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Introduction

Let N be the set of all natural numbers, Z be the set of all integers, M is any of these sets.
The S(M) will denote the group of all permutations of the set M .

Definition 1. Permutation g ∈ S(M) is called limited if

w(g) = max
α∈M

|α− αg| <∞.

If g, h are limited permutations, so the same is about the permutations g−1 and gh, as
w(g−1) = w(g), w(gh) 6 w(g) + w(h). Thus set

Lim(M) = {x |x ∈ S(M), w(x) <∞}

form a group, which is a natural extension of a locally finite group Fin(M) of all finitary per-
mutations of the set M , i.e. such permutation y ∈ S(M), for which the set {α |α ∈M,αy ̸= α}
is finite.

In the work of N.M. Suchkov [1] an example of the mixed group H = AB was first built,
where A,B is periodic (and even locally-finite) subgroups. Then in [2, 3] it was found that

H = ⟨g |g ∈ Lim(Z), |g| <∞⟩,

any countable free group and Aleshin 2-group isomorphically embeddable into the group H and

Lim(Z) = H h ⟨d⟩,

where d-shift, αd = α+ 1 for any α ∈ Z.
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In their work [4] N. M. Suchkov and N. G. Suchkova proved the factorization of the whole group
Lim(N) by two locally-finite subgroups and it is shown that the group Lim(M) is generated by
the permutations x ∈ S(M), for which w(x) = 1.

These generators are either involutions, in which decomposition into independent cycles
only transpositions of the (αα + 1), α ∈ M or M = Z and x ∈ {d, d−1}. The relation between
groups Lim(N) and Lim(Z) is found in [5]. Assuming that permutations of the group S(N)

have identical influence on the set Z \N , we get a natural embedding of S(N) < S(Z). Denote
by t the involution of the groups S(Z) for which αt = −α(α ∈ Z). It is proved that

H = Fin(Z)(Lim(N)× (Lim(N))t).

From this congruence it follows that in the study of normal structure of the group Lim(Z)

is the defining description of normal subgroups of the group Lim(N).
The first result in this direction is obtained in [5]. To formulate it is necessary to provide

some definitions being introduced in this work. Let

L = {µ1, µ2, . . . , µn, . . . }

is an infinite subset of N , where µ1 < µ2 < · · · < µn < . . . ; m is a fixed natural number. By
definition, elements of µi and µj are equivalent, if i = j, or when i < j (j < i) all inequations
are fulfilled µk+1 − µk 6 m; i 6 k 6 j − 1 (j 6 k 6 i− 1). It is easy to see that this relation is
indeed an equivalence relation, therefore it induces a decomposition of the set L into equivalence
classes. This partition is called m-partition. Let Bm(L)be the set of all equivalence classes of
elements of the set L.

Definition 2. The set L is called m-dispersion, if all classes of the set Bm(L) are finite and are
completely m-dispersion if

cm = max
A∈Bm(L)

|A| <∞.

The set L is called (completely) dispersion, if it is (completely) m-dispersion for every natural m.

The example of completely dispersion set is the set L, for elements of which the following
inequations are used

µ2 − µ1 < µ3 − µ2 < · · · < µn − µn−1 < µn+1 − µn < . . . .

Let µn + 1 < µn+1(n = 1, 2, . . . ) and

a = (µ1 µ1 + 1)(µ2 µ2 + 1) . . . (µn µn + 1) . . .

is the decomposition of an involution a into independent transpositions. The main result of [5]
is the theorem according to which the normal closure of the involution of a in the group Lim(N)

if and only if locally finite, when L is an completely dispersion set.
Three hypotheses about normal subgroups of the group Lim(N) are provided ibid.
In this article one of these hipotheses is proved; namely, the following theorem is the main

result of the present paper.

Theorem 1. An involution a if and only if contained in a proper normal subgroup of the group
Lim(N) when L is a dispersion set. If L is dispersion, but is not completely dispersion set, then
⟨ag|g ∈ Lim(N)⟩ is a mixed group.

