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The theoretical basis of two classical recursive algorithms is considered in the paper. They are beamform-
ing algorithm based on the Kalman filter and the least squares algorithm based on QR decomposition. An
algorithm that minimizes the noise at the output of an antenna array is proposed on the basis of these
two algorithms. The algorithm allows one to maintain a constant level of the received useful signal.
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Introduction

Modern navigation receivers of global satellite systems have a significant drawback – low
interference immunity [1]. To solve this problem, navigation receivers are based on phased array
antennas that use adaptive beamforming techniques.

Pattern control is widely used in applications such as navigation, radar, wireless communica-
tion and others. The beamforming technique is one of the most popular methods to form digital
antenna directional diagram. This technique allows one to form maximum in the antenna dia-
gram in the direction of useful signal and to form null in the antenna diagram in the direction of
interference. Then interference is suppressed and useful signal is accumulated from appropriate
directions. The overall effect of this treatment is determined by the difference in useful signal and
interference and statistical characteristics of useful signal and interference. Since beamforming
takes place in digital form, it is necessary to use digital techniques that could be performed in
real time. Therefore, the solution of this task depends on both hardware and software.

We consider theoretical foundations of digital beamforming algorithms such as the recursive
Kalman filtering algorithm and the recursive least squares algorithm based on the QR decompo-
sition (QR-RLS)[2].

On the basis of these two algorithms we propose an algorithm that minimizes the noise at
the output of an antenna array and allows one to maintain a constant level of the desired signal.
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1. Kalman filtering algorithm

The Kalman filtering algorithm is an important adaptive digital signal processing algorithm.
It is an efficient recursive filter that estimates the state vector of a dynamic system and uses
a series of incomplete and noisy measurements. The Kalman filter for recursive estimation
of the state vector of a dynamic system is known a priori. In order to calculate the current
state of a system it is necessary to know the current measurement and the previous state of
the filter. Thus, the Kalman filter, like other recursive filters, operates in time rather than in
the frequency domain. The Kalman filter produces not only estimates of the current state but
also uncertainty (distribution density) of the state vector that is based on Bayes’ formula of
conditional probability.

Traditional Kalman filter has the following parameters:

K(n) = K(n, n− 1)− F(n, n+ 1) ·G(n) ·C(n) ·K(n, n− 1),

G(n) = F(n+ 1, n) ·K(n, n− 1) ·CH · [C(n) ·K(n, n− 1) ·CH(n) +Q2(n)]
−1

,

α(n) = y(n)−C(n) · x(n|yn−1),

(1)

where C(n) is the observation matrix, F(n, n+ 1) is the state transition matrix.
In the case of not induced noise dynamic model the process converges to white noise with zero

mean and unit variance. Therefore, some parameters of the state space converge to a constant
and they are

F(n+ 1, n) =
√
λI, C(n) = uH(n), Q2(n) = 1,

K(n) =
K(n− 1)

λ
− g(n) · u(n)H ·K(n− 1)√

λ
,

g(n) =
K(n− 1) · u(n)

√
λ
(
1 + u(n)

H ·K(n− 1) · u(n)
) ,

α(n) = y(n) = uH(n) · x(n|yn−1).

(2)

Using expressions (2), we obtain parameters of the Kalman filter:

g(n) =
K−1(n) · u(n)√

λ
,

K−1(n) = λ ·K−1(n− 1) + u(n) · u(n)H,

K−1(n) · x(n+ 1|yn) =
K−1(n− 1) · x(n|yn−1)√

λ
+

u(n) · y(n)√
λ

.

(3)

Then, by rewriting the expression K−1(n) = K−H/2(n) · K−1/2 and using the lemma on
matrix inversion, we define the Kalman filter in the form of pre-array and post-array as follows


√
λ ·K−H

2 (n− 1)
√
λ · u(n)

xH(n|yn−1) ·K−H
2 (n− 1) y∗(n)

0T 1

 θ(n) =

 K−H
2 (n) 0

xH(n+ 1|yn) ·K−H
2 (n) α∗(n)√

r(n)√
λ · uH(n) ·K 1

2 (n)
√
r(n)

 . (4)

With the help of relation (4) coefficients of the Kalman filter can be recursively computed.
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2. Recursive least squares algorithm based on the QR-
decomposition (QR-RLS)

A recursive algorithm for adaptive filtering that uses QR-decomposition estimates the filter
coefficients in the current step in terms of the filter coefficients calculated in the previous step.
Due to its recursive nature the algorithm is called the recursive least squares algorithm (RLS).
The basic idea of the QR-factorization is to convert a matrix into a product of an orthogonal
matrix Q and an upper triangular matrix R.

