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Studying an operator equation Au = f in Hilbert spaces one usually needs the adjoint operator A⋆ for

A. Solving the ill-posed Cauchy problem for Dirac type systems in the Lebesgue spaces by an iteration

method we propose to construct the corresponding adjoint operator with the use of normally solvable mixed

problem for Helmholtz Equation. This leads to the description of necessary and sufficient solvability

conditions for the Cauchy Problem and formulae for its exact and approximate solutions.
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Many problems in applications of mathematics can be formulated on the language of Func-
tional Analysis as the study of operator equations of the first type in Hilbert spaces (cf. [1, 2]).
Namely, let Hilbert spaces H1 and H2 and a (continuous linear) map A : H1 → H2 be fixed.
Then the problem is the following: given f ∈ H2 find u ∈ H1 with Au = f . Though the problem
is usually ill-posed (see [1,2]), there are many approaches to it, for instance, fixed points method,
iteration methods, methods of bases with double orthogonality property, method of small param-
eter perturbation, etc. Regarding the Cauchy problem for elliptic systems we refer, for instance,
to [3–7]. Usually one needs the adjoint A⋆ for A in the sense of Hilbert spaces in order to write
down proper solvability conditions. Then there are many possibilities to construct regularization
of the problem (i.e. a family of approximate solutions depending on a parameter and converging
to an exact solution if and only if a solution exists).

Dirac type operators naturally appear in many applications (see, for instance, [8, 9]). These
include Cauchy-Riemann operator, gradient operator, operator Moisil-Teodorescu, stationary
Maxwell operator and so on. We propose to consider the ill-posed Cauchy problem for Dirac
type operators, see [7,22,23] in Lebesgue spaces. The Dirichlet problem for Helmholtz Equation
plays an essential role in the formulation of the Cauchy problem as an operator equation of the
first type in Hilbert spaces. Then we construct the corresponding adjoint operator with the use
of a normally solvable mixed problem for Helmholtz Equation (cf. [6] for elliptic operators in
Sobolev spaces where the Dirichlet Crack Problem for the Laplace equation was used instead).

1. Preliminaries

Let R
n be n-dimensional Eucledian space and C

n be n-dimensional complex space with points
being n-vectors z = (z1, ..., zn), where zj = xj +

√
−1xj+n, j = 1, ..., n, x = (x1, ..., x2n) ∈ R

2n

and
√
−1 being imaginary unit. Let A =

n
∑

j=1

aj
∂

∂xj
be a Dirac operator in R

n, i.e., such a
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homogeneous first order matrix differential operator with constant coefficients that

n
∑

j=1

n
∑

m=1

a∗jamξjξm = |ξ|2 Ik for all ξ ∈ R
n; (1)

here aj are (l × k) -matrices of complex numbers, a∗j = aTj are their adjoint matrices and Ik

is the identity (k × k) -matrix. In particular, the symbol σ(A)(ξ) =
n
∑

j=1

aj ξj is injective as

the map from C
k to C

l for all ξ ∈ R
n \ {0}, i.e. l > k. We say that A is elliptic if l = k

and overdetermined elliptic if l > k. Denote A∗ and AT the formally adjoint and transposed

operators for A respectively: A∗ = −
n
∑

j=1

a∗j
∂

∂xj
and AT = −

n
∑

j=1

aTj
∂

∂xj
. Then A∗A = −∆Ik

where ∆ =
n
∑

j=0

∂2

∂x2
j

is the Laplace operator in R
n.

Typical elliptic Dirac operators are the derivative operator
d

dx
in R and the (doubled) Cauchy-

Riemann operator 2
∂

∂z
=

∂

∂x1
+

√
−1

∂

∂x2
in C. Typical overdetermined Dirac operators are

the gradient operator ∇ = −
(

∂

∂x1
, . . .

∂

∂xn

)T

in R
n, the (doubled) multi-dimensional Cauchy-

Riemann system 2∂ = −2

(

∂

∂z1
, . . .

∂

∂zn

)T

in C
n and the stationary Maxwell system M =

− (rot,div)
T

in R
3. For Dirac operators on manifolds and in the Quantum Physics see, for

instance, [8,9]. Our approach is also fit on a manifold but this lead to a mixed problem for more
complicated second order elliptic operator.

Let D be a bounded domain (i.e. open connected set) in R
n, and let D be its closure. We

always assume that the boundary ∂D of D is of class C∞. As usual we denote by D(D) the space
of all the smooth functions with compact supports in D and by D′(D) the space of distributions
over D. Besides, let C∞(D) stand for the set of smooth functions in D with any derivative
extending continuously to D and C∞

σ (D) stand for the set of functions vanishing on a closed
subset σ ⊂ D.

Let E = R
n×C

k be the trivial k-vector bundle. The set of all k-vector functions over domain
D with the components from a functional space S(D) will be denoted by S(D,E).

