = 0.02J there is a pseudogap-like picture with a dip

of SW in the antinodal direction for both spin-up and

spin-down components. The picture is almost the same

as in zero field. When a magnetic field is increased by

0.01J , the angular SW distribution for spin-up compo-

nent becomes almost uniform at h = 0.03J , while spin-

down one transforms to a more pronounced pseudogap

form. Here, we observe the sharp changes in dispersion

as the consequence of an exact account for short-range

correlations within a cluster. It might be possible to

detect the signatures of such sharp changes in transport

measurements on lightly hole-doped cuprates.

CONCLUSIONS

To conclude, we presented our calculations concern-

ing the field-induced evolution of the electronic struc-
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ture within the t-J model. We have found the non-

monotonic changes of the electronic structure (band

dispersion, density of states, and Fermi surface) un-

der increasing magnetic field. From a general point of

view, it results from the intrinsic for strongly correlated

electrons relation between the electronic and magnetic
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structures. When spins of nearest atoms are parallel,

the interatomic hopping occurs without spin flip similar

to free electrons. When nearest spins are antiparallel,

the electron hopping requires the spin flip that decreases
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the hopping probability, decreases the bandwidth, and

in some cases may prohibit the interatomic hopping.

Nevertheless, before this work it was not shown in de-

tails how the electronic and magnetic structure may

change in the external magnetic field. We have ob-

tained two main conclusions: i) with increasing mag-

netic field the sharp change of magnetization and elec-

tronic structure occurs, ii) the critical value of magnetic

field strongly depends on the fine details of the elec-

tronic structure. Thus, in a simplified model with only

nearest neighbors hopping the critical filed is unrealis-

tic, hc ∼ 0.5J ∼ 500T. Nevertheless, in a realistic for

cuprates case with non-nearest neighbors hoppings, the

critical value appears to be much smaller, here the case

when hc ∼ 0.03J ∼ 30T was shown for example. As the

quantum oscillations have been measured in cuprates in

the external fields up to 70T , the electronic structure in

such large fields and in the absence of the field (when

ARPES is measured) may be different and separated

by sharp changes that we have found. It is desired to

confirm our results in calculations with larger clusters,

so that more short-range correlations would be treated

exactly.
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Figure captions

Fig.1. (Color online) Electronic spectral function

along the symmetric directions of the Brillouin zone

in the low Hubbard band within the t-J model for

different values of a magnetic field h for (a) spin-up

and (b) spin-down components. The spectral lines are

approximated by the Lorentzian function with broad-

ening δ = 0.1t. Energy is measured in units of hopping

integral t. Color-bars represent the correspondence of

the colors to the values of spectral function. Here and

below the dashed line denotes the position of the Fermi

level and we fix the value of the exchange integral

J = 0.333.

Fig.2. (Color online) Density of states for the

same parameters as in Fig.1. Blue solid and red dash-

dotted lines hold for spin-up and spin-down components

respectively.

Fig.3. (Color online) Electronic spectral function

at the Fermi level in the first quadrant of the Brillouin

zone for different values of a magnetic field h for (a)

spin-up and (b) spin-down components. The Lorentzian

broadening δ = 0.04t is used. The spectral weight is

integrated over the energy window [−1.5δ, 1.5δ].

Fig.4. (Color online) The same as in Fig.3., but

with second-neighbor hopping t′ = −0.15t and third-

neighbor hopping t′′ = 0.1t.