All the designations used in this work are either discussed, or standard [6].
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1. Preliminary results

Let γ, ε be integers and γ 6 ε. Let us call the set

Uεγ = {β|β ∈ Z, γ 6 β 6 ε}

a segment of integers; γ is the left end of the segment, ε is the right. In particular, Uγγ = {γ}.
For each m ∈ N , α ∈ L let be

V mα = Uα+mα−m

∩
N, Em =

∪
α∈L

V mα .

Lemma 1. If the set L is dispersion, then the set Em is 1-dispersion for every natural m.

Proof. If the Lemma is wrong, then such integers m and γ will be found that will prove that
1-decomposition of the Em set contains an infinite class Uγ = {β |β ∈ N, β > γ}. Let µi > γ,
then the union V mµi

∪
V mµi+1

includes a segment of integers with µi, µi+1 endpoints. Therefore,
2m is a decomposition of the set L contains an infinite equivalence class with representative µi
We have come to a contradiction with the dispersion of the set L. The Lemma is proved. 2

For brevity let us define G = Lim(N) and for each of dispersion set of L we define the
subgroup Q = Q(L). As to Lemma 1 each set Em is split into segments

Wm1, Wm2, . . . , Wmn, . . .

of integers and if βmn is the right end of the segment Wmn, and αmn+1 is the left end of the
segment Wmn+1, then αmn+1 > βmn + 1 (n = 1, 2, ...); each segment is Wmn is included into
some interval Wm+1 s. Let

Qm = {x |x ∈ G; W x
mn =Wmn (n = 1, 2, . . . ); βx = β(β ∈ N \ Em)}.

Obviously, Qm is a subgroup of G and Qm 6 Qm+1, m = 1, 2, . . . . Let, finally,

Q = Q(L) =
∪
m∈N

Qm

Lemma 2. Q is proper normal subgroupin the group G.

Proof. Let 1 ̸= h ∈ Q; g ∈ G and w(g) = k. From the definition of the group Q, it follows that
there are such natural m that the element h contains the subgroup Qm. We claim that hg ∈ Qt,
where t = m + k + 1. Indeed, consider the decomposition of permutation h into independent
cycles. Since h leaves untouched the segments of Wmn (n = 1, 2, . . . ) and acts identically on the
integers which are not contained in these segments, then all the cycles are finite. If x = (γ1 ... γs)

is one of these cycles is (s > 1), then γ1, . . . , γs are contained in some interval Wmn, which
coincides with the union of several segments

V mµq
, V mµq+1

, . . . , V mµe
.

We fix any number of γi of set {γ1, . . . , γs}. Then γi ∈ V mµj
for some index j, q 6 j 6 e; and

since γxi = γgi and |γi − γgi | 6 w(g) = k, then γgi ∈ V tµj
. Next, segment Wmn is part of the

segment
V tµq

∪
V tµq+1

∪
...

∪
V tµe

.
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In turn, this segment is contained in some segment Wtd, d ∈ N . Therefore, all elements of the
cycle xg = (γg1 . . . γ

g
s ) belong to Wtd, where due to the definition of the group Qt we deduce that

xg ∈ Qt and hg ∈ Qt. Thus, Q is a normal subgroup of G. It remains to show that Q is proper
subgroup of G. In fact, in the course the corroboration we have seen that any permutation of
the subgroup Q is decomposed into finite independent cycles.

Therefore an infinite cycle

y = (. . . 2n . . . 4 2 1 3 . . . 2n− 1 . . . )

is not contained in Q, but since w(y) = 2, then y ∈ G. Thus, Q ̸= G. The Lemma is proved. 2

Lemma 3. If z is involution and f is a triple of the cycle of the alternating group A4, zzfzf
2

= 1.

Proof. We have A4 = (⟨z⟩ × ⟨u⟩) h ⟨f⟩, where |u| = 2. Thus f transitively permutes the
involution z, u, zu whose product equals 1. Therefore, the Lemma is correct. 2

In further calculations we will use the well-known and easily verifiable
Assertion 1. Let g, h are permutation of some set. If

g = . . . (. . . α1 α2 . . . ) . . .

is decomposition of g into independent cycles, then

gh = h−1gh = . . . (. . . αh1 α
h
2 . . . ) . . . .

Lemma 4. Let y = (ε1 ε2)(ε3 ε4)(ε5 ε6) is decomposition of the permutation y into independent
transpositions, f = (ε3 ε4 ε5). Then yyfyf

2

= (ε1 ε2).