It is known (see, for instance, [12]) that A induces a differential compatibility complex:

0 −→ C∞(E0)
A0−→ C∞(E1)

A1−→ C∞(E2)
A2−→ ...

AN−1−→ C∞(EN ) −→ 0 (2)

where Ai are differential operators with constsant coefficients, A0 = A and Ai+1 ◦ Ai ≡ 0;
here Ei = R

n × C
ki are trivial vector bundles of ranks ki (of course, k0 = k, k1 = l). From

now on we assume that complex (2) is elliptic and orders of all the operators equal to one, i.e.

Ai =
n
∑

j=1

a
(i)
j

∂

∂xj
+ a

(i)
0 where a

(i)
j are (ki+1 × ki) -matrices of complex numbers. It is true in

many cases, though it is not known to be true in general.

For instance, if A = ∇ then the corresponding sequence is de Rham complex with Ei = Λi

(0 6 i 6 n) being the set of all the exterior differential forms of degree i in R
n and Ai = di

being exterior derivatives for the forms. Similarly, if A = 2∂ then the corresponding sequence is
Dolbeault complex with Ei = Λ(0,i) (0 6 i 6 n) being the set of all the complex exterior forms
of bi-degree (0, i) in C

n and Ai = ∂i be the (graduated) Cauchy-Riemann operator extended to
the differential forms. Obviously, if l = k then E0

∼= E1 and Ai = 0 for all i > 1.
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We write L2(D) for the Hilbert space of all the measurable functions in D with a finite norm
(u, v)L2(D) =

∫

D
u(x)v(x) dx. Then the Hermitian form

(u, v)L2(D,Ei) =

∫

D

v∗(x)u(x) dx

defines the Hilbert structure on L2(D,Ei). We also denote Hs(D) the Sobolev space of all the
distributions over D, whose weak derivatives up to the order s ∈ N belong to L2(D). The closures
of D(D) and C∞

∂D(D) in Hs(D) will be denoted by Hs
0(D) and Hs

∂D(D) respectively; for s = 1
these spaces coincide.

For non-integer positive s ∈ R+ we define Sobolev spaces Hs with the use of the standard
interpolation procedure (see [14] or [5, §1.4.11]). It is known (see, for instance, [14]) that functions
of Hs(D), s ∈ N, have traces on ∂D of class Hs−1/2(∂D) and the corresponding trace operator
is continuous. We will use Sobolev spaces of fractional smoothness for boundary data only.

Sobolev spaces of negative smoothness may be defined in many different ways (see [15],
[16]). We follow [16] and consider Sobolev spaces H−s(D) and H(D, | · |−s), s ∈ R+, being the
completions of C∞(D) with respect to the norms

‖u‖H−s(D) = sup
φ∈C∞(D)

|(u, φ)L2(D)|
‖φ‖Hs(D)

, |u|−s,D = sup
φ∈C∞

∂D(D)

|(u, φ)L2(D)|
‖φ‖Hs(D)

Easily, H−s(D,E) ⊂ H(D, | · |−s, E). These spaces are the strong duals for Hs(D,E) and
Hs
∂D(D,E) correspondingly with respect to L2(D,E)-pairing 〈·, ·〉D. Namely,

〈u, φ〉D = lim
ν→∞

(uν , φ)L2(D,E), u ∈ H−s(D,E), φ ∈ Hs(D,E),

where {uν} ⊂ C∞(D,E) is a sequence approximating u in H−s(D,E) (see [15] or [5, Theorem
1.4.28]). Easily, the pairing does not depend on the choice of the approximating sequence {uν}
and

|〈u, φ〉D| 6 ‖u‖H−s(D,E)‖φ‖Hs(D,E) for all u ∈ H−s(D,E), φ ∈ Hs(D,E). (3)

Of course, we can do the similar procedure for the pair H(D, | · |−s, E) and Hs
∂D(D,E). Clearly,

as ∂(∂D) = 0 then we have H(∂D, | · |−s, E) = H−s(∂D,E).
For a generalized vector function u ∈ D′(D,E) we always consider Au in the sense of distri-

butions. Thus, Au ∈ D′(D,E1) is a vector-distribution over D. However there are no reasons
for it being an element of L2(D,E1) if u ∈ L2(D,E). We denote by HA(D) the so called strong
extension of the differential operator A, i.e. the closure of C∞(D,E) with respect to the graph
norm

‖u‖A,D = (‖u‖2
L2(D,E) + ‖Au‖2

L2(D,E1)
)1/2.

According to [13] this space coincides with the weak extension of the differential operator A, i.e.
with the set of vector functions from L2(D,E) with Au ∈ L2(D,E1). Of course, it is a Hilbert
space with the scalar product

(u, v)A,D = (u, v)L2(D,E) + (Au,Av)L2(D,E1).

