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Introduction
Suppose L is an algebraic language and A is an algebra of type L. If we attach the elements of

A as constants to L, then the new language will be denoted by L(A). Let X be a class of algebras
of type L and A ∈ X. We say that A is existentially closed in the class X, if every existential
sentence φ in the language L(A) which is true in some extension A ⊆ B ∈ X, is also true in A.
If we restrict ourself to the positive existential sentences, then we obtain the definition of an
algebraically closed algebra in the class X. Equivalently, A is existentially closed in X, if and
only if every finite set of equations and inequations with coefficients from A, which is solvable in
some B ∈ X containing A, already has a solution in A itself. Similarly A is algebraically closed
in X, if and only if every finite set of equations with coefficients from A, which is solvable in
some B ∈ X containing A, already has a solution in A.

Many articles have already been published concerning the existentially and algebraically
closed algebras in several algebraic structures. In a preprint, M. Shahryari investigated some
applications of these concepts to special classes of groups (see [5]). In this paper, we focus on
distributive lattices. Already, in [4] J. Schmid proved that in the class of distributive lattices, a
lattice A is algebraically closed if and only if, it is boolean. Also, he showed that A is existentially
closed, if and only if, it is an atomless boolean lattice (see [4]). Schmid asked about the situation
in which a distributive lattice is strongly algebraically closed. Note that we say that an algebra
A is strongly algebraically closed in a class X, if every set of equations (finite or infinite) with
coefficients from A, which is solvable in some B ∈ X containing A, already has a solution in A.
In the case of lattices, it is easy to see that such a distributive lattice must be a complete boolean
lattice. In this paper, we define the notion of a q′-compact lattice and we show that if such a
lattice is also complete boolean, then it is strongly algebraically closed. The organization of the
paper is as follows: in Section 1, we show that if a class X of lattices is inductive and closed
under elementary sublattices, then every element of X has an extension which is existentially
closed in X. In fact, this result is not new and at least a version of it for classes of groups
is presented in [5]. However, in our version, the assumption of being closed under elementary
substructures is applied instead of the stronger hypothesis of being closed under substructures.
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In Section 2, we collect some elementary properties of algebraic and existentially closed lattices
in some small classes. We also obtain a connection between variants of the property of being
equationally noetherian and completeness of distributive lattices. Section 3 consists of a review
of some notions of unltraproduct construction and universal algebraic geometry. The last section
contains a proof of the main theorem. The reader can consult any standard text of universal
algebra and model theory for basic notions of logic, and also any book of lattice theory can be
used for elementary definitions of lattices. We will assume that the reader is familiar with free
lattices, boolean lattices and algebras and the possibility of extending any distributive lattice to
a boolean one.

1. Existentially closed lattices
For lattices A and B we write A 6 B if A is a sublattice of B and refer to this as an extension

of H. An equation with parameters (or coefficients) in lattice A is an expression of the form

f(a1, . . . , am, x1, . . . , xn) ≈ g(a1, . . . , am, x1, . . . , xn)

where f, g are lattice polynomials and a1, . . . , am ∈ A are the parameters. Replacing ≈ by ̸≈,
we obtain an inequality (with parameters in A). A finite system of equations and inequations
with parameters in A has the form:

S = {f1 ≈ g1, . . . , fm ≈ gm, fm+1 ̸≈ gm+1, . . . , fm+n ̸≈ gm+n}.

Note that expressions of the form f 6 g or f < g may be replaced by f∧g = f or f∧g = f, f ̸≈ g,
respectively, so there is no need to include such expressions in our considerations. A lattice A
is called existentially closed, if any finite consistent system of equations and inequations with
coefficients from A, has a solution in A. A system S with coefficients in A is called consistent,
if there is an extension B, such that S has a solution in B. One can generalize this definition to
an arbitrary class of lattices. Let X be a class of lattices. A lattice A ∈ X is called existentially
closed in the class X, if every X-consistent system S has a solution in A. Here, X-consistency
means that there exists a lattice B ∈ X which contains A and S has a solution in B. Recall
that a class of lattices is called inductive, if it contains the union of any chain of its elements. A
version of the following lemma which uses of the assumption of being closed under substructure
is known at least for classes of groups. But we give a proof for the lattice case with a weaker
assumption of being closed under elementary substructure. Also note that, sorts of the lemma
and the forthcoming theorem are standard in model theory for elementary classes of first order
structures, but the classes used in our versions are not necessarily axiomatizable.

