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Introduction

Let N be the set of all natural numbers, Z be the set of all integers, M is any of these sets.
The S(M) will denote the group of all permutations of the set M.

Definition 1. Permutation g € S(M) is called limited if

— — o9
w(g) gl&)}h af| < 0.

1

If g,h are limited permutations, so the same is about the permutations ¢~ and gh, as

w(g™!) = w(g), w(gh) < w(g) +w(h). Thus set
Lim(M) ={z|z € S(M),w(z) < oo}

form a group, which is a natural extension of a locally finite group Fin(M) of all finitary per-
mutations of the set M, i.e. such permutation y € S(M), for which the set {a|a € M,a? # a}
is finite.

In the work of N.M. Suchkov [1] an example of the mixed group H = AB was first built,
where A, B is periodic (and even locally-finite) subgroups. Then in [2,3] it was found that

H = (glg € Lim(Z),|g| < o0),
any countable free group and Aleshin 2-group isomorphically embeddable into the group H and
Lim(Z) = H X (d),

where d-shift, a? = o+ 1 for any a € Z.
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In their work [4] N. M. Suchkov and N. G. Suchkova proved the factorization of the whole group
Lim(N) by two locally-finite subgroups and it is shown that the group Lim(M) is generated by
the permutations « € S(M), for which w(z) = 1.

These generators are either involutions, in which decomposition into independent cycles
only transpositions of the (o + 1), « € M or M = Z and = € {d,d"'}. The relation between
groups Lim(N) and Lim(Z) is found in [5]. Assuming that permutations of the group S(N)
have identical influence on the set Z \ N, we get a natural embedding of S(N) < S(Z). Denote
by t the involution of the groups S(Z) for which of = —a(a € Z). Tt is proved that

H = Fin(Z)(Lim(N) x (Lim(N))!).

From this congruence it follows that in the study of normal structure of the group Lim(Z)
is the defining description of normal subgroups of the group Lim(N).

The first result in this direction is obtained in [5]. To formulate it is necessary to provide
some definitions being introduced in this work. Let

L:{M17,[L2,.-.,,Ltn,---}

is an infinite subset of N, where 1 < p2 < -+- < pup < ...; m is a fixed natural number. By
definition, elements of p; and p; are equivalent, if ¢ = j, or when ¢ < j (j < ¢) all inequations
are fulfilled pgy1 —pr <m; i <k<j—1(j <k<i—1). It is easy to see that this relation is
indeed an equivalence relation, therefore it induces a decomposition of the set L into equivalence
classes. This partition is called m-partition. Let B,,(L)be the set of all equivalence classes of
elements of the set L.

Definition 2. The set L is called m-dispersion, if all classes of the set By, (L) are finite and are
completely m-dispersion if
cm = max |A] < oo.
A€Bm (L)
The set L is called (completely) dispersion, if it is (completely) m-dispersion for every natural m.
The example of completely dispersion set is the set L, for elements of which the following
inequations are used

o — p1 < pz — po < < fp = -1 < Pngl = fp < ...

Let pp +1 < pipr1(n=1,2,...) and

a=(prp+1)(p2p2+ 1) (o ptn +1) ...

is the decomposition of an involution @ into independent transpositions. The main result of [5]
is the theorem according to which the normal closure of the involution of a in the group Lim(N)
if and only if locally finite, when L is an completely dispersion set.

Three hypotheses about normal subgroups of the group Lim(N) are provided ibid.

In this article one of these hipotheses is proved; namely, the following theorem is the main
result of the present paper.

Theorem 1. An involution a if and only if contained in a proper normal subgroup of the group
Lim(N) when L is a dispersion set. If L is dispersion, but is not completely dispersion set, then
(a?|g € Lim(N)) is a mized group.

All the designations used in this work are either discussed, or standard [6].
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1. Preliminary results

Let ~,¢ be integers and v < €. Let us call the set

US ={BIB€Z v <B<e}

a segment of integers; 7 is the left end of the segment, ¢ is the right. In particular, UJ = {v}.
For each m € N, a € L let be

VI =Ugt (N, Em = ] V"
a€eLl

Lemma 1. If the set L is dispersion, then the set E,, is 1-dispersion for every natural m.