Thus, the differential operator A induces a bounded linear operator A : HA(D) → L2(D,E1)
with ‖A‖ 6 1. Clearly, ‖u‖A,D 6 CA‖u‖H1(D,E) for all u ∈ H1(D,E) with a positive constant
CA being independent on u. It is worth to mention that, due to ellipticity of A and Garding
inequality (see, for instance, [16]), the closure of D(D,E) in HA(D) coincides with H1

0 (D,E).
Of course, H∇(D) = H1(D), however, H2∂(D) 6= H1(D) since the space H2∂(D) contains all the
holomorphic L2(D)-functions. In any case, HA(D) ⊂ H1

loc(D,E) because of the ellipticity of A.
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As Ai+1 ◦ Ai ≡ 0 we easily see that the differential operator Ai induces a bounded linear
operator Ai : HAi

(D) → HAi+1
(D). Moreover, we easily obtain a complex of such operators

0 −→ HA0
(D,E0)

A0−→ HA1
(D,E1)

A1−→ HA2
(D,E2)

A2−→ ...
AN−1−→ L2(D,EN ) −→ 0.

However it is not true that HAi
(D) ⊂ H1

loc(D,Ei) for i > 1.

2. Traces on the Boundary

In order to formulate properly the Cauchy problem for A we need first to clarify what is
the space of traces on ∂D for elements of HA(D). With this aim we denote by ρ the defining
function of the domain D, i.e. ρ ∈ C∞, |∇ρ| 6= 0 on ∂D and D = {x ∈ R

n : ρ(x) < 0}. Then
the following Green formula holds true for u ∈ C∞(D,E), g ∈ C∞(D,E1):

(Aiu, g)L2(D,Ei+1) − (u,A∗
i g)L2(D,Ei) =

n
∑

j=1

∫

∂D

g∗(x)
a
(i)
j

|∇ρ|
∂ρ

∂xj
(x)u(x) ds(x). (4)

Set

τ̃i(u) =
n
∑

j=1

a
(i)
j

|∇ρ|
∂ρ

∂xj
u, ν̃i−1(g) =

n
∑

j=1

(a
(i−1)
j )∗

|∇ρ|
∂ρ

∂xj
g, i > 1,

τi = ν̃i−1 ◦ τ̃i. Then τ0 = Ik.

Lemma 1. For every u ∈ HA(D) there is a weak trace τ0(u) ∈ H−1/2(∂D,E), i.e.

(Au,ψ)L2(D,E1) − (u,A∗ψ)L2(D,E) = 〈τ0(u), ν̃0(ψ)〉∂D for all ψ ∈ C∞(D,E1).

Proof. Follows from [7, Lemma 1.1]. 2

According to [7, Lemma 1.2] the subspace of elements in HA(D) having zero traces coincides
with H1

0 (D,E). Therefore in [7] the space of traces on ∂D for elements from HA(D) was defined

as the factor space
HA(D)

H1
0 (D,E)

. Of course, Lemma 1 allows to identify it within H−1/2(∂D,E)

but we will do it more precisely. Indeed, as we have seen above, if A = ∇ then HA(D) = H1(D),
i.e. in this case τ0(u) ∈ H1/2(∂D). This observation, combined with Lemma 1, leads us to the
following definition. For v ∈ C∞(∂D,E), set

‖v‖A,∂D = sup
C∞(D,E1)∋ψ 6=0

∣

∣(v, ν̃0(ψ))L2(∂D,E)

∣

∣

‖ψ‖A∗,D
.

Lemma 2. The functional ‖ ·‖A,∂D defines a norm on C∞(∂D,E). Moreover, there are positive
constants c1, c2 such that

c1‖v‖H−1/2(∂D,E) 6 ‖v‖A,∂D 6 c2‖v‖H1/2(∂D,E) for all v ∈ C∞(∂D,E).

In particular, the norms ‖ · ‖∇,∂D and ‖ · ‖H1/2(∂D) are equivalent.

Proof. By the definition, the functional ‖ · ‖A,∂D is non-negative. It is easy to see that

‖v1 + v2‖A,∂D 6 ‖v1‖A,∂D + ‖v2‖A,∂D for all v1, v2 ∈ C∞(D,E),

‖αv‖A,∂D = |α|‖v‖A,∂D for all v ∈ C∞(D,E), α ∈ C.

– 220 –



Alexander A. Shlapunov Boundary Problems for Helmholtz Equation and the Cauchy Problem ...