Lemma 1.1. Suppose that X is an inductive class of lattices which is closed under the operation
of taking elementary sublattices. Let A ∈ X. Then there is B ∈ X which A ⊆ B and |B| 6
max{ℵ0, |A|}. Also, for any finite system of equations and inequations S over A, we have either
of the following assertions:
(1) S has a solution in B.
(2) For any extension B ⊆ C ∈ X, the system S has no solution in C.

Proof. Let κ = max{ℵ0, |A|}. It is clear that the cardinal of the set of all systems of equations
and inequations with coefficient A is at most κ. So, we can suppose {Sα} is the set of all such
systems indexed by ordinals 0 6 α 6 κ. Let A0 = A and suppose that Aγ ∈ X is previously
defined such that |Aγ | 6 κ and

β < γ =⇒ Aβ ⊆ Aγ .

Suppose that Kα = ∪γ<αAγ . Since X is inductive, so Kα ∈ X, also

|Kα| 6
∑
γ<α

|Aγ | 6 κ2 = κ.
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If Sα has no solution in any extension of Kα, then we let Aα = Kα. If there is C ∈ X such
that Kα ⊆ C and Sα has a solution u = (u1, . . . , un) in C we let Aα to be the least elementary
sublattice of C containing Kα and the solution u = (u1, . . . , un). Note that by Lowenheim-
Skolem theorem, we may assume that Aα has the cardinality at most κ. Recall that X is closed
under elementary sublattice, consequently Aα ∈ X. In this way, for all 0 6 α 6 k the lattice Aα

is defined. Also,
β < α =⇒ Aβ ⊆ Aα.

Now, we put B =
∪
Aα ∈ X. This lattice has the desired properties. Because, if a system

S = Sα has no solution in B, then it has no solution in any extension of Kα. Therefore, it has
no solution in any extension B.

Theorem 1.2. Suppose that X is an inductive class of lattices closed under elementary sublattice
and A ∈ X. Then there is A∗ ∈ X such that:
(1) A 6 A∗.
(2) A∗ is existentially closed in class X.
(3) |A∗| 6 max{ℵ0, |A|}.

Proof. Assume A0 = A and A1 = B, where B is the lattice already obtained in Lemma 1.1.
Now, suppose that Am is already defined and Am+1 is the lattice which its existence is proved
in Lemma 1.1 for A = Am. Let

A∗ = ∪mAm.

Since X is inductive, so A∗ ∈ X and as well A∗ satisfies condition (1) and (2). Suppose that S is
a consistent system with coefficients from A∗. Since S is finite, so there exists m such that S is
system with coefficient in Am. Therefore, S has a solution in Am+1.

As an application, suppose that X is the class of distributive lattices. Then by the above the-
orem, every distributive lattice A has an extension B with the cardinality at most max{ℵ0, |A|},
such that B is existentially closed in X. Since by [4] such a lattice is an atomless boolean lattice,
so we conclude that every distributive lattice A can be extended to an atomless boolean lattice
of the cardinality at most max{ℵ0, |A|}.

2. Existentially closed lattices in small classes

Suppose A is a sublattice of B. Then the class X = {A,B} is inductive. In this section
we discuss about the situation in which A is algebraically or existentially closed in X. If this
happens, then we simply say that A is algebraically (existentially) closed in B. Recall that a
sublattice A of a lattice B is called a retract of B, if there is a homomorphism (termed retraction)
φ : B → A which is identity on A. We will show that every retract of B is algebraically closed
in B. A similar investigation for the case of groups is done By Miasnikov and Romankov in [3].
Here, we assume that X = {x1, x2, . . . , xn} is a finite set of variables, and FL[X] is the free
lattice with basis X.

Definition 2.1. A lattice A is called equationally noetherian, if any system of equations with
coefficient in A is equivalent with a finite subsystem. If any system of equations over A is
equivalent with a finite system then it is said weakly equationally noetherian.

In the following theorem we prove some properties of retracts. This theorem as well as its
proof is the lattice version of the similar theorem for groups in [3].

Theorem 2.2. Let A 6 B be a lattice extension. Then the following hold:
(1) If A is a retract of B, then A is algebraically closed in B.
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(2) Suppose that B is finitely presented and A is finitely generated. Then A is algebraically
closed in B if and only if A is a retract.

(3) Suppose that B is finitely generated relative to A and A is equationally noetherian. Then
A is algebraically closed in B if and only if A is a retract.

Proof. Suppose that A is a retract of B and φ : B → A is a retraction. Let

S = {f1 ≈ g1, . . . , fm ≈ gm}

be a finite system of equations that has a solution b1, . . . , bn in B. Then one can check that S
has a solution φ(b1), . . . , φ(bn) in A. This shows that A is algebraically closed in B.

