УДК 519.218.2

On Long-time Behaviors of States of Galton-Watson Branching Processes Allowing Immigration

Azam A. Imomov*

State Testing Center under the Cabinet of MRU Karshi State University Kuchabag, 17, Karshi city, 180100 Uzbekistan

Received 13.06.2015, received in revised form 01.08.2015, accepted 02.09.2015

We observe the discrete-time Branching Process allowing Immigration. Limit properties of transition functions and their convergence to invariant measures are investigated. In the critical situation a speed of this convergence is defined.

Keywords: branching process, immigration, transition functions, invariant measures, ratio limit property, rate of convergence.

DOI: 10.17516/1997-1397-2015-8-4-394-405

Introduction

Let the random function X_n denote the successive population size of the Galton-Watson Branching Process allowing Immigration (GWPI) at the moment $n \in \mathbb{N}_0$, here $\mathbb{N}_0 = \{0\} \cup \{\mathbb{N} = 1, 2, \ldots\}$. The state sequence $\{X_n\}$ is a homogeneous Markov chain with state space on \mathbb{N}_0 and can be expressed recursively as

$$X_n = \sum_{k=1}^{X_{n-1}} \xi_{nk} + \eta_n, \quad for \ n \in \mathbb{N},$$

where independent and identically distributed (i.i.d.) random variables ξ_{nk} denote the offspring number of k-th individual in the (n-1)-th generation, and i.i.d. variables η_n are not depend on ξ_{nk} interpreted as number of immigrants-individuals at the moment n. We assume $X_0=0$ and the process starts owing to immigrants. Each individual reproduces independently of each other and according to the offspring law $p_k := \mathbb{P}\{\xi_{11} = k\}$. With probability $h_j := \mathbb{P}\{\eta_1 = j\}$ arrive $j \in \mathbb{N}_0$ immigrants in population in each moment $n \in \mathbb{N}$. These individuals undergo further transformation by the reproduction law $\{p_j\}$. Throughout the paper we assume $p_0 > 0$ and $\sum_{j \in \mathbb{N}_0} h_j = 1$.

We denote $S \subseteq \mathbb{N}_0$ to be the state space of the chain $\{X_n\}$. It is indicated by *n*-step transition functions

$$p_{ij}^{(n)} = \mathbb{P}_i \left\{ X_n = j \right\} := \mathbb{P} \left\{ \left. X_{k+n} = j \right| X_k = i \right\},$$

for any $n, k \in \mathbb{N}_0$. Let

$$\mathcal{P}_n^{(i)}(s) := \mathbb{E}_i s^{X_n} = \sum_{j \in \mathcal{S}} p_{ij}^{(n)} s^j$$

^{*}imomov azam@mail.ru

[©] Siberian Federal University. All rights reserved

is probability generating function (PGF). Denoting

$$G(s) := \sum_{j \in \mathbb{N}_0} h_j s^j \qquad \text{and} \qquad F(s) := \sum_{j \in \mathbb{N}_0} p_j s^j,$$

one can see

$$\mathcal{P}_{n+1}^{(i)}(s) = G(s) \cdot \mathcal{P}_{n}^{(i)}(F(s)). \tag{0.1}$$

From (1.1) we have

$$\mathcal{P}_n^{(i)}(s) = [F_n(s)]^i \prod_{k=0}^{n-1} G(F_k(s)), \tag{0.2}$$

where $F_n(s)$ is n-fold iterate of PGF F(s); see, e.g., [1, p. 263]. Now it is clear the probabilities $\left\{p_{ij}^{(n)}\right\}$ are completely defined by means of probabilities $\left\{p_j\right\}$ and $\left\{h_j\right\}$.