In particular, ‖0‖A,∂D = 0. Let now ‖v‖A,∂D = 0. Then

(v, ν̃0(ψ))L2(∂D,E) = 0 for all ψ ∈ C∞(D,E1). (5)

Now, given u0, h, consider Dirichlet problem for the Helmholtz operator in D ⊂ R
n:

{

a2u− ∆u = h in D,

u = u0 on ∂D,
(6)

where a ∈ R. The problem (6) is uniquely solvable on the Sobolev scale Hs(D), s ∈ Z+, and its
solution is given by the Poisson type formula

u = PD,au0 + GD,ah

for data u ∈ Hs−1/2(∂D) and f ∈ Hs−2(D) (s > 2) or f ∈ H(D, | · |s−2) (s 6 1) where GD,a is
the Green function of the Dirichlet Problem and PD,a the corresponding Poisson type integral.
The integral operators are bounded in the Sobolev spaces:

PD,a : Hs−1/2(∂D) → Hs(D), s ∈ Z,

GD,a : Hs−2(D) → Hs(D) (s > 2), GD,a : H(D, | · |s−2) → Hs(D) (s 6 1)

(see, for instance, [16], [17, Theorem 2.26]). In particular, PD,0 is the classical Poisson integral
of the Dirichlet Problem for the Laplace operator.

Then for every v ∈ C∞(∂D,E) the vector-function gv = PD,0
(

n
∑

j=1

aj

|∇ρ|
∂ρ

∂xj
v

)

belongs to

C∞(D,E1) and, due to (1), satisfies

ν̃0(gv) = v on ∂D, ‖gv‖H1(D,E1) 6 C ‖v‖H1/2(∂D,E)

with a constant C > 0 being independent on v. Therefore (5) implies, with ψ = gv,
∫

∂D

v∗(x)v(x)ds(x) = 0,

i.e. v = 0 on ∂D.
Further,

‖v‖H−1/2(∂D,E) = sup
φ6=0

∣

∣

∫

∂D
φ∗(x)v(x)ds(x)

∣

∣

‖φ‖H1/2(∂D,E)

=

= sup
φ6=0

∣

∣

∫

∂D
ν̃0(gφ)

∗(x)v(x)ds(x)
∣

∣

‖gφ‖A∗,D

‖gφ‖A∗,D

‖φ‖H1/2(∂D,E)

6

6 ‖v‖A,∂DCA∗ sup
φ6=0

‖gφ‖H1(D,E1)

‖φ‖H1/2(∂D,E)

6 CA∗C‖v‖A,∂D,

i.e. c1 = (CA∗C)−1.
On the other hand, by Green formula (4),

‖v‖A,∂D = sup
C∞(D,E1)∋ψ 6=0

∣

∣(APD,0(v), ψ)L2(D,E1) − (PD,0(v), A∗ψ)L2(D,E)

∣

∣

‖ψ‖A∗,D
6

6 ‖PD,0(v)‖A,D 6 ‖PD,0(v)‖H1(D,E) 6 c2‖v‖H1/2(∂D,E),

where positive constant c2 does not depend on v because the Dirichlet Problem (6) is normally
solvable on the Sobolev scale.
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Finally, taking ψ = ∇PD,1(v) and using Green formula (4) we obtain:

‖v‖∇,∂D >

∣

∣(∇PD,1(v),∇PD,1(v))L2(D,E1) + (PD,1(v),∆PD,1(v))L2(D)

∣

∣

‖∇PD,1(v)‖∇∗,D
=

= ‖PD,1(v)‖H1(D) > c3‖τ0(PD,1(v))‖H1/2(∂D) = c3‖v‖H1/2(∂D)

with a positive constant c3 being independent on v because the trace operator τ0 : H1(D) →
H1/2(∂D) is continuous. 2

The completion of C∞(∂D,E) with respect to ‖ · ‖A,∂D we denote BA(∂D).

Theorem 1. The trace operator τ0 continuously maps HA(D) onto BA(∂D). In particular, for
each v ∈ BA(∂D) the vector PD,1(v) belongs to HA(D), satisfies τ0(PD,1(v)) = v on ∂D and

‖PD,1(v)‖A,D = ‖v‖A,∂D for all v ∈ BA(∂D).

Proof. Indeed, for every u ∈ C∞(D,E) we obtain with the use of Green formula (4)

‖τ0(u)‖A,∂D = sup
C∞(D,E1)∋ψ 6=0

∣

∣(Au,ψ)L2(D,E1) − (u,A∗ψ)L2(D,E)

∣

∣

‖ψ‖A∗,D
6 ‖u‖A,D. (7)

Therefore for each u ∈ HA(D) we may define the trace as the limit τ0(u) := limν→∞ τ0(uν) in
the space BA(∂D) where {uν} ⊂ C∞(D,E) is a sequence approximating u in HA(D). Estimate
(7) implies that the operator τ0 : HA(D) → BA(∂D), defined in this way, is linear and bounded.