Proof. If the Lemma is wrong, then such integers m and ~ will be found that will prove that
1-decomposition of the E,, set contains an infinite class U, = {8|8 € N, > v}. Let u; > v,
then the union V" |J Vit includes a segment of integers with p;, ;41 endpoints. Therefore,
2m is a decomposition of the set L contains an infinite equivalence class with representative u;
We have come to a contradiction with the dispersion of the set L. The Lemma is proved. o

For brevity let us define G = Lim(N) and for each of dispersion set of L we define the
subgroup @ = Q(L). As to Lemma 1 each set E,, is split into segments

Wi, Wia, ooy Winn, - ..

of integers and if f3,,, is the right end of the segment W,,,, and a,,,+1 is the left end of the
segment Wy,ni1, then cunpnt1 > Bmn + 1(n = 1,2,..); each segment is W,,, is included into
some interval W, 1. Let

Qm:{z|$€G§ Wyay:m:Wmn(n:LZ'--);Bx:ﬂ(ﬁeN\Em)}'

Obviously, @y, is a subgroup of G and @, < Qum+1, m =1,2,... . Let, finally,
Q=)= @n
meN

Lemma 2. @ is proper normal subgroupin the group G.

Proof. Let 1 # h € Q; g € G and w(g) = k. From the definition of the group @, it follows that
there are such natural m that the element h contains the subgroup @Q,,. We claim that h9 € @,
where t = m + k + 1. Indeed, consider the decomposition of permutation A into independent
cycles. Since h leaves untouched the segments of W,,,, (n = 1,2,...) and acts identically on the
integers which are not contained in these segments, then all the cycles are finite. If © = (71 ... vs)
is one of these cycles is (s > 1), then ~1, ..., 75 are contained in some interval W,,,, which
coincides with the union of several segments

Vlf:, | Vi
We fix any number of 7; of set {71, ..., vs}. Then v; € V;ZL for some index j, ¢ < j < e; and

since v¥ = 7 and |v; — 77| < w(g) = k, then 7 € Vlfj. Next, segment W,,,, is part of the

segment
vi Jvi . U UV
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In turn, this segment is contained in some segment W34, d € N. Therefore, all elements of the
cycle 29 = (7] ... 79) belong to W4, where due to the definition of the group @Q; we deduce that
z9 € Q¢ and h?Y € Q;. Thus, Q is a normal subgroup of G. It remains to show that @ is proper
subgroup of G. In fact, in the course the corroboration we have seen that any permutation of
the subgroup @ is decomposed into finite independent cycles.

Therefore an infinite cycle

y=(..2n...4213...2n—-1...)
is not contained in @, but since w(y) = 2, then y € G. Thus, @ # G. The Lemma is proved. O
Lemma 3. If z is involution and f is a triple of the cycle of the alternating group A4, 22l 2l = 1.

Proof. We have Ay = ({z) x (u)) X (f), where |u] = 2. Thus f transitively permutes the
involution z, u, zu whose product equals 1. Therefore, the Lemma is correct. O

In further calculations we will use the well-known and easily verifiable
Assertion 1. Let g, h are permutation of some set. If

g:...(...alag.‘.)...

is decomposition of g into independent cycles, then

Lemma 4. Let y = (e1 e2)(e3¢4)(e5¢6) is decomposition of the permutation y into independent
transpositions, f = (e3eaes). Then yyly!” = (1 &2).

Proof. The elements z = (g3 £4)(e5 &6), f generate a group isomorphic to alternating grope Ay,
all elements of which commute with the transposition (g1 3). Therefore, in view of Lemma 3 we
have

2 2
y = (e1€2)2, yf = (e1 82)Zf7 yf = (&1 62)Z‘f )

2 2
yyly = (e12)227 20" = (e129).
The Lemma is proved. O

Lemma 5. Let

c= (BB +1)(B2B2+1)...(BufBn +1)...

1s the decomposition of permutation c of the group G into independent transpositions If all of the
inequalities are fulfilled

6<Bn+1_ﬁn<m(n:1a2a"')a

where m is some fized natural number, then the normal closure of B(c) = (¢7|g € G) the involu-
tion of ¢ in the group G contains a group Fin(N) of all finitary permutations of the set N.

Proof. Since the group Fin(N) coincides with the normal closure of any of its transposition,
in order to prove the Lemma it is enough to show that B(c) contains a transposition (81 81 + 1)
from the decomposition of permutation c¢. In fact, since 8,+1 — 5, = 6 for all natural n, the
transpositions of the permutation’s decomposition

l=B1B1+2)Bri+1B81+3)(BBa+2)(Ba4+1B2+3) ... (BnBrn+2)(Bn+18,+3)...
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is independent, and in the process w(l) = 2, in particular | € G. Therefore, the group B(c)
contains an involution c¢¢. Using the Assertion 1 we get

c1=c¢"=B1+281+3)(B2+2B24+3)... (B +2Bn+3)....

