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Модернизация метода интегральной аппроксимации  
апостериорной плотности вероятности  
в задачах тактовой синхронизации генераторов

А.В. Рябов, П.А. Федюнин, М.Ю. Пресняков
ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина» 

Россия, 371600, Воронеж, ул. Старых Большевиков, 54а

Предложена модернизация метода интегральной аппроксимации апостериорной плотности 
распределения вероятности при реализации алгоритмов фазовой автоподстройки частоты, 
позволяющая повысить точность тактовой синхронизации в телекоммуникационных сетях и 
уменьшить время вхождения в синхронизм.
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Introduction

In modern telecommunication networks the quality of data transmission largely depends upon 
the accuracy of clock synchronization. Furthermore, in high-speed networks in order to provide the 
minimum synchronization time at the start and the minimum time of a sync recovery process in 
case of a breakdown, the synchronization requirements are becoming more severe. In addition, if the 
sync mode is continuous and automated, the high stability of the network element synchronism is 
required.

Solving oscillator clock synchronization problems in telecommunication networks is normally 
based upon designing a phase-locked loop system of oscillator frequency at the receiver site. Moreover, 
for a phase-locked loop implementation the phase of the received signal should be estimated [1].

Let the signal produced by a reference oscillator at the transmitter site of a telecommunication 
channel, be a harmonic motion

( )( )ttAtS ϕωϕ += 0sin),( . (1)

where – π ≤ φ(t) ≤ π denotes a random Wiener phase, defined by the equation:

( ) ( )tntdtd ϕϕ = , (2)

where nφ(t) is the additive white Gaussian noise (AWGN) determined by the internal reference oscillator 
noise, with zero mean and the correlation function M[nφ(t1)·nφ(t2)] = (Nφ/2)·δ(t2 – t1).

At the receiver site of the communication channel there is a mixture of desired signal and noise:

( ) ( ) ( )tntSt 0, += ϕξ , (3)

where n0(t) is the AWGN determined by external noise, with the expected value with zero mean and the 
correlation M[n0(t1)·n0(t2)] = (N0/2)·δ(t2 – t1) [1].

In order to create a self-oscillator phase-locked loop system at the receiver site it is necessary to 
obtain an optimal filtering algorithm for a received signal phase φ(t). Let the highest posterior probability 
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density of a random signal phase and the minimum mean square filtering error be optimality criteria. 
Then it is necessary to solve the problem of a received signal phase filtering for a small signal-to-noise 
ratio.

Since the Equation in (3) is nonlinear in relation to phase φ(t), it is essential to solve the task of 
nonlinear Wiener phase filtering. In theory finding the solution is based upon solving Stratonovich 
SDEs.

 2
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Nevertheless, an accurate solution to the nonlinear filtering equations can be obtained in few 
cases [1, 2]. Therefore, it is essential to focus upon developing approximate nonlinear filtering equation 
solutions.

The aim of this paper is to compare and analyze the existing solution methods of nonlinear 
Stratonovich SDEs and to suggest modernizing the general approximation method of the posterior 
probability density function, which increases the accuracy of signal phase filtering and reduces the 
time of entering into synchronism.

1. Analysis of the nonlinear filtering equation solution techniques  
for a random received signal phase

The most common technique is synthesizing algorithms of nonlinear filtering using the ways of 
approximation to the posterior probability density p(t, φ), some function p(t, φ, α) belonging to the 
parameterized class α∈Ψ [1]. 

The techniques of approximating to the posterior probability density function can be subdivided 
into two categories: the local density approximation and the global approximation [1].

In local approximation approximate filtering algorithms are obtained due to an accurate solution 
approximation for a small set of assessment values ( )tϕ  of the filtering parametric variable. This 
approach allows to obtain functional algorithms in special cases.

Normally the local density approximation is based upon replacing a probability density function 
p(t, φ) by a probability density function of a normal distribution ( ) ( )( )tRtp ϕ , where ( ) πϕπ <<− t , 

( ) ∞<< tR0 .
Let us look at some quasi optimal algorithms based upon this approach.
1. The extended Kalman filter (EKF)
This quasi optimal algorithm is based on reducing the initial nonlinear filtering task to a linear 

due to expanding nonlinear functions which are part of observation equations and signal message 
equations in a Taylor series a close vicinity of the estimation value ϕ  [1]. 

