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Parameters and characteristics of mathematical models in practice is often known only 
approximately. At the same time there is a significant need for consideration of the effect of initial data 
errors on the solution of the problem. This is due to the requirements of improving the reliability of 
devices to prevent accidents and disasters. 

Another urgent Problem – the synthesis of optimum characteristics of the materials and of the 
design parameters. One of the difficulties here is the high dimensionality of the relevant Problems. 

Classes of Problems 

Problems can be both linear and nonlinear, stationary and dynamic. 
Main allowable applications: 
– Linear and nonlinear algebraic optimization 
– Eigenvalue problem 
– Calculation of the electric and electronic circuits 
– Electrostatics and electrodynamics 
– The theory of heat conduction, including phase transitions 
– The theory of elasticity and thermoelasticity 
– Hydro and gas dynamics, aerodynamics 
– Optimal control problem 
– Equations of chemical kinetics 
– Kolmogorov equation 
– Mechanical dynamics equations 
– Problems in the theory of composite and powder materials 
– Problems in the Theory of Heat and Mass Transfer 
– Virtually any non–standard combination of these models 

Additional Features 

1.	 Sensitivity of the solutions to the problem of change of its coefficients. 
2.	 Optimization of the shape and size of structures and accounting errors of their parameters.
3.	 Building a robust (simplified) models. 

Specific advantages of the method 

Number of the approximately given parameters is unlimited and does not influence the 
computational cost and accuracy of the method.

In contrast to methods based on statistical modeling or on linearization the solution almost exactly 
calculated regardless of the magnitude of variation of the parameters and characteristics.

An important advantage of this method is its effectiveness in the case of functional errors that are 
more difficult to take into account the methods variants, or the method of statistical modeling (error 
characteristics of materials and design parameters are very often to be seen as functional). 

A numerical method, based on which the program is relatively simple, but very effective and 
versatile (detailed information can be provided for an extra charge). 

Standard packages (Pscpice, ELCUT, SAMCEF, etc.) do not provide the user with such 
capabilities. 
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1. Examples of typical tasks
1.1.	Problem of linear and non–linear programming with approximate coefficients 

Example: The objective function: f (x, p) → max {x ∈ Ω}. 
Restrictions: ax = b, a ∈ A, b ∈ B; p ∈ P. 
Notation: x – vector of optimization variables, Ω – area optimization, a – approximation of a given 

matrix, b, p – approximation of a given vector, A – interval matrix, B, P – interval vectors. 

1.2. Accounting error characteristics of materials and other parameters of the problem

Example 1. Calculation of Transient with the error in the initial data. The corresponding Cauchy 
problem for the system of equations of state nonlinear electric circuit: 

dx/dt = f (x, t, u), t ∈ (0, tF); x (0) = x0,	

where x, f, and u – vector function: 
x = (x1, ..., xm), f = (f1, ..., fm), u = (u1, ... , ur), x 0 – the vector of initial conditions: x 0 = (x 01, ..., x 0m), 

x – vector of dependent state variables, u – the vector of parametric and functional errors in describing 
the accuracy of the job characteristics of the circuit elements: u ∈ V = {| u i | ≤ u i0 , i = 1, ..., r}. 

The error parameter may be a constant (u i = const), and functional u i = u i (t). 
Results of the solution: interval estimates of the solution x (tF) or some other specified quality 

criteria – functional J (u, t F) on the set V. 
Example 2. The calculation of the potential ϕ and the electric field vector E = – grad ϕ: 

div (ε grad ϕ) = – ρ, M ∈ V; ϕ = ϑ (M), M ∈ Г,	  

where M – the point of the computational domain V with coordinates (x, y, z), Г – border area; 
ε = ε (M, E), ρ = ρ (M), ϑ = ϑ (M) – approximation of a given dielectric constant, charge density, 

the potential on the boundary: 

ε∈[ε–(M,Е),ε+(M,Е)], ρ ∈ [ρ–(M),ρ+(M)], ϑ ∈ [ϑ–(M),ϑ+(M)].	

Results solutions – the corresponding ranges of values ​​of the potential ϕ or the electric field E(M): 
ϕ ∈ [ϕ – (M), ϕ + (M)], E ∈ [E – (M), E + (M)], M ∈ V. 

1.3. Synthesis of optimal characteristics of materials and design parameters 

The selection of suitable material properties, providing maximum values ​​of quality in the field of 
the given points. 