Let us assume that m and n are any positive integers greater than 0. The QR-decomposition
of matrix A of size m× n for every m > n has the form

A=QR. (5)

Let Q be a unitary matrix, i.e., Q · QH = I, where I is the identity matrix and R is m × n

upper triangular matrix. Then equation (5) can be written in the divided form

A = QR = Q

[
R1

0

]
=
[
Q1 Q2

] [R1

0

]
=Q1R1, (6)

where R1 is an n × n triangular matrix, Q1 is an m × n matrix and Q2 is an m × (m − n)

matrix.
Matrix R can be obtained with the use of Givens rotations [3]. A Givens rotation is repre-

sented by a transformation matrix Gij of the form

G(i, j) =



1 0
. . . 0

0 1

c . . . s

1
...

. . .
...

1

−s . . . c

1

0
. . .

1



(7)

where c and s appear at the intersections of ith and j th rows and columns. These elements
satisfy the following condition

s2 + c2 = 1. (8)

Matrix Gi is an orthogonal matrix and it represents the plane rotation because elements c
and s can be represented as c = cos(φ) and s = sin(φ). Properly selecting elements c and s and
multiplying matrix A by transformation matrices G1,G2, ...,Gn−1, one can reduce matrix A to
an upper triangular matrix. Now we proceed to the QR-RLS algorithm.

Assume that the amplitude of navigation signal is significantly lower than the intensity of
the interference. Then, the signal does not have significant influence on the estimate of the
correlation matrix of the interference Φ̄.
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Suppose that at the inputs of M -element phased array there is an interference with the
instantaneous oscillations u1(t), u2(t), . . . uM (t). Oscillation phases are shifted relative to each

other due to the path difference ∆D from element to element by an amount ∆φ =
2π
λ

· ∆D.
According to the Kotelnikov theorem, interfering signals at the output of the i -th element of a
phased array can be represented as a set of discrete samples of instantaneous amplitude uil with
sampling period TD = 1/2fm (fm is the maximum frequency in the spectrum of the received
interference signal) (Fig. 1). Here, i = 1, 2,. . . , M ; l = 1, 2,. . . , k are the numbers of discrete
samples.

Fig. 1. Sampling signal interference

The cross-correlation between signals of the channels i and j is defined as the arithmetic

mean of the correlation points uiuj over the number of counts l from 1 to k−φij =
1

k

k∑
l=1

uilujl.

Upon introducing the complex amplitudes of instantaneous discrete values of uil and ujl,
integrated mutual correlation time is defined as

V̂ =
1

k

k∑
l=1

uilu
∗
jl/2. (9)

The weight vector at stage n is defined as

w(n) = [w0(n), w1(n), ... , wM−1(n)]
T
. (10)

The objective function for the RLS algorithm is

δ(n) =
n∑

i=1

λn−i|e(i)|2, (11)

where e(i) = d(i)−wH(n) ·u(i). Let wH(n) be the optimum value such that the target function
δ(n) is minimal. This value satisfies the normal equation of the form [4]

Φ(n) ·w(n) = z(n), (12)

where Φ(n) =
n∑

i=1

λn−1 · u(i) · u(i)H , z(n) =
n∑

i=1

λn−1 · u(i) · d∗(i).

The last two equations can be written in a recursive form as follows
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Φ(n) =λ ·Φ(n− 1) + u(n) · u(n)H ,

z(n) = λ · z(n− 1) + u(n) · d∗(n).
(13)

Next we use the lemma on matrix inversion. The inverse of A + αBB∗T has the form [5]

(
A+ αBB∗T )−1

= A−1 − αA−1BB∗TA−1

1 + αB∗TA−1B
. (14)

Using (14), we obtain

P(n) =
P(n− 1)

λ
− k(n) · u(n)H ·P(n− 1)

λ
, (15)

where P(n) = Φ−1(n), k(n) =
λ−1 ·P(n− 1) · u(n)

1 + λ−1 · u(n)H ·P(n− 1) · u(n)
= P(n) ·u(n) = Φ−1(n) ·u(n).