Further, for each v ∈ C∞(∂D,E) we have τ0(PD,1(v)) = v on ∂D and

‖v‖A,∂D >

∣

∣(APD,1(v), APD,1(v))L2(D,E1) + (PD,1(v),∆PD,1(v))L2(D,E)

∣

∣

‖APD,1(v)‖A∗,D
= ‖PD,1(v)‖A,D.

Combining with (7) we easily obtain that ‖PD,1(v)‖A,D = ‖v‖A,∂D for all v ∈ C∞(∂D,E).
Finally, if v ∈ BA(∂D) and {vν} ⊂ C∞(∂D,E) is a sequence approximating v in BA(∂D) then
the sequence {PD,1(vν)} ⊂ C∞(D,E) is fundamental in HA(D). Hence it converges to a vector
function w ∈ HA(D) and, by the very definition of the trace, τ0(w) = v. Clearly, we may
interpret w as PD,1(v) in the sense of the strong extension of the operator PD,1. 2

Corollary 1. The Poisson type integral PD,1 induces an isomorphism BA(∂D) ∼= HA(D)

H1
0 (D,E)

.

Besides, Theorem 1 implies that H1/2(∂D,E) ⊂ BA(∂D) ⊂ H−1/2(∂D,E).

3. The Cauchy Problem

In order to study the Cauchy problem we need one more type of boundary spaces. Let
Γ be an open (in the topology of ∂D) connected set of ∂D. Denote by HA,Γ(D) the closure
of C∞

Γ
(D,E) in HA(D). Then the differential operator A induces a bounded linear operator

AΓ : HA,Γ(D) → L2(D,E1) with ‖AΓ‖ 6 1.
According to [7, Lemma 1.2], HA,Γ(D) ⊂ H1

loc(D ∪ Γ, E). Moreover, [7, Theorem 1.4] states
that HA,Γ(D) coincides with the set of elements in HA(D) having zero traces on Γ, i.e. satisfying

(Au, g)L2(D,E1) − (u,A∗g)L2(D,E) = 0 for all g ∈ C∞(D,E1) with ν̃0(g) = 0 on ∂D \ Γ.

Following [7], it is natural to define the space of traces on Γ for elements from HA(D) as the

factor space
HA(D)

HA,Γ(D)
. However, similar to the situation Γ = ∂D above, we want to characterize

this space rather in terms of boundary functions.
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With this aim we define BA,Γ(∂D) as the closure of C∞
Γ

(∂D,E) in BA(∂D). Then let BA(Γ)

be the factor space of BA(∂D) over BA,Γ(∂D). It is well-known that BA(Γ) is a normed space.
By the very definition every its element extends from Γ up to an element of BA(∂D).

Remark 1. Theorem 1 imply that the norm ‖·‖A,∂D satisfy the parallelogram identity and hence
it is a Hilbert space (with the standard scalar product coherent with the norm). This means that
BA(Γ) is actually the orthogonal complement of BA,Γ(∂D) within BA(∂D). Then for every
u0 ∈ BA(Γ) there is a canonical representative ũ0 ∈ BA(∂D) satisfying ‖ũ0‖A,∂D = ‖u0‖A,Γ.

Corollary 2. The Poisson type integral PD,1 induces an isomorphism BA(Γ) ∼= HA(D)

HA,Γ(D)
.

Proof. Indeed, it follows from properties of the Poisson type integral PD,1 that for every v ∈
C∞

Γ
(∂D,E) we have PD,1(v) ∈ C∞

Γ
(D,E). Then Theorem 1 implies BA,Γ(∂D)

PD,1∼= HA,Γ(D)

H1
0 (D,E)

.

Finally, the desired statement follows from Corollary 1. 2

In particular, it follows from Corollary 1 that there is correctly defined continuous linear trace
operator τ0,Γ : HA(D) → BA(Γ) and we can easily formulate the Cauchy problem.

Problem 1. Given g ∈ HA1
(D) and u0 ∈ BA(Γ) find w ∈ HA(D) with

{

Aw = g in D,

τ0,Γ(v) = u0 on Γ,

i.e.

(w,A∗ψ) = (g, ψ) − 〈u0, ν̃0(ψ)〉∂D for all ψ ∈ C∞(D,E1) with ν̃0(ψ) = 0 on ∂D \ Γ. (8)

Since the time of Hadamard [18] this problem is known to be ill-posed. If Γ 6= ∅ then it has no
more than one solution, see, for instance, [5, theorem 10.3.5]. It was actively studied for various
types of Dirac operators in various functional spaces [3, 19–24].

We want to reduce Problem 1 to an operator equation of first type in Hilbert spaces. However
Theorem 1 implies that Problem 1 can be easily reduced to the following one.

Problem 2. Given f ∈ HA1
(D) find u ∈ HA,Γ(D) with AΓu = f .