Example. The calculation of the optimum parameters of the problem for the temperature 
field: 

div (λ grad u) + q = 0, M ∈ V; u = ϕ, M ∈ Г; F (u) → max, 	

where M – V point computational domain coordinates (x, y, z), 
λ = λ (u, M), q = q (u, M), ϕ = ϕ (M) – the desired thermal conductivity, heat distribution and 

temperature values ​​on the boundary, which may belong to a set of values: 

λ∈[λ–(u,M), λ +(u,M) ], q ∈[ q–(u,M), q+(u,M) ], ϕ ∈ [ϕ–(M), ϕ+(M)].	
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F(u) – a functional qualities: it may be, for example, the temperature at point responsible u(M*), 
maximum, minimum or average value of the temperature: max (min, mid) u(M), M ∈ V; integral 
criterion ∫k(u(M), M)dVM, etc. 

Results solutions – the optimal values ​​of the material characteristics and other parameters of the 
problem: λopt (u, M), qopt (M), ϕopt (M). 

2. Calculation examples 
2.1.	 Calculating the electrical rectifier circuit  
with approximately specified characteristics and parameters 

Uncertainties circuit parameters – 1 % for CVC diode – 10 %. 
Fig. 2 shows that in the typical area of inrush current in a nonlinear inductance the difference 

of solutions is significantly due to the higher sensitivity of the solution to the values of the circuit 
parameters. For these reasons, the traditional solution obtained by the average values of the parameters 
is not practically acceptable. 

Fig.1. The electrical circuit 
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Fig.1. The electrical circuit  

Uncertainties circuit parameters – 1 % for CVC diode – 10 %.  

Fig. 2. Graphs of the upper and lower bounds of the current and the difference between them 

 

Fig.2. Graphs of the upper and lower bounds of the current and the difference between them  

Fig. 2 shows that in the typical area of inrush current in a nonlinear inductance the difference of solutions 

is significantly due to the higher sensitivity of the solution to the values of the circuit parameters. For 

these reasons, the traditional solution obtained by the average values of the parameters is not practically 

acceptable.  

2.2. The calculation of the temperature interval in glower 

Examines steel thread with length of 10 cm and a diameter of 0.1 mm was heated with 20 mA current 

magnitude. At the ends of the filament temperature is kept constant. The average values of the thermal 

conductivity of 90 W/(mK), conductivity 105 S/m, the error for these parameters is considered to be 5 %.  

The problem was solved by the method of finite differences in integration step of 1 cm and accuracy 

of the solution of finite–difference equations of about 0.5 %. Graphs corresponding estimates for the top 

and bottom temperature distribution shown in Fig. 3.  

 

 

Fig. 3. Graphs upper and lower bounds of temperature  
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2.2.	The calculation of the temperature interval in glower

Examines steel thread with length of 10 cm and a diameter of 0.1 mm was heated with 20 mA 
current magnitude. At the ends of the filament temperature is kept constant. The average values of the 
thermal conductivity of 90 W/(mK), conductivity 105 S/m, the error for these parameters is considered 
to be 5 %. 

The problem was solved by the method of finite differences in integration step of 1 cm and 
accuracy of the solution of finite–difference equations of about 0.5 %. Graphs corresponding estimates 
for the top and bottom temperature distribution shown in Fig. 3. 

2.3. The calculation of the temperature interval in stream conductive liquids

Examines the electroconductive liquid flow in a channel with a rectangular cross–section (length 
50 cm, dimensions sides cross section 10 cm, the flow rate of 0.1 cm/s). 

Heating of the liquid is carried out by the current flowing along the canal and created by the 
voltage difference at the ends of the channel value of 1 V. 

At the ends of the channel maintains a constant temperature (inlet – the melting point, the output – 
at 500 K more). On the walls of the channel temperature varies linearly with the preservation of 
continuity of the temperature field. 

The average values ​​of the thermal conductivity of the fluid – 58 W / (mK), the electrical conductivity 
of 5,8⋅106 S/m (parameters of molten steel), errors of these parameters are, respectively, 10 % and 5 % 
is important to note that these errors are, generally speaking, functional, as appropriate values ​​can 
vary within this range at random points in the fluid volume (this observation is relevant to all the above 
examples). 