Using relations given above, we can obtain expression for the weight vector in the constraint
equation (4):

w(n) = Φ−1(n) · z(n), w(n) = P(n) · z(n),
w(n) = λ ·P(n) · z(n− 1) +P(n) · u(n) · d∗(n),

w(n) = P(n− 1) · z(n− 1)− k(n) · u(n)H ·P(n− 1) · z(n− 1) +P(n) · u(n) · d∗(n),

w(n) = w(n− 1)− k(n) · u(n)H ·w(n− 1) +P(n) · u(n) · d∗(n),

w(n) = w(n− 1) + k(n) · ξ∗(n),

(16)

where ξ∗(n) = d(n)−wH(n− 1) ·u(n). From equations (15) and (3) one can observe correspon-
dence between the RLS algorithm and the Kalman filter. Let us rewrite Φ(n) as

Φ(n) = Φ− 1
2 (n) ·Φ−H

2 (n), (17)

and introduce a new variable

p(n) = Φ
H
2 (n) ·w(n) = Φ− 1

2 (n) · z(n). (18)

Then the RLS algorithm can be represented in the form of pre-array and post-array similar
to the previously described Kalman algorithm:


√
λ ·Φ 1

2 (n− 1) u(n)√
λ · pH(n− 1) d(n)

0T 1

 θ(n) =

 Φ
1
2 (n) 0

pH(n) ξ(n)√
γ(n)

uH(n) ·Φ−H
2 (n)

√
γ(n)

 , wH(n) = pH(n)·Φ− 1
2 (n). (19)

The QR-RLS algorithm is used to solve the problem of adaptive beamforming due to its
recursive nature, computational efficiency and numerical stability [6].

3. An algorithm for minimizing the noise at the output
of an antenna array and maintaining a constant level
of the useful signal

One of the most promising methods for adaptation of the antenna arrays is the method of
minimum variance distortionless response (MVDR). The MVDR algorithm allows one to increase
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the signal to noise ratio in the desired direction while suppressing the interference of received
signals.

The problem of minimizing the noise at the antenna array and maintaining a constant level
of useful signal can be formulated as follows:

min

w(n)

n∑
i=1

λn−i|e(i)|2, (20)

where e(i) = wH(n) · u(i), with the constrain

wH(n) · s(θ0) = 1, (21)

where s(θ0) is the vector that determines the direction of the source signal. Taking into account
constraints (21), a weight vector for the antenna array can be written as follows [7]:

w(n) =
Φ−1(n) · s(θ0)

sH(θ0) ·Φ−1(n) · s(θ0)
. (22)

Let us define additional vector α(n) = Φ− 1
2 (n) ∗ s(θ0). Then we rewrite expressions for the

weight vector and error estimates as follows

w(n) =
Φ−H

2 (n) · α(n)
||α(n)||2

,

e(n) =
αH(n) ·Φ− 1

2 (n) · u(n)
||α(n)||2

,

e′(n) = αH(n) ·Φ− 1
2 (n) · u(n).

(23)

When parameters of the MVDR algorithm are set, it is possible to solve the problem of
maintaining a constant level of useful signal in the QR-RLS algorithm and present it in the form
of pre-array and post-array as follows

√
λ ·Φ 1

2 (n− 1) u(n)√
λ · αH(n− 1) d(n)

0T 1

 θ(n) =

 Φ
1
2 (n) 0

αH(n) −e′(n)√
γ(n)

uH(n) ·Φ−H
2 (n)

√
γ(n)

 . (24)

After calculating parameters with the use of (24), one can estimate the error:

e(n) =
−(−e′(n) ·

√
γ(n))

||a(n)||2
. (25)

4. Representation of the MVDR algorithm as a systolic
array

Expressions obtained above show that the calculation of the response of a phased array an-
tenna with the use of MVDR algorithm or its predecessor the QR-RLS algorithm involves matrix
multiplication. This requires a series of Givens rotations. It is known that the consistent imple-
mentation of the matrix multiplication is inefficient. Real time signal processing systems that use
the QR-RLS and MVDR beamforming algorithms require a more efficient matrix multiplication
algorithm.
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In 1978, Kung and Leiserson have proposed systolic arrays for matrix calculations in very
large-scale integration systems. The systolic array is based on the method of triangular com-
plex rotations and it significantly increases productivity of calculations in comparison with the
traditional method of complex Givens rotations.

