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On the Solvability of a System of Two Multidimensional
Loaded Parabolic Equations with the Cauchy Data
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We study a multidimensional system of two loaded parabolic equations of a special kind with the Cauchy
data. Sufficient conditions for the existence of a solution in the class of smooth bounded functions are

obtained. The splitting method at differential level (the method of weak approzimation) is used in the
proof.
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Introduction

A study of inverse problems for systems of parabolic equations can be a time-consuming
process, therefore, in [1] there was proposed an algorithm to the study of one-dimensional direct
problems for systems of parabolic equations, to which inverse problems for loaded systems of a
special kind can be reduced. Increasing dimension of a problem leads to estimations obtained in
the process become more complex, which significantly slows down the study.

The article presents a generalization of the algorithm proposed in [1] to the multidimensional
case. In the present article we propose and investigate the following model: a system of two
multidimensional loaded parabolic equations connected by the lower terms with the Cauchy
data. Our motivation is that inverse problems for systems of linear or semilinear parabolic
equations with unknown coefficients depending only on time variable can be reduced to such
a model. The obtained result can be used as a sufficient condition for existence of a solution
to auxiliary direct problems. To prove existence of a solution we use the weak approximation
method, which is the splitting method at the differential level [2,3].

Another method of the study of systems of multidimensional parabolic equations in a special
form is presented in [4]. Similar algorithms for the study of inverse problems for parabolic
equations have been previously presented in [5,6]. The Cauchy problem for a loaded Burgers-
type system has been investigated in [7].
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1. Statement of the problem

In the space E,, of variables x1,...,x, choose r; different points a?w (k; = 1,7;) for each
variable x; (i = 1,n). In the strip

G[O,T] = {(t,l‘)|0 <t < T,:L‘ = (1’1, ce ,In) € En}
consider the Cauchy problem for the system of loaded nonclassical parabolic equations
wi(t,w) = ai (6B (1), B () tare, + Y V5B (1) By (), + frlt, 2,u,0,5, (1), B, (1)),
=1

ity x) = Z a3 (t, B (1), By (1) Vo, + Z by (t, B0 (£), By (1) Ve, + fo(t, 2,1, 0,5, (1), By (1)),

i=1
u(0,2) = up(x), v(0,2) =vo(x), x € E,, (2)
here
Pu(t) = <u<t70‘k ) 7O‘Zn)a D;“(t>ak1, ) O, ))7
2,(t) = (v(t,akl, ’O‘Zn)’ Djv(t,akl, ,ak”)) ,
$=1(81,.-48n), $i=0,1,....p;; ki=1,...,m5 i=1,...,m;
s
D;é(x) = Dgillisxn)) (z) = alaxégg;;g’ag: ),
where s = (s1, 82, ..., 8,) is a multiindex, s, > 0 is integer, r =1,2,...,n, [s| =81 + ...+ sp.
Henceforth, choose and fix the constants p; = max{p;,2}, ¢ = 1,...,n. Also, introduce the

following definitions.

Definition 1. Denote by ZP'Pn([0,t*]) the set of the functions u(t, ), v(t,z) defined in G 4]

vy Lpy

belonging to the class CHPrPr (Go,¢+)) where

t,x1,...,Tn

0
9 Dy e O(Gp.m).

Chtt2 G = {wit.o) | 5.

s:(sla"'7sn)7 si:0,1,...,pi,izl,...,n}, (3)

and bounded in Go4-) together with their derivatives occurring in (1),

> (ID3u(t, z)[ + |D3v(t, z)|) < C. (4)
5=(51,.--,5n),
$i=0,1,....ps,
i=1,...,n

Definition 2. By a classical solution to problem (1), (2) in Gg 4+ we mean a pair of functions
u(ta ‘r)vv(tvx) € Zgi::g::([oat*]); Sati‘sfying (1)7 (2) in G[O,t*]-