Formulation of the boundary value problem has the form: 

div (λ grad u) – v ∂u/∂x + q = 0, M ∈ V; u = ϕ, M ∈ Г,	  

where v – velocity of fluid flow, q – heat density: q = J2/γ, J – the current density, γ – conductivity. 

Fig. 3. Graphs upper and lower bounds of temperature 

 

Fig.2. Graphs of the upper and lower bounds of the current and the difference between them  

Fig. 2 shows that in the typical area of inrush current in a nonlinear inductance the difference of solutions 

is significantly due to the higher sensitivity of the solution to the values of the circuit parameters. For 

these reasons, the traditional solution obtained by the average values of the parameters is not practically 

acceptable.  

2.2. The calculation of the temperature interval in glower 

Examines steel thread with length of 10 cm and a diameter of 0.1 mm was heated with 20 mA current 

magnitude. At the ends of the filament temperature is kept constant. The average values of the thermal 

conductivity of 90 W/(mK), conductivity 105 S/m, the error for these parameters is considered to be 5 %.  

The problem was solved by the method of finite differences in integration step of 1 cm and accuracy 

of the solution of finite–difference equations of about 0.5 %. Graphs corresponding estimates for the top 

and bottom temperature distribution shown in Fig. 3.  

 

 

Fig. 3. Graphs upper and lower bounds of temperature  
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The corresponding two–dimensional problem is solved by the method of finite differences in the 
integration step of 2.5 cm as the abscissa (along the channel), and the ordinate axis (perpendicular to 
the longitudinal axis of symmetry of the channel) and the accuracy of the solution of finite difference 
equations about 5  %. Graphs corresponding estimates for the top and bottom of the temperature 
distribution along the longitudinal axis of the channel shown in Fig. 4 and 5 (with origin on the vertical 
axis the temperature is done as on the left side of the channel). 

2.4. Calculation of rods deflection 

The differential equation for the transverse deformation of the rod u (x): 

d2/dx2[EJz(x)d2u/dx2] + Pcd2u/dx2 – q(x) = 0, M∈ [0,L];	

wherein EJz (x) – the stiffness of the rod, Pc – force compressing rod with its ends, q (x) – specific shear 
force distributed over the length of the rod. 

The boundary conditions depend on the method of fixing the ends of the rod. In the case of fixing 
the hinge they have the form: u = 0, d2u/dx2 = 0 for x = 0 and x = L. 

Fig. 6 shows the results of the boundary problem solutions under the following conditions: the 
material of the rod – wood, density of 500 kg/m3, the modulus of elasticity E = 104 MPa, and the 

Fig. 5. The graphs temperature ranges for the values ​​of the flow velocity of 0.3 cm/s, 0.5 cm/s and 1 cm/s 

 

Fig. 4. The graphs of upper and lower bounds of the temperature increments (flow rate 0,1 cm/s, and 0,2 

cm/s)  

 

 
 

Fig. 5. The graphs temperature ranges for the values of the flow velocity of 0.3 cm/s, 0.5 cm/s and 1 cm/s  
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material of the rod – wood, density of 500 kg/m3, the modulus of elasticity E = 104 MPa, and the cross 

section of the rod has a circular shape with a diameter d = 1 cm, thus the geometric moment of inertia is Jz 

= πd4/64, rod length L = 1 m. The error of the mass of the rod is equal to 2 %, and the error value of the 
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cross section of the rod has a circular shape with a diameter d = 1 cm, thus the geometric moment 
of inertia is Jz = πd4/64, rod length L = 1 m. The error of the mass of the rod is equal to 2 %, and 
the error value of the rigidity of the rod – 5 % (it is important to consider that this error, generally 
speaking, functional as stiffness can fluctuate within certain limits on the length of the rod). The 
rod bends under its own weight (0.38 N). The compressive strength is 4 times the weight of the rod. 
Integration step – 2 cm. 

Fig. 7 shows the results of similar solutions of the boundary problem with the following 
conditions: the material of the rod – wood with the same density of 500 kg/m3 and the modulus of 
elasticity E = 104 MPa, and the cross section of the rod has a circular shape with a diameter d = 2 
mm, the rod length L = 1 m. The error value is equal 2 % to mass of the rod, and the error value of 
the rigidity of the rod – 5 %. The rod bends under the force concentrated at two points on the axis 
of the rod at the distance of 20 cm from its ends. The forces are equal in magnitude (equal to twice 
the weight of the rod) and are oppositely directed. Compressive force equal to the weight of the rod 
(0.015 N). Integration step – 2 cm. 