Proof. The elements z = (ε3 ε4)(ε5 ε6), f generate a group isomorphic to alternating grope A4,
all elements of which commute with the transposition (ε1 ε2). Therefore, in view of Lemma 3 we
have

y = (ε1 ε2)z, y
f = (ε1 ε2)z

f , yf
2

= (ε1 ε2)z
f2

,

yyfyf
2

= (ε1 ε2)
3zzfzf

2

= (ε1 ε2).

The Lemma is proved. 2

Lemma 5. Let
c = (β1β1 + 1)(β2β2 + 1) . . . (βnβn + 1) . . .

is the decomposition of permutation c of the group G into independent transpositions If all of the
inequalities are fulfilled

6 6 βn+1 − βn 6 m (n = 1, 2, . . . ),

where m is some fixed natural number, then the normal closure of B(c) = ⟨cg|g ∈ G⟩ the involu-
tion of c in the group G contains a group Fin(N) of all finitary permutations of the set N .

Proof. Since the group Fin(N) coincides with the normal closure of any of its transposition,
in order to prove the Lemma it is enough to show that B(c) contains a transposition (β1 β1 +1)

from the decomposition of permutation c. In fact, since βn+1 − βn > 6 for all natural n, the
transpositions of the permutation’s decomposition

l = (β1 β1 + 2)(β1 + 1β1 + 3)(β2 β2 + 2)(β2 + 1β2 + 3) . . . (βn βn + 2)(βn + 1βn + 3) . . .
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is independent, and in the process w(l) = 2, in particular l ∈ G. Therefore, the group B(c)

contains an involution ce. Using the Assertion 1 we get

c1 = ce = (β1 + 2β1 + 3)(β2 + 2β2 + 3) . . . (βn + 2βn + 3) . . . .

Now let

s = (β1 + 2β2)(β1 + 3β2 + 1)(β2 + 2β3)(β2 + 3β3 + 1) . . . (βn + 2βn+1)(βn + 3βn+1 + 1) . . . .

By condition of the Lemma βn+1 − βn 6 m (n = 1, 2, . . . ), therefore, w(s) < m. Thus, cs1 ∈ B(c)

and we get
cs1 = (β2 β2 + 1)(β3 β3 + 1) . . . (βn+1 βn+1 + 1) . . . .

Thus, ccs1 = (β1 β1 + 1) is a contained in B(c). The Lemma is proved. 2

Assertion 2( [5], Lemma 7). Let {α1, . . . , αk} is a subset of set N and αi + 1 < αi+1,
1 6 i 6 k − 1. If

b = (α1 α1 + 1)(α2 α2 + 1) . . . (αk−1 αk−1 + 1)(αk αk + 1)

is the decomposition involutive permutation b ∈ Fin(N) into independent of transpositions,

u = (α1 α2 . . . αk−1 αk αk + 1αk−1 + 1 . . . α2 + 1α1 + 1)

is cycle, then the permutation bbu has the order k.

2. Proof of the Theorem 1

Let us proceed to the direct corroboration of the theorem formulated at the end of the
introduction. Initially, it will prove the first part.

Suppose that L is a dispersion set. Then from the constrution in Section 1 of the group

Q = Q(L) =
∪
n

Qn

and Lemma 2 it follows that the involution a belong to the subgroup of Q1, which is contained
in proper normal subgroup Q of G.

Conversely, suppose that a is contained in proper normal in G = Lim(N) subgroup. Obvi-
ously, is equivalent to, subgroup B(a) = ⟨ag | g ∈ G⟩ is a proper subgroup of G. Suppose that
the set L is not dispersion. This means that there is such a natural integer m0 that the set
Bm0(L) contains an infinite class of A. Then if µγ is the minimal number of the set A, then from
definition it follows that µi+1 − µi 6 m0 for all i > γ. Hence we deduce that Bm(L) consists of
a single class {L}, if m > max(m0, µγ). Fix m1 > m. Thus,

µn+1 − µn 6 m1 (n = 1, 2, . . . ) .

