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Monepnmaunﬂ MeTOaa HHTeraJIbHOﬁ AlllIPpOKCUMalluH
anoCTEePHOPHOI MJIOTHOCTH BEPOSITHOCTH
B 3aJavax TaKTOBOM CHHXPOHHU3ALIMA T'CHEPATOPOB

A.B. Psi00B, I1.A. ®eqronun, M.IO. IIpecHsikoB

BYHI] BBC «BBA um. npog. H.E. JKykoeckozo u IO.A. I'acapunay
Poccus, 371600, Boponeorc, yn. Cmapwix bonvwesuros, 54a

Ipeonodicena modepnuzayus memooa UHMEZPAIbHOU ANRPOKCUMAYUY ANOCHEPUOPHOU NAOMHOCMU
pacnpeoeienus 6eposmHOCIU NPU Peatu3ayuu aieopummos azoeol asmonooCmpouKy Yacmomsl,
N03601A10WASl NOBBICUTNG MOYHOCb TMAKMOBOU CUHXPOHU3AYUYU 8 MENEKOMMYHUKAYUOHHBIX Cemax u
VMEHLULUMb 8PEMST 6XONCOEHUS 8 CUHXPOHUSM.

Kuroueswie crosa: maxmosas cunxponuzayus, pazosas agmonoocmpoura 4acmomaol, UHMe2palbHAs
AnnPoOKCUMayus, QuUIbmpayus, CUHXPOHUIM.

Introduction

In modern telecommunication networks the quality of data transmission largely depends upon
the accuracy of clock synchronization. Furthermore, in high-speed networks in order to provide the
minimum synchronization time at the start and the minimum time of a sync recovery process in
case of a breakdown, the synchronization requirements are becoming more severe. In addition, if the
sync mode is continuous and automated, the high stability of the network element synchronism is
required.

Solving oscillator clock synchronization problems in telecommunication networks is normally
based upon designing a phase-locked loop system of oscillator frequency at the receiver site. Moreover,
for a phase-locked loop implementation the phase of the received signal should be estimated [1].

Let the signal produced by a reference oscillator at the transmitter site of a telecommunication

channel, be a harmonic motion

S(1,9) = Asin(w,t +¢()). 1)
where — 7 < ¢(f) < « denotes a random Wiener phase, defined by the equation:

do()di=n,@), @

where n,(f) is the additive white Gaussian noise (AWGN) determined by the internal reference oscillator
noise, with zero mean and the correlation function M[n,(#)n,(t,)] = (N,/2)-3(t, — t)).

At the receiver site of the communication channel there is a mixture of desired signal and noise:

E()=560)+n,0), 3)
where n,(?) is the AWGN determined by external noise, with the expected value with zero mean and the
correlation M[ny(t))ny(t,)] = (No/2)-6(t, — ;) [1].

In order to create a self-oscillator phase-locked loop system at the receiver site it is necessary to
obtain an optimal filtering algorithm for a received signal phase ¢(f). Let the highest posterior probability
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density of a random signal phase and the minimum mean square filtering error be optimality criteria.
Then it is necessary to solve the problem of a received signal phase filtering for a small signal-to-noise
ratio.

Since the Equation in (3) is nonlinear in relation to phase ¢(?), it is essential to solve the task of
nonlinear Wiener phase filtering. In theory finding the solution is based upon solving Stratonovich
SDEs.

0p(t,p)/01=025N,0" p(t.9)/09* +| F(t,0)- [F(t.o)p(t.0)do |p(t.0); @)

-

Fe0)=2N;'€()-SE.o)f =248 (N, sin(,t +9(1)). 5)

Nevertheless, an accurate solution to the nonlinear filtering equations can be obtained in few

cases [1, 2]. Therefore, it is essential to focus upon developing approximate nonlinear filtering equation
solutions.

The aim of this paper is to compare and analyze the existing solution methods of nonlinear

Stratonovich SDEs and to suggest modernizing the general approximation method of the posterior

probability density function, which increases the accuracy of signal phase filtering and reduces the

time of entering into synchronism.

1. Analysis of the nonlinear filtering equation solution techniques

for a random received signal phase

The most common technique is synthesizing algorithms of nonlinear filtering using the ways of
approximation to the posterior probability density p(¢, ), some function p(¢, ¢, @) belonging to the
parameterized class ac'¥ [1].

The techniques of approximating to the posterior probability density function can be subdivided
into two categories: the local density approximation and the global approximation [1].

In local approximation approximate filtering algorithms are obtained due to an accurate solution
approximation for a small set of assessment values (ﬁ(t) of the filtering parametric variable. This
approach allows to obtain functional algorithms in special cases.