These solutions show that the error of material characteristics and design parameters may 
significantly influence the amount of deformation the structural elements (rods, beams, etc.) and should 
be considered in critical cases. 

rigidity of the rod – 5 % (it is important to consider that this error, generally speaking, functional as 

stiffness can fluctuate within certain limits on the length of the rod). The rod bends under its own weight 

(0.38 N). The compressive strength is 4 times the weight of the rod. Integration step – 2 cm.  

 

Fig. 6. Upper and lower estimates of the horizontal shear deformations of the rod by its own weight  
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Fig. 7. The upper and lower estimates of the magnitude of the transverse deformation of the 
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Fig. 6. Upper and lower estimates of the horizontal shear deformations of the rod by its own weight 
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Fig. 7. The upper and lower estimates of the magnitude of the transverse deformation of the vertical rod under the 
action of opposing concentrated forces 
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Problems of the strength and reliability calculation for different designs can be solved by a similar 
method to account for any variations of parameters and characteristics.

2.5. Calculation of deflection of plates

The differential equation for the transverse deformations wafer w (x, y): 

∂4w/∂x4 +2∂4w/∂x2∂y2 + ∂4w/∂x4 = q (x, y) / D, M ∈ S, 	

where D  – cylinder stiffness of the plate: D = Ed3/[12(1–µ2)], E  – elastic modulus of the material, 
δ – plate thickness, µ – Poisson's ratio, q (x, y) – specific transverse force, acting on the plate; x – the 
abscissa, y – the ordinate of a point in the Cartesian coordinate system on the surface of the plate; 
applicate Oz axis is perpendicular to the plate. 

The boundary conditions depend on the method of fixing the edges of the plate. For fixing the 
fixed deflection function w (x, y) and its normal derivative at the edges of the plate are equal to zero: 
w = 0, ∂w/∂n = 0, when M ∈ G. 

Mechanical stresses (normal σx, σy and tangents τ = τxy = τyx) are expressed in terms of the 
deflection: 

σx = –12d–3D(wxx+ µwyy)z, σy = –12d–3D(wyy+ µwxx)z,  
τ = –12d–3D(1 – µ)wxyz, z∈ [–d/2,d/2].	

The value of σz considered to be zero. 
Consider a particular account when the shear force is random: 

q(x,y) = P×exp[– (x–xc)2/0.25 – (y–yc)2/0.25],	

where xc and yc are uniformly distributed in the area S, P = 100 Pa. 
The plate has a square shape. Side length of 1 m, a thickness of 0.001 m. The plate material – 

aluminum: 

E = 7×1010 Pa, µ = 0.34. 	

In the graphs in Fig. 8  – 13 shows the results of solving the problem of the finite difference 
method. The integration step for each coordinate of about 3 sm. 

The method allowed the author to find the statistical characteristics of the solution is 100 times 
more economical than the conventional Monte Carlo method. 

The graphs show that the solution of the Monte Carlo method has a significant error and clearly 
skewed. Acceptable precision is achieved only when the number of iterations of about 1,000.

Understood that the solving 1000 times two dimensional, especially three-dimensional boundary 
value problem is relatively expensive.

Using one of the failure criteria, e.g., | τ | <τmax, the calculation can be carried structural strength. 
Tensile strength 50–60 MPa aluminum achieved at a force 20 times larger than in the example. The 
sample mean and sample standard for stress makes it relatively easy to estimate the probability of 
structural failure. 

As noted above, the methods and programs of the author’s for considered problems for much more 
efficient than methods of linearization of the small parameter and Monte Carlo. 



 

 

Fig. 8. The sample mean of the deflection of the plates (right decision Monte Carlo at 100 iterations) 

 

 

Fig. 9. Selective distribution standard of the deflection of the plates (right decision Monte Carlo at 100 
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Fig. 9. Selective distribution standard of the deflection of the plates (right decision Monte Carlo at 100 iterations)



Fig. 12. The coefficient of variation of the deflection of the plates (right decision Monte Carlo at 100 iterations)

 

Fig. 10. Sample mean of the shear stresses  
 
 

 

Fig. 11. Selective standard of the shear stresses  

 

 

 

Fig. 12. The coefficient of variation of the deflection of the plates (right decision Monte Carlo at 100 
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Fig. 11. Selective standard of the shear stresses 
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