Obviously, the reduction of Problem 1 to Problem 2 can be made via

f = h−APD,1(ũ0), u = w − PD,1(ũ0),

where ũ0 ∈ BA(∂D) is the canonical representative from the class u0 ∈ BA(Γ).
In order to obtain solvabilty conditions for Problem 2 we denote by A⋆Γ the adjoint for AΓ

in the sense of Hilbert spaces. Let also HΓ(D) be the closed subspace in HA1
(D) consisting of

elements h satisfying A∗h = 0 in D, ν̃0(h) = 0 on ∂D \ Γ, i.e

(h,Aφ)L2(D,E1) = 0 for all φ ∈ C∞
Γ

(D,E),

and A1h = 0 in D, τ1(h) = 0 on Γ, i.e.

(h,A∗
1ψ)L2(D,E1) = 0 for all ψ ∈ C∞

∂D\Γ(D,E2).

Recall that the adjoint operator for A is a bounded linear map A⋆Γ : HA1
(D) → HA,Γ(D)

satisfying

(Au, g)L2(D,E1) = (Au,AA⋆Γg)L2(D,E1) + (u,A⋆Γg)L2(D,E) for all u ∈ HA,Γ(D), g ∈ HA1
(D). (9)
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Theorem 2. Problem 2 is solvable if and only if 1) A1f = 0 in D, τ1(f) = 0 on Γ; 2)

(f, h)L2(D,E1) = 0 for all h ∈ HΓ(D); 3) the series u(f) =
∞
∑

ν=0
(I − A⋆ΓAΓ)νA⋆Γf converges

in the space HA(D). Moreover, under conditions 1)–3), the series u(f) is the unique solution to
Problem 2.

Proof. According to [7, Lemma 2.4] the space HΓ(D) coincides with kernel of the operator
A⋆Γ. Then the desired statement follows from [26, Corollary 2.10] because ‖A⋆Γ‖ = ‖AΓ‖ 6 1. 2

Thus, solving Problem 2 we need to identify the operator A⋆Γ.

4. Mixed Problems for Helmholtz Equation

In order to identify A⋆Γg we note that (since C∞
Γ

(D,E) ⊂ HA(D)) equation (9) can be
interpreted as a mixed problem for Helmholtz type equation:







A⋆Γg − ∆Ik(A
⋆
Γg) = A∗g in D,

τ0(A
⋆
Γg) = 0 on Γ,

ν̃0(A(A⋆Γg) − g) = 0 on ∂D \ Γ.
(10)

We consider a little different type of problems with a parameter a ∈ R.

Problem 3. Given triple (h, u0, u1) of vector-distributions find a vector-distribution w such that
in a proper sense







a2w − ∆Ikw = h in D,

τ0(w) = u0 on Γ,
ν̃0(Aw) = u1 on ∂D \ Γ.

This type of problems are usually called Zaremba Problems (cf. [27], [28] for A = ∇; in this

case ν̃0(Aw) =
∂w

∂ν
is the normal derivative with respect to ∂D). However, Problem 3 could be

ill-posed for a = 0 (cf. [7] regarding the case A = 2∂). An Existence and Uniqueness Theorem
in the space HA(D) ∩H2

loc(D ∪ Γ) was obtained for such type of problems in [7, Theorem 3.2]
for natural but rather disappointing class of regular data h ∈ L2(D,E), u0 ∈ H3/2(Γ, E), u1 ∈
H1/2(∂D \ Γ, E) if a 6= 0.

Working with a Dirac operator A = 2∂ one easily can see that in this case ν̃0 ◦ A coincides
with the complex normal derivative ∂ν and the trace ν̃0(Aw) exists on ∂D for w ∈ H1(D) if and
only if ∆w ∈ H−1(D), while, in general, ∆w ∈ H(D, | · |−1) (see, for instance, [24,25]). We seek
for a solution to Problem 3 even in a worse than H1(D,E) class HA(D). However Theorem 1
allows us to indicate the right classes for the data-triples and for the solution in the formulation
of Problem 3. With this aim we will use more negative norms. Namely, set

‖u‖H−1

A,Γ(D) = sup
φ∈C∞

Γ
(D,E)

|(u, φ)L2(D,E)|
‖φ‖A,D

.

The completion of C∞(D,E) with respect to the norm ‖u‖H−1

A,Γ(D) will be denoted by H−1
A,Γ(D).

Again, similar pairing 〈·, ·〉D may be defined for pairs (u, v) ∈ H−1
A,Γ(D)⊕HA,Γ(D). ThenH−1

A,Γ(D)
is naturally embedded to the strong dual (HA,Γ(D))′ for HA,Γ(D) keeping in the mind the
corresponding L2(D,E)-pairing (cf. (3)). As the norm ‖ · ‖H1(D,E) is not weaker than the norm

‖·‖A,D, there is a positive constant C with ‖u‖H(D,|·|−1,E) 6 C‖u‖H−1

A,Γ(D) for all u ∈ C∞(D,E).