Now let us prove that B(a) = G. Then we get a contradiction to our assumption B(a) ̸= G

and the first part of the theorem will be proved. Firstly it should be noted, that in the group
B(a) we can find a permutation

c = (β1 β1 + 1)(β2 β2 + 1) . . . (βn βn + 1) . . . ,
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that for some natural m all the inequations are fulfilled

6 6 βn+1 − βn 6 m (n = 1, 2, . . . ). (1)

Indeed, we will split the transpositions from decomposition a into triples:

a = (µ1 µ1+1)(µ2 µ2+1)(µ3 µ3+1), . . . (µ3k+1 µ3k+1+1)(µ3k+2 µ3k+2+1) (µ3k+3 µ3k+3+1) . . . .

Let
t = (µ2 µ2 + 1µ3) . . . (µ3k+2 µ3k+2 + 1µ3k+3) . . . .

Since µn+1−µn 6 m1, therefore w(t) 6 m1, and it means that, t ∈ G. Therefore, if c = a at at
2

,
then c ∈ B(a) and by Lemma 4

c = (µ1 µ1 + 1) . . . (µ3k+1 µ3k+1 + 1) . . . .

Thus from the inequation 2 6 µn+1−µn 6 m1 it easily implies that 6 6 µ3k+4−µ3k+1 6 3m1 =

m. Assuming β1 = µ1, β2 = µ4, . . . , βn = µ3n−2, . . . , we get that the permutation c is the
sought fore.

Let us note that the inclusion c ∈ B(a) immediately implies that B(c) 6 B(a), and therefore
for the proof of the part 1 of the Theorem it is enough to establish the congruence B(c) = G. It
was noted in the introduction that the group G is generated by involutions, in decomposition into
independent transpositions of which only transpositions of the (αα + 1) form take part. Since
Fin(N) < B(c) by Lemma 5, to prove the congruence B(c) = G it is enough to show that if

x = (γ1 γ1 + 1) . . . (γn γn + 1) . . . ,

where γn+1 > γn + 1 (n = 1, 2, . . . ), then x ∈ B(c). Since B(c) contains any finitary
permutation, xn = (γ1 γ1 + 1) . . . (γn γn + 1), then without loss of generality we can assume
that γ1 > β1.

Denote Lx = {γn|n ∈ N} and consider the case when the inequations are fulfilled for the
elements of this set

γn+1 − γn > 5m (n = 1, 2, . . . ). (2)

Let us split the set of N \ {1, 2, . . . , β1} into the segments of the integers is

∆1 = Uβ3

β1+1, . . . , ∆n = U
β2n+1

β2n+1, ∆n+1 = U
β2n+3

β2n+1+1, . . . .

In virtue of the inequation (1)

|∆n| = β2n+1 − β2n−1 = (β2n+1 − β2n) + (β2n − β2n−1) 6 2m.

From inequations (2) and γ1 > β1 this implies that

Lx ⊂
∪
n∈N

∆n;

the intersection of ∆n ∩ Lx for every n is either empty or contains max one element; γi, γj
is not contained in the adjacent segments for every i ̸= j. Thus, there is such a sequence
j1, j2, . . . , jn, . . . , that jn+1 − jn > 1 (n = 1, 2, . . . ) and

γ1 ∈ ∆j1 , γ2 ∈ ∆j2 , . . . , γn ∈ ∆jn , . . . .
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Let us define the permutation ψ ∈ S(N) as follows: for n = 1, 2, . . . assume

γψn = β2jn , βψ2jn = γn, (γn + 1)ψ = β2jn + 1, (β2jn + 1)ψ = γn + 1;

γψ = γ, if γ /∈
∪
n∈N

({γn, γn + 1} ∪ {β2jn , β2jn + 1}) .

Since the elements γn, β2jn belong to the segment ∆n and |∆n| 6 2m, then w(ψ) < 2m, i.e.
ψ ∈ G. As to Assertion 1 we have

xψ = (β2j1 β2j1 + 1) . . . (β2jn β2jn + 1) . . . .