Here 0 < t* < T is a fixed constant. If t* depends on the constants bounding the initial data
and t* < T then we say that the functions u(t, x),v(t,x) are a solution (1), (2) ‘in the small’.
If t* is fixed and t* = T for every collection of initial data satisfying the sufficient solvability
conditions then we say that u(t,z),v(¢,z) are a solution (1), (2) ‘in the whole’ (or use the term
global solvability).
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2. The main result

Suppose that the following conditions hold:
Condition 1. The functions at, a}, bi, b% (i = 1,n) are real-valued, defined, and continuous
for all values of their arguments; a}, a’ satisfy the conditions af > ag > 0, ab > ag > 0, ap is a

veey

n

5 (10 (120,20 0) | + b (17,(0) ) +

+[b5 (8,3, () B (D) + \bé(t,wq(t)ﬂpw(t))\) < Py (Sqw(®) . (5)

Remark 1. In Conditions 1 and 3, by 71, 72 = 0 we mean some fixed real numbers,

Spw) = > (sup sup |D;q(§, =)+ sup sup Diw(é}x)l>,
5n)

. 0<¢<t z€E, 0<¢stz€eE,
5=(81,..+,8n
$i=0,1,...,p;+2
i=1,...,n

q(t, @), w(t,x) € ZE T2 2([0, 1)),
P(y) = C(1+y+--+¢%), C > 1is a constant independent of ¢(t,z), w(t,z) and their
derivatives.
Condition 2. The functions ug(z), vo(z) are real-valued and have all continuous derivatives
occurring in the following relation and satisfying it:

Y. (IDjuo(@)| + |Djvo(x)]) < C.
S=(81,---,8n),

$;=0,1,...,p;+2,

i=1,...,n

Condition 3. The functions f7, fo are real-valued, defined, and continuous for all values of their
arguments. For all t; € (0,71, q(t,z), w(t,z) € Z21+2-Pn+2([0,1,]) as functions of the variables

(t,z) € Gloy,), these functions are continuous and have continuous derivatives occurring in the
relation

> (|Dsf1(t 2, q,0,8,(t), 8, (1) | +

+ |Dgscf2 (ty z,q, w?@q(t)7¢w(t)) |) g P’Y2 (Sq,w(t)) . (6)
Theorem. Suppose that Conditions 1-8 hold. Then

l[a] If Conditions 1-3 hold for vy > 0, v = 0 or v = 1, then a classical solution
{u(t,z),v(t, )} to problem (1), (2) exists in the class ZF P~ ([0,T]).

[b] If Conditions 1-3 hold for v1 = 0, v2 > 1, then there exists a constant t*, 0 < t* < T,
depending on the constant C' of (5), (6), such that a classical solution {u(t,x), v(t,x)} to
problem (1), (2) ewists in the class Z512([0,1*]).

vy Ln
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Proof. The proof is conducted by using the splitting method on the differential lg_vel. We
use the spitting of the initial problem into two fractional steps with time shift by (t — 5) in the

traces of the unknown functions and nonlinear terms:

UZ(t»l’):22%(@¢&(t—%)7@7ﬁ( Y ) Uy, +22bl(t 90'11, ) SOU ( %)) u;f,’
=1

U;(ta Z‘) = QZ aé(t@;‘r(t - 2)7@7;7( - ) :v x; + 22 bz(t <)0u"' - %)7@5"@ - 5))’();” (7)
i=1

t
(o) =2f (t= 2w (1= 2a) o7 (= 2ow) 70 (0 2) 90 (0 1)) - ®)
1
(n+§>r<t<(n+1)r,

u” (t, ) |i<o = uo(z), V(2o =vo(x), =€ E,, (9)

heren=0,....N—-1, N7t =T,
Do (t— %): (uT(t— %,ail,...7a2n),DiuT(t— f,a,lvl,...,a}gn)),

T T ,
EL(t— 5): (’UT(t— §,a,161,...,a2n),D;vT(t— —,a,lcl,...,azn)),

$=1(81,.-48n), 8 =0,1,....p;, ks =1,....m, i=1,...,n.