A systolic array system contains individual processing cells arranged in a specific structure.
Each individual cell has its own function and local memory. Furthermore, only adjacent cells are
connected to each other.

Data are written in a systolic array of processing cells on the entrance. Then data are pro-
cessed, stored in local memory and transmitted to adjacent cells. This processing and sending
the processed data in each cell lasts as long as the data stream reaches the end of the system
where final results of calculation are obtained. The propagation of data through a systolic array
resembles the pulse of the human circulatory system. The name is derived from the medical term
systole as an analogy to the regular pumping of blood by the heart. This approach allows one
to significantly reduce the time required to perform QR-decomposition using the same computa-
tional resources. The second advantage of the proposed scheme is that the QR-decomposition is
executed such that the upper triangular matrix R has only real diagonal elements. This greatly
simplifies the subsequent inversion of the matrix R with the use of back-substitution algorithm.

Consider the MVDR algorithm. After applying Givens rotations to (24), we obtain lower
triangular matrix in the right hand side of (24) and set input vector u(n) to zero. The number
of elements in the input vector u(n) corresponds to the number of antennas.

To set the input vector to zero, it is necessary to apply a number of Givens rotations. The
number of rotations is the number of elements in the input vector because each Givens rotation
sets one element of the input vector to zero. In general, the MVDR beamforming algorithm with
K antennas requires K Givens rotations.

Calculations of Givens rotations can be performed in parallel because there is no data depen-
dency between elements.

Let us consider expressions (7) and (8). One can see that each Givens rotation changes only
certain elements of the pre-array, other elements are remained unchanged. To illustrate this we
present the MVDR algorithm in the case of the antenna array consisting of three elements.

Step 1: 
Φ1,1 0 0 u1

Φ2,1 Φ2,2 0 u2

Φ3,1 Φ3,2 Φ3,3 u3

α1 α2 α3 0

0 0 0 1

 ·


cos 0 0 − sin′

0 1 0 0

0 0 1 0

sin 0 0 cos

 , (26)

where
Φ′

1,1 = (Φ1,1 · cos) + (u1 · sin),
u′

1 = (Φ1,1 · (− sin′)) + (u1 · cos) = 0,

Φ′
2,1 = (Φ2,1 · cos) + (u2 · sin),

u′
2 = (Φ2,1 · (− sin′)) + (u2 · cos), Φ′

2,2 = Φ2,2,

Φ′
3,1 = (Φ3,1 · cos) + (u3 · sin),

u′
3 = (Φ3,1 · (−sin∗)) + (u3 · cos),

Φ′
3,2 = Φ3,2, Φ′

3,3 = Φ3,3,

α′
1 = α1 · cos, α′

2 = α2,

α′
3 = α3, β′ = α1 · (−sin∗).
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Step 2: 
Φ′

1,1 0 0 0

Φ′
2,1 Φ′

2,2 0 u′
2

Φ′
3,1 Φ′

3,2 Φ′
3,3 u′

3

α′
1 α′

2 α′
3 β′

β′ β′ β′ β′

 ·


1 0 0 0

0 cos 0 − sin′

0 0 1 0

0 sin 0 cos

 , (27)

where
Φ′′

1,1 = Φ′
1,1, u

′′
1 = 0,

Φ′′
2,1 = Φ′

2,1, Φ
′′
2,2 = (Φ′

2,2 · cos) + (u′
2 · sin),

u′′
2 = (Φ′

2,2 · (− sin′)) + (u′
2 · cos) = 0,

Φ′′
3,1 = Φ′

3,1, Φ
′′
3,2 = (Φ′

3,2 · cos) + (u′
3 · sin),

u′′
3 = (Φ′

3,2 · (−sin∗)) + (u′
3 · cos),

Φ′′
3,3 = Φ′

3,3, α
′′
1 = α′

1, α
′′
2 = (α′

2 · cos) + (β′ · sin),
α′′

3 = α′
3, β

′′ = ((α′
2 · (−sin∗)) + (β′ · cos)).