To prove (2), assume that A is generated by a finite set a1, . . . , am and B is a finitely presented
as B = ⟨b1, . . . , bn |r1 ≈ s1, . . . , rk ≈ sk⟩. Every ai can be expressed as a lattice word in letters
b1, . . . , bn, so assume that ai = φi(b1, . . . , bn), for i = 1, . . . , m. Consider the system of equations

φ1(x1, . . . , xn) ≈ a1, . . . , φm(x1, . . . , xn) ≈ am,

r1(x1, . . . , xn) ≈ s1(x1, . . . , xn), . . . , rk(x1, . . . , xn) ≈ sk(x1, . . . , xn)

with the constants ai ∈ A. This system has a solution

x1 = b1, . . . , xn = bn

in B. Hence the system has a solution

x1 = u1, . . . , xn = un

in A. Now, we can define the map q : b1 → u1, . . . , bn → un. Since (u1, . . . , un) satisfies
the defining relations of B, so this map is a lattice homomorphism. Furthermore, we have
q(ai) = q(φi(b1, . . . , bn)) = φi(q(b1), . . . , q(bn)) = φi(u1, . . . , un) = ai. This shows that q is a
retraction. Statement (3) is similar to (2).

We say that a lattice extension A 6 B is discriminating, if for any finite set W of elements
from B, there exists a retraction h : B → A whose restriction into W is injective. The following
theorem gives some equivalences of being existentially closed in a lattice B. It is a lattice form
of a similar theorem from [3] and so we don’t give any proof.

Theorem 2.3. Let A 6 B be a lattice extension. Then the following hold:
(1) If A 6 B is discriminating, then the sublattice A is existentially closed in B.
(2) Suppose that B is finitely generated relative to A and A is equationally noetherian. Then

A is existentially closed in B if and only if the extension A 6 B is discriminating.

3. Existentially closed lattices in class of distributive lattices
In [4] J. Schmid studied algebraically closed and existentially closed distributive lattices. He

proved that a distributive lattice is algebraically closed if and only if it is a boolean lattice. He
showed also that a distributive lattice is existentially closed if and only if it is free of atoms.
He worked within the class D whose elements are distributive lattices. In [4] J. Schmid shows
that any strongly algebraically closed distributive lattice is a complete boolean lattice. The
main aim of this article is to prove that a complete boolean lattice having the property of being
q′-compactness is strongly algebraically closed.

Definition 3.1. A lattice A in a class X is said strongly algebraically closed if every system
(not necessarily finite) of equations with parameters in A which has a solution in some extension
B ∈ X, has already a solution in A.
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We will need the compactness theorem of Godel-Malcev and so we give a short review of this
theorem. Recall that a set of formulas T in a language L is called satisfiable in a class X (or T
is realized in X), if one can assign some elements from a particular algebraic structure from X
as values to the variables which occur in T in such a way that all formulas from T become true.
The set T is called finitely satisfiable in X, if every finite subset of T is realized in X (see [1]
and [2]).

Theorem 3.2 (Compactness Theorem). If a set of first-order formulas T is finitely satisfiable
in a class X, then T has a solution in an ultraproduct of structures from X.

As an special case, we focus on the case of lattices and systems of equations. Let X be a class
of lattices, and S be system of equations of lattices. If every finite subset S0 ⊆ S has a solution
in element of X, then S has a solution in an ultraproduct of elements of X.

Corollary 3.3. Let A be a lattice and S be an arbitrary system of equations over A. If any
finite subsystem S has a solution in A, then S has a solution in an ultrapower of A.

Equationally and weak equationally noetherian boolean algebras (with coefficients) are char-
acterized by Shevlyakov in [6]. In the proof of our main theorem, we will need his results. As
is shown in [6], a boolean algebra A is equationally noetherian if and only if it is finite; and it
is weak equationally noetherian if and only if it is complete. In what follows, we need a new
generalization of the concept of equational noetherian algebra. I am grateful to my supervisor
M. Shahryari who introduced this idea to me. Let X be a possibly infinite set of variables. Let A
be an algebra in a language L. A system S of equations in language L(A) and variables in X is
said to be finitary, if it contains finite number of variables. Let S and S′ be two finitary systems
and suppose that the sets of variables occurring in S and S′ are respevtively {x1, . . . , xn} and
{x1, . . . , xm}. Let also n 6 m. We say that S is reducible to S′ over A, if and only if, for some
extension B ⊇ A we have VA(S) = An ∩ π(VB(S

′)). Here π is the projection Bm → Bn and
VA(S) and VB(S

′) are the sets of solutions of S and S′ in A and B, respectively.
We say that the algebra A is finitary equational noetherian, if every finitary system of equa-

tions in the language L(A) is reducible over A to a finite system. The following proposition
gives a close connection between completeness of lattices and finiteness conditions for systems of
equations.