Normally the local density approximation is based upon replacing a probability density function
p(t, ) by a probability density function of a normal distribution p (((3 (t)R(t)), where -1 <@ (t)<7£ ,
0< R(t)< 0,

Let us look at some quasi optimal algorithms based upon this approach.

1. The extended Kalman filter (EKF)

This quasi optimal algorithm is based on reducing the initial nonlinear filtering task to a linear
due to expanding nonlinear functions which are part of observation equations and signal message
equations in a Taylor series a close vicinity of the estimation value @ [1].

Consequently, the algorithm of phase filtering is as follows:
d/dt =245 RN, cosyt +0(1)); ©)
dR(t)/dt =N, /2 A’ R*()N,". 0

2. Local approximation techniques based on finding approximate solutions to Stratonovich SDEs.
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To obtain a solution the posterior probability density logarithm p(z, ¢) is to be expanded in a
Taylor series near the tentative estimate ¢ corresponding to the highest posterior probability density
[1]. The equations of phase filtering estimation and mean square filtering error can be represented in

the following way:
d/dt=24EOREON,' cosyt +¢(1)); ®)

dR(t)/dt =N, |2 4" R*(t)(t)N, ' sin(wyt +@(1)). )

The main drawback of local approximation techniques for the posterior probability density is the
fact that they can only be applied when filtering errors are minimal, i.e. the SNR is high, and a good
approximation of the main filtering equation is required only in a close vicinity of a filtering parametric
variable @ (¢). This drawback makes it impossible to apply this method of approximation to solving
many important practical problems [2].

In global approximation approximate filtering algorithms are obtained due to approximating
an accurate solution p(¢, ¢) to some probability density function p(¢, ¢, @) chosen in accordance
with physical representations. The solution is sought within the whole range of possible values
of the filtering parametric variable ¢. A certain integral criterion is required, which is especially
important for a small signal-to-noise ratio [2]. The minimum Kullback-Leibler divergence can
be regarded as such a criterion, as it ensures minimal information loss due to the posterior
probability density approximation [3]. The advantage of this criterion consists in emphasizing
the tails of the distribution and in increasing their significance. According to this criterion for
a fitting probability density function a parametric variable @ is chosen in such a way that it

minimizes the integral [3]:

a(r)=min™ {— Tp(t» o)in[p(t. p.a)/ p(c, w)]dw} : (10)

Here is the necessary condition for the minimum Kullback-Leibler divergence [3]:

Ta[p(n ¢,0)|/0a p(t, p)indp=0. (11

Then the general equation for parametric variables of the fitting probability density function can

be represented as follows:

. M{ L{GIH{P(L (ﬂ’“)}ﬂjLM{aln{P(% (P,“)}]F(t, o)

_ oo oo 12)

da. 00"

where M['] is a mathematical expectation; L[] is an operator that is the backward dual Fokker-Planck-
Kolmogorov Equation [3]
Let us look at the two known types of general approximation [2, 4].
1. The approximating probability density is found in the normal probability density class
POORW)) [2. 41
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PGORO)=1/{2n ROexp L @O0 () 2RE)} . (13)

In this case the random Wiener phase filtering algorithm will be the following [2]:
d¢/dt=24EOREN;' exp{-R(E)2)cos @yt +6 (1)); (14)

dR(t)/dt =N, |2-24AR*(t)E(t)N, " exp{- R(t)/2}sin(e,t + p(t)). (15)

2. The T-distribution approximation is [2]:

p(t,p.0)=1/ 271, (A)expiAcoslp—m, (1))}, (16)

where [y(A) is a modified zero order Bessel function of imaginary argument; a = {m,(t), A(t)} are
distribution parameters, 4 > 0; pe[m, — w, m, + m].

This probability density function approaches the normal law of distribution with period 2x
recurrence if the A value is high; if 4 — 0, it converges into uniform probability density.

Then the random Wiener phase filtering algorithm may be written in the following way [2]:

d my©)fdt =248 ON;' /AQ) cos @t +m, (0)): (17)

dA(0)/dt=—N,, |4 f;(A)+ 24 ()N sinleyt +m, (t)), (18)
where 2

I/A(r)= T((/’— m,(0)) p(t. p.a)dp; (19)

-0

F()= LAV LA =LA A LAY 1, (AF ) (20)

I, (A) is a modified zero order Bessel function of imaginary argument.
If we look at the dependence between the filtering error variance and the signal-to-noise ratio for

the algorithms mentioned above,

g=44*/(N, - N,) Q1)

we will see that for a large signal-to-noise ratio the accuracy of all the algorithms will be close to the
potential accuracy.