Then H−1
A,Γ(D) ⊂ H(D, | · |−1, E).
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Similarly, for v ∈ C∞(∂D,E), we set

‖v‖B−1

A (∂D\Γ) = sup
C∞

Γ
(D,E)∋φ6=0

∣

∣(v, φ)L2(∂D,E)

∣

∣

‖φ‖A,D
.

It follows from Theorem 1 that in fact ‖v‖B−1

A (∂D\Γ) = sup
C∞

Γ
(∂D,E)∋ψ 6=0

∣

∣(v, ψ)L2(∂D,E)

∣

∣

‖ψ‖BA(∂D)
. For this

reason the completion of C∞(∂D,E) with respect to ‖·‖B−1

A (∂D\Γ) will be denoted byB−1
A (∂D\Γ).

Again, B−1
A (∂D \ Γ) is naturally embedded to the strong dual (HA,Γ(D))′ for HA,Γ(D) keeping

in the mind the corresponding L2(∂D,E)-pairing (cf. (3)).
Now we are ready to introduce the right spaces for solving Problem 3. We denote HA,Γ,∆(D)

and HA,ν◦A(D) the completions of C∞(D,E) with respect to the norms

‖w‖A,Γ,∆ =
√

‖w‖2
A,D + ‖(a2 − Ik∆)w‖2

H−1

A,Γ(D)
, ‖w‖A,Γ,ν◦A =

√

‖w‖2
A,D + ‖ν̃0(Aw)‖2

B−1

A (∂D\Γ)

correspondingly.

Theorem 3. The linear spaces HA,Γ,∆(D) and HA,Γ,ν◦A(D) coincide and their norms are
equivalent. Besides, an element w ∈ HA(D) belongs to the space HA,Γ,∆(D) if and only if
(a2 − Ik∆)w ∈ H−1

A,Γ(D).

Proof. The first part of the statement immediately follows from the Green formula

(Aw,Au)L2(D,E1) + a2(w, u)L2(D,E) = ((a2 − Ik∆)w, u)L2(D,E) − (ν̃0(Aw), u)L2(∂D,E) (11)

being true for all w ∈ C∞(D,E), u ∈ C∞(D,E).
Further, by the definition, (a2 − Ik∆)w ∈ H−1

A,Γ(D) if w ∈ HA,Γ,∆(D). The proof of the
converse statement is similar to that of [24, Corollary 2]. Namely, if w ∈ HA(D) and the
vector h = (a2 − Ik∆)w belongs to H−1

A,Γ(D) ⊂ H(D, | · |−1, E) then according to [16] (cf.
also [17, Theorem 2.26] and the proof of Theorem 1) we have w = Ga,Dh + Pa,Dw, where
Pa,Dw ∈ HA,Γ,∆(D) and Ga,Dh ∈ H1

0 (D,E).
Fix now a sequence {hν} ⊂ C∞(D,E), approximating h in the space H−1

A,Γ(D). Then, Green

formula (11) imply, for u ∈ C∞(D,E),

(ν̃0(AGa,Dhν), u)L2(∂D,E) = (hν , u)L2(D,E)−(AGa,Dhν , Au)L2(D,E1)+a
2(Ga,Dhν , u)L2(D,E). (12)

As the operator Ga,D : H(D, | · |−1, E) → H1
0 (D) is bounded we see that

lim
ν→0

‖Ga,Dhν − Ga,Dh‖A,D = 0. (13)

Therefore (12), (13) yield that the sequence {ν̃0(AGa,Dhν} ⊂ C∞(∂D,E) is fundamental in
the space B−1

A (∂D \ Γ). Hence the sequence {Ga,Dhν} ⊂ C∞(D,E) converges in the space
HA,Γ,ν◦A(D) which coincides with the space HA,Γ,∆(D) according to the already proved part of
the theorem. 2

Using Green formulae, it is easy to see that, for a triple (h, u0, u1) ∈ H−1
A (D) ⊕ BA(Γ) ⊕

B−1
A (∂D \Γ), Problem 3 in the space HA,Γ,∆(D) can be interpreted in the following weak sense:

(Aw,ψ)L2(D,E1) − (w,A∗ψ)L2(D,E) = 〈u0, ν̃0(ψ)〉∂D for all ψ ∈ C∞(D,E), ν̃0(ψ) = 0 on ∂D \ Γ,
(14)

(Aw,Aφ)L2(D,E1) + a2(w, φ)L2(D,E) = 〈h, φ〉D − 〈u1, φ〉∂D for all φ ∈ C∞
Γ

(D,E). (15)
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Corollary 3. Let a 6= 0. Then for every triple (h, u0, u1) ∈ H−1
A (D) ⊕ BA(Γ) ⊕ B−1