Now let

s=(B1+2B2)(B1+3P24+1)(B24+283)(B2+3B3+1)...(Bn +2Bns1)(Bn +3Pns1 +1)....

By condition of the Lemma 5,11 — 8, < m(n =1,2,...), therefore, w(s) < m. Thus, ¢§ € B(c)
and we get

i =(B2Ba+1)(BsBs+1)...(Bot1Bns1+1)....
Thus, cc§ = (81 f1 + 1) is a contained in B(c). The Lemma is proved. a

Assertion 2( [5], Lemma 7). Let {ai,...,ar} is a subset of set N and «o; + 1 < aj41,
1<i<k—1.1f

b=(anar +1)(aeag+1)... (g1 ap—1+ 1)(arar +1)
is the decomposition involutive permutation b € Fiin(N) into independent of transpositions,
u= (s ...ap1arar+1lag1+1...a3+1ag+1)

is cycle, then the permutation bb* has the order k.

2. Proof of the Theorem 1

Let us proceed to the direct corroboration of the theorem formulated at the end of the
introduction. Initially, it will prove the first part.
Suppose that L is a dispersion set. Then from the constrution in Section 1 of the group

Q=Q(L)=J@n

and Lemma 2 it follows that the involution a belong to the subgroup of @1, which is contained
in proper normal subgroup @ of G.

Conversely, suppose that a is contained in proper normal in G = Lim(N) subgroup. Obvi-
ously, is equivalent to, subgroup B(a) = (a? | g € G) is a proper subgroup of G. Suppose that
the set L is not dispersion. This means that there is such a natural integer m( that the set
B, (L) contains an infinite class of A. Then if p is the minimal number of the set A, then from
definition it follows that p;+1 —p; < mg for all ¢ > . Hence we deduce that B,, (L) consists of
a single class {L}, if m > max(mg, pt). Fix m; > m. Thus,

nt1l — pn <M1 (n=1,2,...).

Now let us prove that B(a) = G. Then we get a contradiction to our assumption B(a) # G
and the first part of the theorem will be proved. Firstly it should be noted, that in the group
B(a) we can find a permutation

c=BB+1)(BaBe+1)...(BuBnt+1)...,
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that for some natural m all the inequations are fulfilled
6<Bpr1—Pn<mn=1,2,...). (1)
Indeed, we will split the transpositions from decomposition a into triples:

a = (p1 p1+1)(p2 p2+1) (3 p3+1), . (u3k+1 3kt + 1) (p3kr2 paer2 +1) (U3k+3 psrrs+1) ... .

Let

t = (p2p2 +1p3) ... (U3ky2 t3kt2 + 1 psgys) ... .
Since fin11 — fin < my, therefore w(t) < my, and it means that, t € G. Therefore, if ¢ = aa’ at’
then ¢ € B(a) and by Lemma 4

)

c=(p1p1+1). .. (k1 parsr +1) ...

Thus from the inequation 2 < 11 — ftr, < myq it easily implies that 6 < pggra — pspr1 < 3myg =
m. Assuming $1 = p1, B2 = f4, ..., Bn = H3n—2,..., we get that the permutation c is the
sought fore.

Let us note that the inclusion ¢ € B(a) immediately implies that B(c) < B(a), and therefore
for the proof of the part 1 of the Theorem it is enough to establish the congruence B(c) = G. It
was noted in the introduction that the group G is generated by involutions, in decomposition into
independent transpositions of which only transpositions of the (. + 1) form take part. Since
Fin(N) < B(c) by Lemma 5, to prove the congruence B(c) = G it is enough to show that if

z=mMmn+D...(mm+t1)...,

where vp41 > v +1 (n = 1,2,...), then © € B(c). Since B(c) contains any finitary
permutation, , = (171 +1)...(
that v, > B;.

Denote L, = {v,|n € N} and consider the case when the inequations are fulfilled for the

YnYn + 1), then without loss of generality we can assume

elements of this set
T+l —Tn >0m (n=1,2,...). (2)
Let us split the set of N\ {1,2,...,51} into the segments of the integers is

__ 1783 _ 77B2n+1 __ 77B2n+s
Ar= Uy oey Dy = USEL My = US2

In virtue of the inequation (1)

|An‘ = B2n+1 - ﬂanl = (ﬁ2n+1 - ﬂZn) + (ﬁQn - ﬂQn—l) < 2m.

From inequations (2) and 7, > (3 this implies that

L, C U Ay

neN

the intersection of A, N L, for every n is either empty or contains max one element; 7;, y;
is not contained in the adjacent segments for every i # j. Thus, there is such a sequence
jl,j2,...,jn,...,that In+1 — Jn > 1(n:1,2,) and

’)/1EAjl,’YQEAjz,...,’ynEAjn,....