Now let
α1, α2, . . . , αn, . . .

be elements of the set {β1, . . . , βn, . . . }\{β2j1 , . . . , β2jn , . . . }, arranged in ascending order. From
the above it follows that if αi = βk, then αi+1 is element of the set {βk+1, βk+2}, and therefore
αi+1 − αi 6 βk+2 − βk 6 2m. Here i is any natural number, k = k(i). It’s easy to deduce that
the permutation

f = (α1 α2 α2 + 1) . . . (α2n−1 α2n α2n + 1) . . .

is an element of the group G. Applying Lemmas 3, 4 we get the congruence ccfcf
2

= xψ from
which it immediately follows that x ∈ B(c).

Let us finally prove, that this inclusion is done in general case (without additional assumptions
that for the elements of a set Lx inequations are fulfilled (2)). To do this, we fix any natural
number s > 5m, and represent the permutation x as compositions of

x = x1 x2 . . . xs ,

where
xi = (γi γi + 1)(γi+s γi+s + 1) . . . (γi+ks γi+ks + 1) . . . ,

1 6 i 6 s. From the definition of the permutation of x it implies that if Lxi
= {γi+ks|k =

1, 2, . . . }, then the adjacent elements of this set an inequation is fulfilled

γi+(k+1)s − γi+ks > s > 5m,

which coincides with the inequation (2) for the neighbouring elements of the set Lx. But then
by proved above, xi ∈ B(c), 1 6 i 6 s, and therefore x ∈ B(c). The first part of the theorem is
proved.

Let us prove the second part. Let L be a dispersion, but not comletely dispersion set. We
need to show that the normal closure of B(a) of an involution a of a group G contains an element
of infinite order. Indeed, in view of the definition for some natural number r there are pairwise
disjoint sets

Ln = {µαn , µαn+1, . . . µβn},

n = 1, 2, . . . of L that |Ln| > n and µi+1 − µi 6 r (αn 6 i 6 βn − 1). Let us define the
permutation of the u set N by its decomposition into independent cycles un (n = 1, 2, . . . ). Let

un = (µαn µαn+1 . . . µβn µβn + 1µβn + 1µβn−1 + 1 . . . µαn+1 + 1µαn + 1) .

Then w(u) 6 r, i.e. u ∈ G. According to Assertion 2 the element aau ∈ B(a) is decomposed
into independent cycles which lengths is unbounded, and therefore |aau| = ∞. The theorem is
proved.
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In conclusion, let us put an example of be a dispersion, but not comletely dispersion set. Let

L1 = {2, 3}, L2 = {4, 5, 6}, L3 = {8, 9, 10, 11}, . . . , Ln = {2n, 2n + 1, . . . , 2n + n};

L = L1

∪
L2

∪
L3

∪
· · ·

∪
Ln

∪
. . . .

If 2n is the representative of the class A = A(n,m) ∈ Bm(L), then from definition it follows that
A contains a set Ln of the (n + 1)-th element, and if m < 2n − (2n−1 + n − 1), then A = Ln.
Hence we conclude that the set L is a dispersion, but not comletely dispersion set.

References

[1] N.M.Suchkov, An example of a mixed group factorized by two periodic subgroups, Algebra
i Logika, 23(1984), no. 5, 385–387 (in Russian).

[2] N.M.Suchkov, On subgroups of the product of locally finite groups, Algebra i logika,
24(1985), no. 4, 408–413 (in Russian).

[3] N.M.Suchkov, On the group of limited permutations, Konstruktsii v algebre i logike, Tver’,
1990, 84–89 (in Russian).

[4] N.M.Suchkov, N.G.Suchkova, On groups of limited permutations, Journal of Siberian Fed-
eral University. Mathematics and physics, 3(2010), no. 2, 262–266 (in Russian).

[5] N.M.Suchkov, N.G.Suchkova, Normal subgroups of limited permuta tion groups, Siberskie
electronnnye matematich. izvestiya, 12(2015), 344–353 (in Russian).

[6] M.I.Kargapolov, Y.I.Merzlyakov, Fundamentals of the theory of groups, New York, Springer-
Verlag, 1979.

О нормальных замыканиях инволюций в группе
ограниченных подстановок
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Россия

Изучается группа G = Lim(N) ограниченных подстановок множества N всех натуральных чи-
сел. Найдена связь между рассеянными подмножествами множества N и собственными нор-
мальными подгруппами группы G.

Ключевые слова: группа, ограниченные перестановки, рассеивание, нормальная подгруппа, инво-
люции.
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