A (∂D \ Γ)
there is a unique solution w ∈ HA,Γ,∆(D) to Problem 3 in the weak sense of (14) and (15).
Moreover, there are positive constants c1, c2, c3 such that

‖w‖A,Γ,∆ 6 c1‖u0‖BA(Γ) + c2‖u1‖B−1

A (∂D\Γ) + c3‖h‖H−1

A,Γ(D) (16)

Proof. Indeed, fix the canonical representative ũ0 ∈ BA(∂D) of the datum u0 ∈ BA(Γ). Then
the potential PD,a(ũ0) belongs to HA,∂D,∆(D) ⊂ HA,Γ,∆(D) and it coincides with u0 on ∂D (see
Theorem 1). Hence, because of Theorem 3, there is a trace ν̃0(APD,a(ũ0)) = v1 belonging to
B−1
A (∂D \ Γ). Therefore mixed problem (14) and (15) is equivalent to finding u ∈ HA,Γ,∆(D)

satisfying

(Au,Aφ)L2(D,E1) + a2(u, φ)L2(D,E) = 〈h, φ〉D − 〈u1 − v1, φ〉∂D for all φ ∈ C∞
Γ

(D,E). (17)

Of course w = u+ PD,a(ũ0).
If a 6= 0 then the Hermitian form (Au,Av)L2(D,E1) +a2(u, v)L2(D,E) induces a scalar product

on the space HA,Γ(D) and the corresponding norm is equivalent to the original one.
Further, by the very construction, the right hand side of (17) defines a bounded linear func-

tional on HA,Γ(D). Now Riesz Theorem on the general form of a continuous linear functional
on Hilbert spaces guarantees the existence of a unique element u ∈ HA,Γ(D) satisfying (17). In
particular, (17) implies (a2 − Ik∆)u = h ∈ HA,Γ,∆(D) and, using Theorem 3, we conclude that
u actually belongs to HA,Γ,∆(D).

Finally, estimate (16) follows from Banach Theorem on the inverse operator. 2

Remark 2. Note that the right hand side in (15) can be replaced by F (v) with an arbitrary
continuous linear functional F ∈ (HA(D))′. Then again Riesz Theorem guarantees a unique
solution w ∈ HA(D) to Problem 3 in the weak sense of (14) and (15) if a 6= 0. However the
element w may have no boundary values of ν̃0(Aw) in the sense of distributions over ∂D \Γ (cf.
(10) where we do not claim that the trace ν̃0(A(A⋆Γg)) on ∂D \ Γ exists).

Remark 3. We also note that, though Problem 3 is Fredholm (according to Corollary 3), it
is not an Elliptic Boundary Problem in the sense of Lopatinski because the Dirichlet boundary
system (τ0, ν̃0 ◦A) is not coercive in general. Of course, it is coercive if A = ∇ but it is not the
case for A = 2∂.

The advantage of using Mixed Problem 3 is the following. One may follow the classic approach
to Fredholm Boundary Problems and construct the Green function of the problem, say, ΦΓ. As
usual ΦΓ(x, y) = Φ(x, y) − γ(x, y), where Φ(x, y) is the bilateral fundamental solution of the
Helmholtz operator a2 − ∆ and the rest γ(x, y) is the solution to the mixed problem







a2γ(x, ·) − ∆Ikγ(x, ·) = 0 in D,

τ0(γ(x, ·)) = Φ(x, ·) on Γ,
ν̃0(Aγ(x, ·)) = ν̃0(AΦ(x, ·)) on ∂D \ Γ.

with the smooth data dependent on the parameter x ∈ D (see [7] for solving). It is only left to
say that the fundamental solution Φ(x, y) may be taken as b(|x − y|) where b(r) is the solution
to the famous ordinary differential Bessel type equation:

(

(

r
∂

∂r

)2

+ (n− 2)

(

r
∂

∂r

)

− a2r2

)

b(r) = 0

which is unbounded at the origin if n > 2 (see [7] and [29, Ch. 7, §2]); in particular b(r) =

e−
√
−1ar

4πr
for n = 3. Obviously, b(r) = e−

√
−1ar for n = 1.
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Граничные задачи для уравнения Гельмгольца и задача
Коши для операторов Дирака

А.А. Шлапунов

При изучении операторного уравнения Au = f в пространствах Гильберта обычно требуется

знать сопряженный A⋆ оператор для A. Решая некорректную задачу Коши для операторов ти-

па Дирака в пространствах Лебега одним итерационным методом, мы предлагаем построить

соответствующий сопряженный оператор при помощи нормально разрешимой смешанной зада-

чи для уравнения Гельмгольца. Это ведет к описанию условий разрешимости задачи Коши и к

построению ее точного и приближенных решений.

Ключевые слова: смешанная задача, уравнение Гельмгольца, операторы Дирака, некорректная за-

дача Коши.
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