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In present paper we investigate a class of nonlinear integral- differential equation with Hammerstein
noncompact operator which has direct application in a theory of income distribution. We prove solvability
of the class of equations in special weighted Sobolev space. The results of numerical calculations are also
presented.
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Introduction

In this paper we study the following initial problem for the nonlinear integral-differential
equation with noncompact Hammerstein operator

% + >\0 (xvf (1’)) = /OCK (.’E - t) >\1 (t7f (t)) dtv T € R+ =S [07+OO)7 (1)
0
f(0)=0 (2)

where f () is a real function defined on R¥.
The functions {\; (x, “)}j:0,1 are defined on set RT x R. They take real values and satisfy
condition of criticality:
Aj(2,0)=0, VzeR", j=0,1 (3)

The kernel K (x) admits the following representation:

b
K(x):/ e 175G (s) ds, © € R = (—o0,+00), (4)
where
GeCla, b), G(s)>0, s€la, b), 0<a<b<g oo, (5)
moreover ,
u=2/ %ds<+oo. (6)
a S
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We assume that there exists a number >0, such that
M (z,u) = au—Xo (z,u) >0, (z,u) € RT x RT. (7)

Problem (1)—(2) has direct application in econometrics, namely, in the theory of income
distribution in one product economics (see. [1-4]). Unknown function f(x) plays a role of
distribution density, i.e. f(x)dz is a number of economic agents which have incomes in the
interval (x,z+dx). Function \g characterizes the growth of capital and savings, bankruptcy,
disappearance of economic enterprises, taxes and etc. Function A\; (z,u) describes nonlinear
dependence of distribution function. Kernel K (z) is the redistribution function. It is caused
by various economic factors: capital transfer, the emergence of new enterprises, association of

several companies, the disappearance of old enterprises, property transfer to other economic
“+o0

organizations in the case of inheritance and so on. Numbers p = K (xz)dz and « are

free parameters. They play essential role in our further consideration. SfFohe class of nonlinear
equations considered in the paper is the nonlinear analogue of the class of linear equations
investigated by J.D.Sargan (see [1]). For the first time above mentioned class of nonlinear
equations was studied by A.Kh. Khachatryan and Kh. A. Khachatryan (see [2]). The equation in
linear approximation was obtained with A\g(z,u) = cou, A1 (x,u) = c1u, cp,c1 = const and linear
approximation is not real [1]. The peculiarity of corresponding nonlinear integro-differential
equations and complexity of their study are the following:

1. Operators which generate corresponding equations are nonlinear.

2. Corresponding nonlinear operators are noncompact operators. Moreover, the linear mi-
norant (or majorant) for these operators are the Wiener-Hopf type operators. It is well known
that Wiener-Hopf type operators are also noncompact operators.

3. Another important peculiarity of these equations is that they admit zero solution (trivial
solution). Then, it is necessary to construct a nonlinear positive solution, i.e. to clarify whether
or not corresponding nonlinear operators have criticality property.

Due to these facts previously known fixed points principles (Shauder, Krasnoselskii, Brow-
der, Brouwer’s theorems) for solvability of corresponding nonlinear integral equations are not
applicable.

Equation (1) was studied [5] in the case when

M(z,u) =0, A\ (z,u) = Go(u).

Here 0< Gg (u) < u, u € [0,1], Go € C[0,n], Go(u) T by w on [0,n] for some >0, and
£(0)=yo, 0 < yo < n. This equation (1) was also studied [6] in the case when

M (z,u) >0, )\ﬁ(x,n)gn/ooK(u)dm 0< A (z,u) <BGyL(uw), Be(0,1),

where 0 < G; (u) T by won [0,7],G1 (n) = n (n is the first positive root of equation G; (u) = u),
G1(0) = 0 and G, satisfies Lipschitz condition on interval [0, 7], f (0) =yo, 0 < y, < 1. It should
be noted that equation (1) was studied in [5] and [6] when

oz p. (8)

In linear approximation (Ag(z,u) = 0, A\ (z,u) = u) this corresponds to dissipative and conser-
vative cases. Obviously, when o < p we have conservative and supercritical cases, respectively.

Present paper is devoted to study and solution of problem (1)—(2) under very different as-
sumptions regarding functions {\; (z,u)},_,, when

n = a. 9)
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Solvability of problem (1)—(2) in special weighted Sobolev space is proved. The examples of
functions {A; (z,u)};_, , are given. Specific example of the equation is considered. Algorithm
of numerical solution of this equation is described and some results of numerical calculations are
given.