Proposition 3.4. Let A be an equationally noetherian lattice. Then A is complete. Conversely,
if a distributive lattice A is complete, then it is finitary equational noetherian.

Proof. Let A be equational noetherian and K ⊆ A be a non-empty set. We show that K has the
largest lower bound. Let L = {b ∈ A : b 6 K} and consider the following system of equations

x ∧ a ≈ x (a ∈ K),

x ∧ b ≈ b (b ∈ L).

This system is equivalent over A to some finite subsystem

x ∧ a1 ≈ x,

...
x ∧ an ≈ x,

x ∧ b1 ≈ b1,

...
x ∧ bm ≈ bm,
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where ai ∈ K and bj ∈ L, for all i and j. Suppose x = a1 ∧ · · · ∧ an. Clearly, this x is a
solution of the second system in A and hence it is a solution of the first system. This shows that∧
K = a1 ∧ · · · ∧ an, so A is complete.
Now, suppose that A is a complete distributive lattice. As we saw at the end of the Section 2,

A can be embedded in a boolean lattice, so suppose that B is the smallest boolean lattice
containing A. Clearly B is complete and so, by [6], B is weak equational noetherian in the
language L′(B), where L′ is the language of boolean algebras. Note that every system of equations
in the larger language L′(B) can be transformed to a system of equations in L(A), by introducing
finitely many new variables and finitely many new equations. Let X be a possibly infinite set of
variables and S be a finitary system of equations in the language L(A) and variables x1, . . . , xn.
We know that there exists a finite system S0 in the language L′(B) (and with the same variables)
such that VB(S) = VB(S0). Introducing some new variables and new equations in the language
L(A), we obtain a finite system T such that VB(S0) = π(VB(T )), where π is a projection. Now,
we have

VA(S) = An ∩ VB(S) = An ∩ VB(S0) = An ∩ π(VB(T )).

This shows that S is reducible to a finite system and so A is finitary equational noetherian.

Let S be a system of equations in A. The set of all logical consequences of S over A is
the radical RadA(S). In other words, RadA(S) is the set of all lattice equations f ≈ g such
that VA(S) ⊆ VA(f ≈ g). We say that two lattices A and B are geometrically equivalent, if
for any system S, we have RadA(S) = RadB(S). We say that a lattice A is q′-compact, if it
is geometrically equivalent to any of its elementary extensions. We are now ready to prove our
main theorem.

Theorem 3.5. Let A be complete boolean lattice which is q′-compact. Then A is strongly alge-
braically closed in the class of distributive lattices.

Proof. Let L′ be the language of boolean algebras. Note that, in the same time we can
consider A as a boolean algebra. Let S be a consistent system in the language L(A). Clearly,
S is also a system in L′(A). Since A is complete so by [6], it is a weak equational noetherian
boolean algebra. So, there is a finite system T in the language L′(A) equivalent to S over A. We
know that every finite S0 ⊆ S is consistent, and by the result [4] of Schmid, A is algebraically
closed. Hence, every such S0 has a solution in A. By Corollary 3.3, S has a solution in some
ultra-power B = AI/U . Note that B is also a distributive lattice, and since it is an elementary
extension of A, and A is q′-compact then

RadA(S) = RadB(S).

On the other hand, we have
RadA(S) = RadA(T ).

Since T is finite, we also have
RadA(T ) = RadB(T ).

This shows that S and T are equivalent over B. Therefore, T has a solution in B and consequently
in A. Thus S has a solution in A. Note that according to Proposition 3.4, T is a finite system
in the language L′(A). But by introducing a finite number of new variables and a finite number
of new equations we can transform it to a finite system in L(A). To do this, we perform the
following actions:

1. If T contains the boolean constants 0 and 1, then there will be no change, since 0, 1 ∈ A.
2. If T contains therm x′, then we introduce a new variable y and insert new equations

x ∧ y ≈ 0 and x ∨ y ≈ 1, instead.
3. If there appears a term of the form a′, then again there will not be any change. 2
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О сильно алгебраически замкнутых решетках
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В этой статье исследованы некоторые фундаментальные свойства экзистенциально и алгебраи-
чески замкнутых решеток. Определено также понятие сильно алгебраически замкнутой решет-
ки. Показано, что q′-компактное полная булева решетка сильно алгебраически замкнута.
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