Classification of states of the chain $\{X_n\}$ is one of fundamental problems in theory of GWPI. Direct differentiation of (1.2) gives us

$$\mathbb{E}_{i}X_{n} = \sum_{j \in \mathcal{S}} j p_{ij}^{(n)} = \begin{cases} \left(\frac{\alpha}{A-1} + i\right) A^{n} - \frac{\alpha}{A-1}, & \text{when } A \neq 1, \\ \alpha n + i, & \text{when } A = 1, \end{cases}$$

where A = F'(1) and $\alpha = G'(1)$. The received formula for $\mathbb{E}_i X_n$ shows that classification of states of GWPI depends on the value of parameter A is the mean number of direct descendants of single individual as a result of transformation for one-step generation. Process $\{X_n\}$ is classified as sub-critical, critical and supercritical if A < 1, A = 1 and A > 1 accordingly.

The above described evolution process of individuals was considered first by Heathcote [3] in 1965. Further long-term properties of states and a problem of existence and uniqueness of invariant measures of GWPI were investigated in papers of Seneta [8, 10, 11], Pakes [4–7] and by many other authors. Therein some moment conditions for PGF F(s) and G(s) was required to be satisfied. In aforementioned works of Seneta the ergodic properties of $\{X_n\}$ were investigated. He has proved that in cases $A \leq 1$ there is a unique invariant measure $\{\mu_k, k \in \mathcal{S}\}$ and besides $\mu_0 = 1$. Heathcote [2] and Pakes [7] have shown that in supercritical case \mathcal{S} is transient. In the critical case if the first moment of immigration law $\alpha := G'(1)$ is finite, then \mathcal{S} can be transient, null-recurrent or ergodic. In this case, if in addition to assume that $2B := F''(1) < \infty$, properties of \mathcal{S} depend on value of parameter $\lambda = \alpha/B$: if $\lambda > 1$ or $\lambda < 1$, then \mathcal{S} is transient or null-recurrent accordingly. In the case when $\lambda = 1$, Pakes [6] and Zubkov [15] studied necessary and sufficient conditions for a null-recurrence property. Limiting distribution law for critical process $\{X_n\}$ was found first by Seneta [9]. By them it has been proved under the condition of $0 < \lambda < \infty$ the normalized process X_n/n has limiting Gamma distribution with density function

$$\frac{1}{B\Gamma(\lambda)} \left(\frac{x}{B}\right)^{\lambda-1} e^{-x/B}, \quad \text{for } x > 0,$$

where $\Gamma(*)$ is Euler's Gamma function. This result without reference to Seneta has been established also by Pakes [6].

More recent researches on asymptotic properties of process contain in papers [12–14] in which the Bernoulli type GWPI was considered, i.e. both ξ_{nk} and η_n obey the Binomial distribution law. Clearly Bernoulli type GWPI is a special class in the general theory of Branching Processes. In this paper we consider processes in which both offspring law and immigration law are arbitrary.

In Section 2 invariant properties of GWPI will be investigated. The analogue of the Ratio Limit Property Theorem for transition functions $\left\{p_{ij}^{(n)}\right\}$ will be proved (Theorem 1 below).

The Section 3 is devoted to estimate of speed of convergence of $\left\{n^{\lambda}p_{ij}^{(n)}\right\}$ to invariant measures in the critical case.

1. Invariant property of transition functions

First we are interested in long-time behavior of ratio $p_{ij}^{(n)}/p_{00}^{(n)}$ for any $i, j \in \mathcal{S}$. Having designation $\mathcal{P}_n(s) := \mathcal{P}_n^{(0)}(s)$, it follows from (1.2) that

$$\frac{\mathcal{P}_n^{(i)}(s)}{\mathcal{P}_n(s)} \longrightarrow q^i, \quad \text{as} \quad n \to \infty,$$
 (1.1)

because of $F_n(s) \to q$ for $0 \le s < 1$; see [17, p. 53]. Recall that q is an extinction probability of the simple branching process without immigration with PGF F(s). It is the least nonnegative solution of q = F(q), and that q = 1 if $A \le 1$ and q < 1 if A > 1. Putting s = 0 in (2.1) implies $p_{i0}^{(n)} / p_{00}^{(n)} \to q^i$ as $n \to \infty$. On purpose to receive the statement generally for all $j \in \mathcal{S}$, we write