S0l

[\V]

Now, establish a priori estimates that guarantee the compactness of the family of solutions
{u(t,2),v7 (t, )} to (7),(8) in classes C} ' 2" (Glo+)) for some constant 0 < t* < 7.

t,xy,..

Refer as the n-th integer time step to the half-interval (n7, (n + 1)7], n=10,1,...,N — 1.
Introduce the notation:

Suw(0) = Z (sup D;uo(:p)‘ + sup D;vo(x)D ,

zel zel

S=(81,.--,8n), Cbn Cbn

$:=0,1,...,p;+2,
i=1,...,n

Sy o (1) = Z ( sup sup D;uT(f,x)‘ + sup sup D;UT(f,x)D ,
5n)

s=(s1 nT<é<t<(n+1)T 2€EE, nT<é<t<(n+l)T x€E,

91—0 1,. 7p1+27
i= 1

nt<t<(n+1)71. (10)

The following hold:
1. ’D;uT(f,x)‘ + ‘D;N({,x)‘ < Syr o (t), € € (n7,1],

te(nr,(n+17], s=(S1,---,8n), $i=0,1,...,p; +2, i=1,n; (11)

2. the functions S, .- (t) are nonnegative and nondecreasing on each time interval (nr, (n+1)7].
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[a]. At the first fractional step ¢ € (0, Z], for the solution u™,v” to (7) with initial data (9),
by Conditions 1-3 and the maximum principle, we obtain the estimate

[u” (€, 2)] < sup Jup(2)],
pefn 0<e<t, 0<t<

[v7 (& x)| < sup |vo(z)],
xEE,

NS

Summing up the obtained estimates, we have

[uT (&, z)| + [v7 (&, 2)| < sup |up(x)| + sup |vg(z)], 0<ELE, 0<t< <. (12)

zeE, zeE,

N

We can apply the operation of differentiation D? to problem (7), (9) s = (s1,...,5n),
si=0,1,...,p;+2,i=1,...,n. By Condition 1, 2, obtain:
[Diu™ (€ 2)] < sup [Dyuo(x)],
xEE,
|DzoT (€ x)[ < sup [Dgvo()], (13)
zeE,
0<&<tte(0,5],s=(s1,...480), i =0,1,...,p;+2, i=1,...,n.

Apply sup to both sides of the inequalities (12), (13), then sup , and sum the results up,
taking int(j eafgount the notation (10), we get e

Sur vr (t) < Sun(0), 0<t< % (14)

Consider the second fractional step of the zero integer step t € (%, T]. Integrating the system

of equations (8) with respect to the time variable over the interval (%, £],€ € (3,t] and 3 <t < 7,

we obtain

€
uT(g,ac):uT(%,a:)-&-Q/T (0= Zoau (0= 5.2)07 (0= 5.2). 70 (0= 5). 85 (0= 5) ) do,

2

[

V(& a) =7 (5.2) +2/;f2(9— Tew (0= Z.2), 07 (0= 2.2) B0 (0 - 5). 70 (0 - 1) ) db,
56(%,4, %<t<7,
(6 )l < [ (5.0 +
+2/TE fi(0=Foaw (0= F.2)07 (0 5.2),95-(0- 3).25-(0- 3) ) | 0.
o7 (& )| <|om (5. ) | +
+2/f f2 (0w (0= Zo0) 07 (0 5.2), 90 (0 - )25 (0= 3) ) | oo,

T T
56(5,4, §<t<7',

The last inequality, Condition 3 (inequality (6)) and the conditions of case [a] imply

Wl <Gl +2 [ C(1+ 8w (0-7)).db,
2 z 2 T T
- ce (3] geren

T T T A T
€l <TGl +2 [ (1480 (0-3)) b

z
2

T
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whence, using the properties Sy- - (¢) in (10) and summing up the inequalities, we infer