For asmall signal-to-noise ratio the accuracy of filtering algorithms based upon the abovementioned
approximation techniques will be considerably lower than the potential accuracy.

The most accurate filtering algorithm from the ones mentioned above can be implemented with
the help of the general T-approximation (17), (18) [2]. Nevertheless, this algorithm is lengthy and hard
to put into practice, whereas the quasi optimal algorithm of local approximation is the least accurate
for the small value domain of the signal-to-noise ratio [2].

With the signal-to-noise ratio ¢ — 0, in accordance with the accepted criterion, the value of the

variances under consideration approaches the limit
limM {[p—p()] }=7°/3. 22)
q—>
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When there is no desired signal, the filtering error of all the algorithms is uniformly distributed
within the (-xt, ) interval.

Furthermore, the abovementioned algorithms do not meet the minimal time of acquiring
synchronization requirement which is essential for developing phase-locked loop systems.

Consequently, the analysis of the algorithms mentioned above has shown that they are insufficient

for solving the problem.

2. Modernizing the global approximation method
of posterior probability density

In order to solve the problem of filtering a received oscillation phase with a small signal-to-noise
ratio it is appropriate to use the modernized general approximation technique based upon using the
AWGN.

Let us represent the filtering error variance R(¢) of the truth posterior probability p(z, ) density of

a random Wiener filter signal phase as:
1/R(t)=1/R1(t)+3/7*, (23)

where RI1(7) is the filtering error variance component of approximating posterior probability density
without considering the constant component.

Now we search for the approximating probability density in the class of normal probability density
distribution of type (13) with regard to the Expression in (23).

plp.m(t) G1(1) = G127 expl-GI(t) (@ —m, ()] /2 (24)
Gl(t)=1/R1(t)=G(t)-3/7"; (25)

where 0 < G1(f) < .
Then using Functions (24) and (25) we seek the approximate received signal phase ¢(?) filtering

algorithm:
dm,(t)/dt=24E)N,'/ (G(t)— 3/x? )cos(a)ot +o(1)); (26)

dG(t)/dt=-N, J2(G()-3/7* ] +24 ()N, sin(wyt + (1)) 27)

Figures 1 and 2 show the dependency of the R(f) = d? variance and the inverse function of the
1/d? variance of a stationary filtering error on the signal-to-noise ratio ¢ obtained due to simulation
modeling of algorithms (4), (7), (18) and (27).

In addition, the d” function corresponds to an exact solution (4), the d,* function corresponds
to the extended Kalman filter (7); the d,> function is a T-approximation (18); the d;* function is the
modernized general approximation (28).

In Fig. (2) and (3) the &? function and the d5* functions coincide.

As we can see from the simulation results analysis, the modernized technique of approximating to
the general posterior probability density suggested by the authors helps to obtain the random phase ¢(7)
filtering algorithm of the received signal that coincides with an accurate solution. Therefore, in order to

solve the problem under consideration, this algorithm (26), (27) can be regarded as an optimal one.

— 467 —



M- e0T)
35

25

05

i

0 2 4 4 3 10 12 14 q

0 2 4 4 3 10 12 14 9

Fig. 2. Dependency of the inverse function of the 1/a? variance of a stationary filtering error on the signal-to-noise
ratio ¢
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Fig. 2 shows that there is a line coming out from the point 3/n? corresponding to an accurate
solution. For the small value domain of the signal-to-noise ratio the dependency graphs of the inverse
function of the 1/a? variance of a stationary filtering error on the signal-to-noise ratio g obtained due to
algorithms (7) and (18) have nonlinear parts.

Consequently, in order to estimate the filtering algorithm optimality of a random signal phase it is
worthwhile using the inverse function, but not the filtering error variance itself. Then a linear function
should be the optimality criterion.

Algorithms (18) and (27) differ due to their multipliers with N,/2 as part of the first summand.

We can modernize the extended Kalman filter algorithm represented by Expressions (6) and (7)

in the same way. After being modernized it will look as follows:

dpldt=24£()N," /(G()-3/7 )cos(at + (2)); (28)
dG(t)/di=-N, J2(G(1)-3/7*] + 4/N,, 29)
where G(t) = IR(®).
Conclusions

We have suggested the way of modernizing the general approximation method of posterior
probability density for a random received signal phase, due to this modernization distribution limits
and the limit of the function are taken into consideration.

The filtering algorithms for a random received signal phase that we have developed due to the
obtained approximation meet the optimality criterion for both high and small signal-to-noise ratio.
These algorithms make it possible to implement the phase-locked loop system in High Precision
Oscillators as well as to gain the time of entering into synchronism, which is vitally important for

developing high-speed telecommunication networks.
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