Step 3: 
Φ′′

1,1 0 0 0

Φ′′
2,1 Φ′′

2,2 0 0

Φ′′
3,1 Φ′′

3,2 Φ′′
3,3 u′′

3

α′′
1 α′′

2 α′′
3 β′′β′′ β′′ β′′ β′′

 ·


1 0 0 0

0 1 0 0

0 0 cos − sin′

0 0 sin cos

 , (28)

where
Φ′′′

1,1 = Φ′′
1,1, u′′′

1 = 0,

Φ′′′
2,1 = Φ′′

2,1, u′′′
2 = 0,

Φ′′′
2,2 = Φ′′

2,2, Φ′′′
3,1 = Φ′′

3,1, Φ′′′
3,2 = Φ′′

3,2,

Φ′′′
3,3 = (Φ′′

3,3 · cos) + (u′′
3 · sin),

u′′′
3 = (Φ′′

3,3 · (−sin∗)) + (u′′
3 · cos),

α′′′
1 = α′′

1, α′′′
2 = α′′

2,

α′′′
3 = (α′′

3 · cos) + (β′′ · sin),
β′′′ = ((α′′

3 · (−sin∗)) + (β′′ · cos)).
Φ′′′

1,1 0 0 0

Φ′′′
2,1 Φ′′′

2,2 0 0

Φ′′′
3,1 Φ′′′

3,2 Φ′′′
3,3 0

α′′′
1 α′′′

2 α′′′
3 β′′′

β′′′ β′′′ β′′′ β′′′

 . (29)

Fig. 2 shows the block diagram of the triangular systolic array that may be used to calculate
the QR-decomposition of 3-by-3 matrix.

During systolic cycle processors execute one operation and transfer data to adjacent nodes
of the triangular systolic array. Fig. 2 also shows the input and output data streams. The
input vector is loaded after every systolic cycle. The square in Fig. 2 denotes the inside cell.
It is responsible for the application of the elementary Givens rotations to the relevant matrix
elements in accordance with expression (7).

The error e(n) is calculated by the following formula: e(n) =
−(−e′(n) · γ− 1

2 (n) · γ 1
2 (n))

||a(n)||2
.

The circle with the index "x" corresponds to this operation on the diagram shown in Fig. 2.
Other circles shown on the diagram denote border cells. These cells are responsible for the

calculation of diagonal elements of the transformed matrix.
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Fig. 2. Block diagram of the triangular systolic array

Conclusion

The proposed structure of the triangular systolic array is optimized for implementation in
large scale integrated circuits. It is based on triangular complex rotations and enables the
efficient implementation of the QR-decomposition of complex matrices. The proposed structure
can decrease the time of computation of QR-decomposition by 35% in comparison with the
QR-RLS algorithm.

This work was supported by the Ministry of Education and Science of the Russian Federation
(agreement No. 14.575.21.0081, project RFMEFI57514X0081).
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Синтез алгоритма пространственной фильтрации с
сохранением постоянного уровня полезного сигнала

Валерий Н. Тяпкин
Дмитрий Д. Дмитриев

Юрий Л.Фатеев
Николай С. Кремез

Военно-инженерный институт
Сибирский федеральный университет
Академгородок, 13А, корпус 8, 660036

Россия

В статье рассматриваются теоретические основы формирования диаграммы направленности на
на основе двух классических рекурсивных алгоритмов — алгоритм фильтра Калмана и алгоритм
наименьших квадратов на основе QR-разложения. На основе этих двух алгоритмов синтезиро-
ван алгоритм минимизации шума на выходе антенной решетки, что позволяет поддерживать
постоянный уровень принимаемого полезного сигнала.

Ключевые слова: фазированная антенная решетка, адаптивные алгоритмы, фильтр Калмана,
рекурсивный метод наименьших квадратов, QR-разложение.
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