[0 (€ @) + 07 (& @) < a7 (Goa) |+ o7 (Goa) |+ € (1+ Surar (5)) 7

¢e (%t} g<t<7'. (15)

We apply the operation of of differentiation D2, s = (s1,...,8,), $i = 0,1,...,p; + 2, i =

1,...,n, to the equation (8) and then integrate with respect to time variable. By condition 3,
we obtain

D3 (€ 0)] + D" (6,2)] < | D3 ()| + | D7 (52) |+ € (14 8T ()

2 2
¢e (%t] % <t<T $=(51,-..8n), 5i=0,1,...,p;+2 i=1,...,n. (16)
Apply sup and sup to both sides of the inequalities (15), (16) and sum them. By (10), we
TE€E, 0<e<t

see that - - -
Sufﬂ;f(t) < Suf,v‘r (5) +C (1 + Su‘rﬂ)f(§)) T, 5 <t< T
Taking into account (14), from this inequality at the zero integer time step we obtain:
Surwr () < Suw(0) + C(1+ Sy w(0)r, 0 <t <,y

here and below we assume that C' > 1 are some (generally speaking, different) constants bounding
the input data in Conditions 1-3 and independent of the splitting parameter 7.

Sur v (1) < Suw(0)+1—14+C (148, (0)7 < (1484, (0) (1+C7) =1 < (148,,.,(0))eC™—1. (17)
At the first integer time step ¢ € (7, 27], arguing similarly to the zero integer step, we have
Sur v (t) < (14 Sur o (1))e°™ =1 < (1 4+ 8,,,(0))e*°™ — 1.
In finitely many steps, on the interval ((N — 1)7, N7| we get
Suror () < (14 8u0(0))eNT —1= (1+ 8,,(0) - e“T =1 < C, ¥Vt e ((N—1)r,N7].
As a result, on [0,7] we obtain
Suror () < (14 Suw(0)) - T =1 < C, vt € [0,T].

Thus we have proved the following estimates, which are uniform in 7:

x

‘D;uT(t,x)‘ + ‘DSUT(t,x) <C,
5= (81,---,8n),8i =0,1,...,p; +2,i=1,...,n, (t,z) € Gpr. (18)

Estimates (18) imply that the right-hand sides of (7), (8) are bounded uniformly in 7 on each
time step, and hence the left-hand sides of the equations are bounded uniformly in 7:

|u[(t,m)‘ + ’v[(t,xﬂ <C, (t,z,2) € G-

We apply operation of differentiation D? for s = (s1,...,8,), s; =0,1,...,p; to (7), (8), by
(18), we obtain

‘D;uZ(t,x)‘ + ‘Divf(t,x)‘ <Cos=(81,--,80),8=0,1,....p;, i =1,...,n. (19)
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Put Gf‘g’T] = {{t,z)[0<t< T,z = (x1,....,2n) < M}. Estimates (18), (19) guarantee the
fulfillment of the conditions of the Arzela Compactness Theorem. By this theorem, some
subsequences {u™ (t,z),v™ (t,z)} of the sequences {u”(¢,z),v"(¢t,z)} of solutions to (7), (9)
converge together with all relevant derivatives to the functions u(t,z) € CyPV P (Gjop)),
v(t,x) € Cg PP (Go,ry) respectively, which, by the theorem of convergence of the weak ap-
proximation method, are the solution to (1), (2) (by virtue of the arbitrariness of M); moreover,
u(t,z) € CLP P (Gpory), v(t,x) € CpP P (Go ) . Case [a] is proved.

For case [b], repeating analogous arguments at the first fractional step, we obtain some
estimate similar to (14).

At the second fractional step, by the hypotheses of the theorem, we infer the estimate

D3 (¢ a)| + D507 (,0)| < | D (3,0)| + | D3 (5,) | +

t
+2/ P,YQ(SMM(Gfg))de, e (gt} g<t<7, i=1,....p+2.