- 398 —



Yuri S. Tarasov On Normal Closures of Involutions in the Group of Limited Permutations

Let us define the permutation ¢ € S(N) as follows: for n = 1,2,... assume
V= Bojn, By =y (1Y =By, +1, (Boy, +1)Y =7 +1;

W=7, ify ¢ U ({vns ¥n + 1} U { B2y, Baj,, + 1}) .
neN
Since the elements 7, B2, belong to the segment A, and |A,| < 2m, then w(¥) < 2m, i.e.
1 € G. As to Assertion 1 we have

a¥ = (Boj, Bojy +1) ... (Baj, Baj, +1) ...

Now let
A1y, A2y ooy Oy vn

be elements of the set {$1,...,8n, ... }\{B2j1,---+ 52, .-}, arranged in ascending order. From
the above it follows that if a; = B, then «yy; is element of the set {Sr+1, Br+2}, and therefore
i1 — @ < Prt2 — Pr < 2m. Here i is any natural number, k = k(7). It’s easy to deduce that
the permutation

f= (041042042+1)...(a2n_1a2na2n—|—l)...

is an element of the group G. Applying Lemmas 3, 4 we get the congruence ccfcf * = 2% from
which it immediately follows that = € B(c).

Let us finally prove, that this inclusion is done in general case (without additional assumptions
that for the elements of a set L, inequations are fulfilled (2)). To do this, we fix any natural
number s > 5m, and represent the permutation z as compositions of

r=T1x2 ... Ts,
where
i = (ViYi + 1) (Yirs Vits + 1) oo (Viks Yiks +1) -0,
1 < i < s. From the definition of the permutation of z it implies that if L,, = {y;1xslk =
1,2,...}, then the adjacent elements of this set an inequation is fulfilled

Vit (k+1)s — Vitks > S > dm,

which coincides with the inequation (2) for the neighbouring elements of the set L,. But then
by proved above, z; € B(c), 1 < i < s, and therefore 2z € B(c¢). The first part of the theorem is
proved.

Let us prove the second part. Let L be a dispersion, but not comletely dispersion set. We
need to show that the normal closure of B(a) of an involution a of a group G contains an element
of infinite order. Indeed, in view of the definition for some natural number r there are pairwise
disjoint sets

Ln = {ttan, Han+1s - K8, }5

n=12,... of L that |L,| > n and py1 — p; < 7 (an <@ < B, —1). Let us define the
permutation of the u set N by its decomposition into independent cycles w, (n =1,2,...). Let

Un = (Mo, Ham+1 - Mg, Bp, T 1pg, +1pg, 1+ 1. pia, 41+ 1pa, +1).

Then w(u) < 7, i.e. u € G. According to Assertion 2 the element aa™ € B(a) is decomposed
into independent cycles which lengths is unbounded, and therefore |aa"| = co. The theorem is
proved.
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In conclusion, let us put an example of be a dispersion, but not comletely dispersion set. Let

L, :{273}7 L2:{47576}7 L3:{879710711}7 7Ln:{2n32n+1a32n+n}a

L:L1UL2UL3U---UL”U....

If 2™ is the representative of the class A = A(n,m) € B,,(L), then from definition it follows that
A contains a set L, of the (n + 1)-th element, and if m < 2" — (2"~ + n — 1), then A = L,,.
Hence we conclude that the set L is a dispersion, but not comletely dispersion set.
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O HOPpMaJIbHbIX 3aMbIKaHMNAX I/IHBO.J'IIOIJ;I/Iﬁ B I'pylIiiie
OI'paHUYE€HHBbIX IIOACTaHOBOK

FOpuii C. Tapacos

MucruryT MareMaTuku U GyHIAMEHTAJIBHON MH(HOPMATUKA
Cubupckuii dhemepasbHbIil YHUBEPCUTET

Csobogubtit, 79, Kpacuosipck, 660041

Poccus

Hsyuaemcs epynna G = Lim(N) ozpanudentur nodcmarosok muodcecmsa N 6Cex HAMYypaibHoLT -
cen. Hatidena ceasv mexncdy paccearmvumu nodmmostcecmeamu muooicecmssa N u cobcmeennvimu Hop-
MANLHBMU Nod2pynnamy epynne G.

Karoueswie crosa: 2pynna, 02paHUMEHHDIE NEPECMAHOEKY, PACCEUBAHUE, HOPMAALHAA NO0ZDYNNA, UHBO-
NOUUU.
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