Consequently, the algorithm of phase filtering is as follows:

( ) ( ) ( ))(cos2 0
1

0 ttNtRtAtdd ϕωξϕ  += − ; (6)
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 ( ) ( ) 1
0

222 −−= NtRANdttdR ϕ . (7) 

2. Local approximation techniques based on finding approximate solutions to Stratonovich SDEs. 

To obtain a solution the posterior probability density logarithm p(t, φ) is to be expanded in a 

Taylor series near the tentative estimate ϕ)  corresponding to the highest posterior probability 

density [1]. The equations of phase filtering estimation and mean square filtering error can be 

represented in the following way: 

 (7)

2. Local approximation techniques based on finding approximate solutions to Stratonovich SDEs.
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To obtain a solution the posterior probability density logarithm p(t, φ) is to be expanded in a 
Taylor series near the tentative estimate ϕ  corresponding to the highest posterior probability density 
[1]. The equations of phase filtering estimation and mean square filtering error can be represented in 
the following way:

( ) ( ) ( ))(cos2 0
1

0 ttNtRtAtdd ϕωξϕ  += − ; (8)

 4

 ( ) ( ) ( ))(cos2 0
1

0 ttNtRtAtdd ϕωξϕ )) += − ; (8) 

 ( ) ( ) ( ) ( ))(sin2 0
1

0
22 ttNttRANdttdR ϕωξϕ

)+−= − . (9) 

The main drawback of local approximation techniques for the posterior probability density 

is the fact that they can only be applied when filtering errors are minimal, i.e. the SNR is high, and a 

good approximation of the main filtering equation  is required only in a close vicinity of a filtering 

parametric variable )(tϕ) . This drawback makes it impossible to apply this method of approximation 

to solving many important practical problems [2]. 

In global approximation approximate filtering algorithms are obtained due to approximating 

an accurate solution p(t, φ) to some probability density function p(t, φ, α) chosen in accordance with 

physical representations. The solution is sought within the whole range of possible values of the 

filtering parametric variable φ. A certain integral criterion is required, which is especially important 

for a small signal-to-noise ratio [2]. The minimum Kullback-Leibler divergence can be regarded as 

such a criterion, as it ensures minimal information loss due to the posterior probability density 

approximation [3]. The advantage of this criterion consists in emphasizing the tails of the 

distribution and in increasing their significance. According to this criterion for a fitting probability 

density function a parametric variable α  is chosen in such a way that it minimizes the integral [3]: 
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Here is the necessary condition for the minimum Kullback-Leibler divergence [3]: 
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where M[·] is a mathematical expectation; L+[·] is an operator that is the backward dual Fokker-

Planck-Kolmogorov Equation [3] 

Let us look at the two known types of general approximation [2, 4]. 

1. The approximating probability density is found in the normal probability density class 

( ) ( )( )tRtp ϕ)  [2, 4]: 
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In this case the random Wiener phase filtering algorithm will be the following [2]: 
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where M[·] is a mathematical expectation; L+[·] is an operator that is the backward dual Fokker-

Planck-Kolmogorov Equation [3] 

Let us look at the two known types of general approximation [2, 4]. 

1. The approximating probability density is found in the normal probability density class 
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In this case the random Wiener phase filtering algorithm will be the following [2]:
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2. The T-distribution approximation is [2]: 

 ( ) ( ) ( )( ){ }tmItp ϕϕπϕ −ΛΛ= cosexp21,, 0α , (16) 

where I0(Λ) is a modified zero order Bessel function of imaginary argument; α = {mφ(t), Λ(t)} are 

distribution parameters, Λ ≥ 0; φ∈[mφ - π, mφ + π]. 

This probability density function approaches the normal law of distribution with period 2π 

recurrence if the Λ value is high; if Λ → 0, it converges into uniform probability density. 