1. Notations, auxiliary facts and formulation of basic result

In accordance with (6) condition (9) can be written as

Z:Q/bG(S)ds>1. (10)

« S

&
For arbitrary number € € (0, min (o, a)) we consider the function
o)
T. (z) :e”/ K (z—z)e “*dz, z €R. (11)
0

From representation (4) for kernel K it follows that at ¢ € (0, min (c, a))
0< T () € L1 (—00, +00) . (12)

On interval Z = (0, min (o, a)) we introduce the function

0 o] 0 o) —z
X (¢) :/ T. (z) d;v:/ e_o‘z/ e K (x—=z) dacdz:/ e_(“/ K (1) et drdz=
—00 0 —o0 0 —00

) [e%S) [e'S) b poo
:/ e‘aze‘”/ K(U)E_E“dudzz/ e_(o‘_s)z// e~ TGUG (s) dsdz=
0 z 0 a Jz

" G
AT
We note that
I) X(e)lbye onZ, (13)
) xXecC(I)), (14)
b
III) X (40) :EI_i>r51+X (e) :/ Sif{l)ds =1. (15)

Therefore, by Cauchy theorem there exists number g € Z such that

X (o) >%. (16)
It is obvious that ¢ is determined nonuniquely, i.e., if for some €g inequality (16) is fulfilled,
then for Ve € (0,e9)
X (e) >%. (17)
Let us consider the set:
Q:{aeI:X(s)>%} cT. (18)
It is obvious that @ is the bounded set and hence there exists € = sup Q< + oo. It follows
from the structure of the set () that

X(@)>q, EeL. (19)
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Number & will plays an important role in our future considerations.
We assume that functions {); (z,u)};_,, satisfy the following conditions:

a) A (z,u) 1 by uon [pz(x), +oo) for each fixed z € R*, where

pe(r) = ———=—, z€RT; (20)

a—e

efgw e—aw

b) 1= / essup N (x,u) dz < + oo; (21)
0 u>0

¢) \; € Carat, (Rt x RT), i. e., functions {}; (z, u)},_ , satisfy Caratheodory condition by
second argument (for each fixed v € R* functions {); (z, u)};_o, are measurable with respect
to x on set RT and they are continuous with respect to u on R™ for almost all z € RT);

d ) there exist integrable on RT functions Sz (z) such that

Bz (z) > %pg (z), z € RY, (22)

M) > 2o @), Mo < EeBe(e), uBpel@), seRY ()

e) for each fixed z € RT function A (z,u) T by u on [pz(z), +00).
The basic result of the paper is the following:

Teopema 1. Let us assume that kernel K (x) permits representation (4). Let € = sup @, where
set Q is defined by formula (18), and functions {\; (z,u)},;_, satisfy conditions (7), (20)-(23).
Then problem (1)-(2), apart from trivial solution, has also identically nonzero nonnegative solu-
tion in the following weighted Sobolev space:

s(s+a

b
fe Wih (R+) = {gp(x) : <p(j) () -h(x) € Ly (R+) , 7=0,1; h(x) E/ e_“G(S))ds} ,
where V) (z)is the j-th derivative of function o (x).

2. Proof

We denote

w(x)E%—i—ozf(m), r€RT. (24)

Then taking into account condition (2), from (1) we obtain the following nonlinear integral
equation:

W () =AF (a: /0 Temale=ty (1) dt) + /O K (-t 0y <t, /O a0y du) i, >0, (25)

With respect to function 1 (x).
We consider the following successive approximations:

G (2) =N (x [eeu dt) + K- (t, / =, (u) du) i,
0 0 0

Yo () =e %%, z€RY, n=0,1,2,....

(26)
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It is easy to check by induction with respect to n that

tp () by n, x€RT.
First we proof that
1/}1 (50)21,[}0 (JC), IEER+.

Taking into consideration (23), from (26) we have

o] t o]
0> [ K@ (t, / ea<t">e5“du) di= [ K (1) 0 (e (0) e >
0 0 0
2 > 2 > ! —a(t—u) ,—&u
2 - K(m—t) pz(t)dt=— | K(z—t) [ e e “dudt =
7 Jo 0
—a(t—u) _2 > —&u > —az _
K (z—t)e dtdu=— e K (x—u—2z) e “*dzdu=
7 Jo 0

2 = [" 2 . 0
= f/ _E“T~(x u) e €@ gy = e_”/ Tz (1) dr > fe_er/ Tz (1) dr=
Y Jo Y Y

— 00 —0o0
2

=2 X ()2 o (@),

because X (€) > % (see formula (19)).
>

(
Let ¢, (2)

and A1 (z,u) b n [pz(z), 4+00) (see conditions a) and e)), from (26) we obtain

a0 2 ¥ (o [0, ar) +

0

(27)

(28)

Yn_1(z), = €RT for any n € N. Then due to monotony of functions A\ (x, u)
Y U0

+/OOOK(xt) A <t, /Otea““)u)n_l (u) du) dt = P, (2).