T
2

Summing the last inequality and using the notation (10) at the second fractional step, we
obtain

Y

-
Surar(t) < Surar ()4 C [ Po(Surr (6
which, since Sy~ ,~ is nondecreasing in (%,T] , implies
t

Su"',v" (t) < Su’,v" (g) + C/ P’Y2 (Su",v’ (9)) dQ’ < t g T, (20)

Consider the Cauchy problem for the ordinary differential equation
dw(t)
dt
Recall that P,,(y) = C’(l +y—+---+y?"), y2 > 1is an integer constant, and the constants
C, C are independent of the splitting parameter 7. By the Cauchy theorem, there is a constant
0 < t* < T such that a solution to this problem w € C*[0,#*], where t* depends on C, C' and
initial condition S, ,(0). Obviously, w(t) is a strictly increasing function. We have

Lemma 1. It follows from (20), (21) that if Syur v (to) < w(to) for some to € (0,t*), then
Surwr(t) S w(t), t € [to, t*].

= CPL (1), w(0) = Su.(0). (21)

The proof of lemma is in [1].
Thus, we have proved the following estimates uniform over 7:

| Dz (t,2)| + | D3 (t,0)| <
s=1(51,...,8n), 5 =0,1,...,p; +2,i=1,...,n, (t,z) € Gl

Repeating the arguments similar to the arguments in [a], we infer that some subse-
quences {u™ (t,z),v™ (¢t,x)} of the sequences {u”(t,z),v"(t,z)} of solutions to (7)—(9) con-
verge together with all relevant derivatives to the functions wu(t,z) € Cg’pl"“’p" (G[o,t*]),

T1yeesTn

v(t,z) € CYPrepn (Glo,t+]) respectively, which, by the theorem of the convergence of the

L1, Ty
weak approximation method, are a solution to (1), (2); moreover, u(t,z) € C;’pl""’p”' (Gpo,t+))»

1 L1ye-3Tn
”U(t,IE) c Ct,’pl’m’pn (G[O,t*]) B

L1,.-,Tn
Thus, we have proved the existence of a solution "in the small"; i.e., case [b] is proved. The
proof of Theorem is complete. m]
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3. An example of the application of theorem

We examine the following Cauchy problem for a system of two-dimensional parabolic equa-
tions.
Consider in the domain Gy = {(¢,7)[0 <t < T, (z,2) € Ea} the system

Up(t, T, 2) = Ugg + Uz +u+ v+ M) F1(L, 2, 2), (22)
ve(t, 2, 2) = (cos(t) + 3) gz + Vaz + vz + v, +u+ v+ Fao(t, x, 2),
u(0,2,2) = up(x, 2), v(0,z,2) =vo(x,2), (x,2)€ Es. (23)

The function A(t) is to be determined simultaneously with the solution u(¢, z, z), v(t, z, z) of
the problem.
The overdetermination condition is given by

u(t, o, B) = (t), (24)
(a, B are constants), the compatibility condition holds

uo(, B) = 1(0).

About the input data we assume that they are known functions, sufficiently smooth, have all
continuous derivatives occurring in the relations and satisfy them

Fi(t,a,8) > >0, 4 isa constant.

ak1+k2uo

Oxk10zk2

~ ’

‘ ak1+kzv0

8k1 +k2 F
Oxk10zk2

ak1 +k2 F
Oxk10zk2

Oxk10z2k2

ki, ke =0,1,...,4. (25)

()] + 1 ()] + \

By using the overdetermination conditions (24), the problem (22), (23) is reduced to the
auxiliary direct problem:

V(1) — e (t, o, B) —usa(t, o, B) =9 — v(t, o, B)
Fy(t, o, B) Bt 2), (26)
vi(t, z, 2) = (cos(t) + 3)Vpg + Vzp + Vg + v, +u+ v+ Fa(t, 2, 2),

ug(t, @, 2) =Ugat Uz ,Futv+

u(0,z,2) = ug(x,2), v(0,z,2) =wvo(x,2), (z,2)€ Es. (27)
The problem (26), (27) fits into the model proposed above. Here

itz u,0,9,(1), 8,(t) = u+ v+
¢/(t) - ua::r(t70476> - uzz(t7a75) - ’(/} - ’U(t7aaﬁ)
Fl(tvaa/B)

+ Fl(t7x72)7
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fo(t,z,u,v,8,(t),8,(1t) =u+ v+ Fa(t,x, 2).

The constants p; = {2, 1}, p; = max{p;, 2} = 2.
We verify the conditions of the theorem.
Condition 1.

2

Z(Wi (1 Bu(0), B0 (1))] + |ab (1, (). B (D) +

i=1
+ [0 (1, 2 (1), B, (1)) | + |b§(t,sou(t>,%(t))l) =5+ cos(t) +3 <9
Thus, the condition is satisfied when v; = 0.

Condition 2 is satisfied by the assumptions on the input data (25).
Condition 3.

> (IDsA(t 2w 0,2,),8,0)| + |Dsfa(t2,u,0,8,(1),5,1)|) =

s;=0,1,...,4,
=1,2
olsl

s=(s1,s2),
Si:_oi,l,..‘, s

7wb/(t) - uaca:(t7 a, B) - uzz(t7 «, ﬁ) - — ’U(t, «, ﬂ)

Fi(t Fy(t <
* Fl(taaaﬁ) 1(7x’Z)+ 2(’x’Z)
olsl
< ) cC ‘am818252 (14w + v+ uaa(t, o, B) + sz (t, o, B) + v(t, a,ﬁ)))' <
s=(s1,82),
s;=0,1,...,4,
i=1,2
< Pl (Su,v(t)) .
Consequently, condition 3 is satisfied when 75 = 1. Hence, the classical solution u(t,z,z),

v(t,z, z) to the auxiliary direct problem (26), (27) exists, for example, in the class Z2:2([0,T7).

The research for this paper was carried out in Siberian Federal University within the framework
of the project "Multidimensional Complex Analysis and Differential Equations” funded by the
grant of the Russian Federation Government to support scientific research under supervision of
a leading scientist, no. 14.Y26.31.0006.
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O pa3penmMoCTH CUCTEMBI JIBYyX MHOTOMEPHBIX
Harpy>KeHHbIX MapaboMm4ecKnX ypaBHEHUIA
c mauabIMu Kommm

T'anuua B. Pomanenko
Hrops B. ®posieHkoB

WMucturyT MaremMaTuku u GyHIaMEHTAIBHON NHMOPMATUKHI
Cubupckuii deiepajbHbIl yHUBEPCUTET
Csobonmsrii, 79, Kpacuosipck, 660041

Poccust

Hccaredosara mro2omMepHas cucmema 08YxT napabosuiecKur HaepYHCeHHHT YPasHeHuli CNeyuaibH020 GU-
da 6 cayuae darnnvir Kowu. Ioayuernv, docmamoywrvie Yeao8us CyuLeCmeos8aHusi PEWEeHUS 8 KAacce 2aa0-
KUX 02paHuMeHHur ynruyuti. Ias dokaszamensvcmea ucnosv3dyemes memod pacuenienus Ha ougpgeper-
YUAALHOM YPoBHE (MEMOO cAabOT ANNPOKCUMAYLUL,).

Karoueswie caosa: obpamnas 3adaua, npamas 3a0a4ua, HA2DYHCEHHOE YPAGHENUE, NAPLOOAUMECKOE YPaG-
HeHue, MEmMod caabotll ANNPOKCUMAUUL, CUCTNEMDL YPABHEHRUT 8 YACMHBIT NPOU3BOOHHIT, 3adayua Kowu.
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