Then the random Wiener phase filtering algorithm may be written in the following way [2]: 
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( )Λ1I  is a modified zero order Bessel function  of imaginary argument. 

If we look at the dependence between the filtering error variance and the signal-to-noise 

ratio for the algorithms mentioned above,  

 ( )0
24 NNAq ⋅= ϕ  (21) 

we will see that for a large signal-to-noise ratio the accuracy of all the algorithms will be close to 

the potential accuracy. 

For a small signal-to-noise ratio the accuracy of filtering algorithms based upon the 

abovementioned approximation techniques will be considerably lower than the potential accuracy. 

The most accurate filtering algorithm from the ones mentioned above can be implemented 

with the help of the general T-approximation (17), (18) [2].  Nevertheless, this algorithm is lengthy 

and hard to put into practice, whereas the quasi optimal algorithm of local approximation is the least 

accurate for the small value domain of the signal-to-noise ratio [2].  

With the signal-to-noise ratio q → 0, in accordance with the accepted criterion, the value of 

the variances under consideration approaches the limit 
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When there is no desired signal, the filtering error of all the algorithms is uniformly 

distributed within the (-π, π) interval. 
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When there is no desired signal, the filtering error of all the algorithms is uniformly 

distributed within the (-π, π) interval. 
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When there is no desired signal, the filtering error of all the algorithms is uniformly distributed 
within the (-π, π) interval.

Furthermore, the abovementioned algorithms do not meet the minimal time of acquiring 
synchronization requirement which is essential for developing phase-locked loop systems.

Consequently, the analysis of the algorithms mentioned above has shown that they are insufficient 
for solving the problem.

2. Modernizing the global approximation method  
of posterior probability density

In order to solve the problem of filtering a received oscillation phase with a small signal-to-noise 
ratio it is appropriate to use the modernized general approximation technique based upon using the 
AWGN.

Let us represent the filtering error variance R(t) of the truth posterior probability p(t, φ) density of 
a random Wiener filter signal phase as:
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without considering the constant component. 

Now we search for the approximating probability density in the class of normal probability 
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Figures 1 and 2 show the dependency of the R(t) = d2 variance and the inverse function of 

the 1/d2 variance of a stationary filtering error on the signal-to-noise ratio q obtained due to 

simulation modeling of algorithms (4), (7), (18) and (27). 
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Figures 1 and 2 show the dependency of the R(t) = d2 variance and the inverse function of the 
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2 function corresponds 
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In Fig. (2) and (3) the d2 function and the d3
2 functions coincide.

As we can see from the simulation results analysis, the modernized technique of approximating to 
the general posterior probability density suggested by the authors helps to obtain the random phase φ(t) 
filtering algorithm of the received signal that coincides with an accurate solution. Therefore, in order to 
solve the problem under consideration, this algorithm (26), (27) can be regarded as an optimal one.
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 ( ) ( )( ) 0
22232 NAtGNdttdG +−−= πϕ , (29) 

where G(t) = 1/R(t). 

 

CONCLUSIONS 

We have suggested the way of modernizing the general approximation method of posterior 

probability density for a random received signal phase, due to this modernization distribution limits 

and the limit of the function are taken into consideration. 

The filtering algorithms for a random received signal phase that we have developed due to 

the obtained approximation meet the optimality criterion for both high and small signal-to-noise 

ratio. These algorithms make it possible to implement the phase-locked loop system in 

High Precision Oscillators as well as to gain the time of entering into synchronism, which is vitally 

important for developing high-speed telecommunication networks. 
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We have suggested the way of modernizing the general approximation method of posterior 
probability density for a random received signal phase, due to this modernization distribution limits 
and the limit of the function are taken into consideration.

The filtering algorithms for a random received signal phase that we have developed due to the 
obtained approximation meet the optimality criterion for both high and small signal-to-noise ratio. 
These algorithms make it possible to implement the phase-locked loop system in High Precision 
Oscillators as well as to gain the time of entering into synchronism, which is vitally important for 
developing high-speed telecommunication networks.
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