It is also easy to verify that

¢ €L (RY), n=0,1,2,3,....

Taking into account conditions (21), (23), (27), (29),
from (21) we have

o e’} o t
/ Vg () dx < 1+ / / K (z—t) A\ (t, / e =Wy 1 () du> dtdz <
0 o Jo 0
1 o o t
< l+—/ / K (z—t) (/ ey (u) dutee - Bz (ﬂ) didr <
&Jo Jo 0
o 1 [e%} oo t
< 4o / Bz (t) dt+— / / K (z—t) / e =Wy 1 (u) dudtdz = 1,
0 &€ Jo Jo 0

as

aea/ Bz (t) dt= / B= (t o K (u)dudt > /000 Bz (t) o K (u) dudt=
—t

_ /O /O K (a—t) B= (t) dtde.
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Changing integration order in the last integral in (30), we obtain

o0 1 oo (oo}
I=1+ aea/ Bz (t)dt + — / Unt1 (u)/ T (z—u) dzdu, (31)
0 ® Jo 0
where -
T(r)= / K (1—z)e”**dz, T€R. (32)
0
We note that
o
/ T (7)dr=e. (33)
Therefore, from (33) and (31) we have
o0 1 (o) —Uu
I=ltwa / 8= (t) di4+~ / st (1) (ae— / T () d7> du. (34)
0 ® Jo o0
Chain of inequalities (30) and equality (34) result in the following inequalities:
(o) —Uu (o)
/ Ynt1 (u)/ T (1) drdu < lae+ae2a/ B= (t) dt. (35)
0 —oo 0
Now we verify that
h (u) */ T(r)dr, u>=0 (36)

Indeed, taking into consideration (4) and (32), we obtain

/ T(7) dT:/ / K (1—=2) e*‘“dsz:/ / K (—y—z)e *dzdy=
— 00 —oc0 JO u 0
SRS oo b poo
= / / K (y+2) efo‘zdzdy:/ / / e Wt =2y G (5) dsdy=
u 0 u a JO

:/abe—us G gohu).

s(s+a)

Thus, taking into account (36) and (35), we arrive to the following inequalities:

/ " e (u) b (u) du < loetaa / T he ) dt. (37)
0 0

As 1y, (u) T by n, h (u) = 0, then from (37) we conclude that sequence of functions {t¢, (u)},~
has pointwise limit as n — 4-o00:

lim 4 (u) =9 (u).

Moreover, due to Carathedory condition (see condition c)) and B.Levi’s theorem the limit
function 1 satisfies equation (25). It also follows from (37) and (27) that

2 o0
¥ (u) > 5/0 K (u—t) pz(t)dt, u >0, (38)
/OO Y (u) h(u) du < leetee’a /00 Bz (t) dt. (39)
0 0
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Upon solving simple Cauchy problem (24) and (2), we obtain
fla)= [ ey (10)
0

To complete the proof one needs to verify that f € Wih (RT). First we prove that f-h €
Li (R"). Because h(u) | by u on R* and, taking into account inequality (39), for arbitrary
0 > 0 from (40) we get

é b x 5 P
zr)hir)ar = T e~ @~y () dudz = u)e®™ [ e *h(x)dzdu
[ r@nwa= [vw [ vduds = [ pye [Ceeh o) dodu <
1 [9¢ o o b 1 B) 1 o
<a/0 ¥ (u) e*h (u) (e e ) du < a/o ¥ (u) h (u) du < a/o ¥ (u) b (u) du <
e o [T 5
ST /0 Bz (t) dt.

Therefore, as § — +oo we obtain

o0

/Ooof(x)h(x)dm<+ae [ ema (41)

Because
[ (@) =y (z) —af (z),

then due to (39) and (41) we have f'-h € Lp (RT).
Thus f € W}, (RT). Theorem is proved.

3. Example of functions A\o(z,u) and A\ (z,u)

Now we present examples of functions {\; (z,u)} for which all conditions of the formu-

lated theorem are fulfilled.
For a function A; (z,u) we consider the following example:

M () = %\/upg @. (42)

7=0, 1

If we take Bz () :Ee—gz’ then all conditions will be implemented for A; (z,u). Firstly, we

A2
note that
oA \/ pz
M (2,0)=0, VeeR, —= pe (@) > 0.
ou YV u
Therefore Ay (z,u) T by w. Secondly, function
2
A1 (2, pz (7)) Z;pg(x)

is continuous on R+ x RT with respect to all arguments, and hence satisfies Caratheodory con-
dition on RT x RT with respect to second argument.
We verify that the following inequality holds:

2 U
S Vuee (z) < ;Jrﬁg (7), (43)
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A.Kh. Khachatryan, Kh.A Khachatryan, Tigran H. Sardaryan  On Solvability of one Class of Nonlinear ...

where 8z (x) > %pg (x) and Bz € Ly (RT). Because u, pz, Bz > 0 then the last inequality is
Y
equivalent to

»2

w? 2ﬂg($)7i~x w52 (x
(L @) uri ) 20 (44)

It is obvious that inequality (44) is true if

<Zﬂg(x) 42,)5(1;))246? @) g

2

® v ®
or
®
o) > e o). (45)
2
Thus one needs to verify inequality Sz (m)z%pg () > ;pg (). This inequality is true
because , ,
2 2
ae:—/ wds 2/ G (s) ds= 2.
al, s o S(s+a)
Now we consider the example of function Ay (z,u):
Ao (2, u) =au—X* (z,u), (46)
where u
N2, 1) = (e ™ —e ) | >m>0, (z,u)eR" xRT. 47
) = et | ) @) (4)
We have .
o\ 1
X (,u) > 0, (w,u)_ ut (48)

>0,
v Ve tutl (P turl)

hence A\ (z,u) 1 by u. Since A (x,u) is continuous on R* x R* with respect to all arguments
then \g € Carat, (R* x R"). We also note that

oo X ,—mx_ ,—qx
/ supessA¥ (z,u) dr < / €T de=lm L <4 00,
0 0 X m
and hence [ = / essup M (z,u)dz < ln 4 < 4.
0 uz=0 m
4. Algorithm of numerical solution and results of numerical
calculations

A brief description of algorithm of numerical calculations are given in this section.
For kernal K (z) we choose integral-power function

1 [ ds 1
K (z)=E; () == ~lals = =—, a=1, b= 4
(x) 1 () 2/1 e S G (s) 5y’ a=1, b=ooc, (49)

which arises in the case of generalized Paretto law (see [2—4]).
Note that in this case y= 1. In this example functions A\; and )y are



A.Kh. Khachatryan, Kh.A Khachatryan, Tigran H. Sardaryan On Solvability of one Class of Nonlinear ...

u

vula24u+l

Ao (x,u) =au— (efmx—efq‘r) , q>m>0,

where
—EX __ ,— QT

pla)="—"—, zeR*, a<p=1,

Algorithm of solution

First Step. From inequality
1 1 0%
— gln(l—i—e) —Eln(l—i—a) > B the number ¢ € (0, @)

is determined.

Second Step. We consider the following successive approximations:

fox efa(mft)i/)n (t) dt - (efmziequ)
Va2 (5 o=t (1) de)*+ [ e=aG=0y, (1) di+1

00 t
—|—/0 Ey (Jxz—t|) \/3 </0 e—at=w), (u) du) pe (t)dt, n=0,1,2,....

The initial approximation is g () =e =",

+

Vg1 (I) =

Third Step . The density of distribution function f (z) is determined from formula (40).
Fourth Step. "Mean income” is determined from the following relation:

M:ARxf(x)dx7

where R is the maximum value of income.

1 1
The values of M at various « mzi, q:4) are presented in the table for the case y= 1.

Numerical calculations show (see Tab.) that the bigger is the degree of supercriticality (the
ratio p/a), the bigger is the income.

Table 1. "Mean income" for e= 0,9

o 0,2 0,4 0,6 0,8 1
M 517,978 160,175| 58,825 | 25,461 | 12,81

Numerical calculations are performed with the use of MathCAD.
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O pa3penmMocTu OJTHOTO KJIacca HeJIWHEMHbIX
nHTerpo anddepeHImaabHbIX YPpaBHEHUI

C HEKOMIOAKTHBIM onepaTopom l'ammepinreiina,
BO3HUKAIOIIAM B TEOPUU paclpeesieHnus J0XO0I0B

Arasapa X. XayarpsiH
Xauatyp A.XagaTpsH
Turpan I'. Capmapsia

B cmamve mot uccaedyem Kaacce HEAUHETHBLT Unmezpo OuPBPeperyuasb LT YpasHeRUT ¢ HEKOMNAKIHDIM
onepamopom I ammepumetina, Komopvill umeem npamoe NPUMEHeHUE 8 MeoPUL PACNPedeeHus 00T0008.
M dokasvieaem paspetiumocmsd KAGCCa YPasHenUul 8 CReyuasvrom eecosom npocmparncmee Coboaesa.
IIpedcmasaenvr makoice PE3YALIAMBL YUCAEHHBLT BVIMUCAEHUT.

Karoueswie caosa: onepamop Lammepumetina, eecosoe npocmparcmeo Coboaesa, MOHOMOHHOCMb, Ume-
payuu, ycaosue Kapameodopu.
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