$$\mathcal{P}_{n+1}(s) = \mathcal{P}_n(s) \cdot G(F_n(s))$$

and from here and considering the properties of PGF one can calculate derivatives of j-th order:

$$\frac{\partial^{j} \mathcal{P}_{n+1}(s)}{\partial s^{j}} = \frac{\partial^{j} \mathcal{P}_{n}(s)}{\partial s^{j}} \cdot G\left(F_{n}(s)\right) + D_{j,n}(s),$$

for all $0 \le s < 1$, where expression $D_{j,n}(s)$ is a power series with nonnegative coefficients. Since $p_{0j}^{(n)} = \partial^j \mathcal{P}_{n+1}(s)/\partial s^j\big|_{s=0}$, from last received results we obtain

$$\frac{p_{0j}^{(n+1)}}{p_{00}^{(n+1)}} \geqslant \frac{p_{0j}^{(n)}}{p_{00}^{(n)}}.$$

So the sequence of functions $\left\{p_{0j}^{(n)}/p_{00}^{(n)}\right\}$ monotonously increases as $n\to\infty$. In our conditions $p_{00}^{(n)}>0$ for any $n\in\mathbb{N}$. Therefore this sequence converges increasing to the finite non-negative limit which we will designate as v_i :

$$\frac{p_{0j}^{(n)}}{p_{00}^{(n)}} \uparrow v_j < \infty, \quad \text{as} \quad n \to \infty.$$
(1.2)

Let's consider now more general ratio $p_{ij}^{(n)} / p_{00}^{(n)}$. Denoting

$$\mathcal{U}_{n}^{(i)}(s) := \sum_{j \in \mathcal{S}} \frac{p_{ij}^{(n)}}{p_{00}^{(n)}} s^{j}, \quad \text{for } 0 \leqslant s < 1,$$

we write the following equalities:

$$\mathcal{U}_n^{(i)}(s) = \sum_{j \in \mathcal{S}} \frac{p_{ij}^{(n)}}{p_{00}^{(n)}} s^j = [F_n(s)]^i \frac{\mathcal{P}_n(s)}{\mathcal{P}_n(0)} = [F_n(s)]^i \mathcal{U}_n(s), \tag{1.3}$$

where

$$\mathcal{U}_n(s) = \sum_{j \in \mathcal{S}} \frac{p_{0j}^{(n)}}{p_{00}^{(n)}} s^j.$$

Now wee prove the following Ratio Limit Property (RLP) Theorem.

Theorem 1. The general GWPI satisfies the RLP for all $i, j \in S$:

$$\lim_{n \to \infty} \frac{p_{ij}^{(n)}}{p_{00}^{(n)}} = q^i v_j < \infty. \tag{1.4}$$

An appropriate PGF of $v_j = \lim_{n\to\infty} p_{0j}^{(n)} / p_{00}^{(n)}$ is

$$\mathcal{U}(s) = \sum_{j \in \mathcal{S}} v_j s^j$$

and it satisfies the functional equation

$$\sigma \cdot \mathcal{U}(s) = G(s) \cdot \mathcal{U}(F(s)), \qquad (1.5)$$

in a region of its convergence, where $\sigma := G(q)$.

Proof. The statement (2.4) immediately follows from relations (2.2), (2.3) and that fact $F_n(s) \to q$ uniformly for $0 \le s \le r < 1$ as $n \to \infty$.

To prove the justice of the equation (2.5) we consider together the relations (1.1), (2.3) and the known equality $\mathcal{P}_{n+1}(s) = \mathcal{P}_n(s) \cdot G(F_n(s))$ and receive the following equalities:

$$\mathcal{U}_{n+1}^{(i)}(s) = [F_{n+1}(s)]^{i} \mathcal{U}_{n+1}(s) = [F_{n}(F(s))]^{i} \frac{\mathcal{P}_{n+1}(s)}{\mathcal{P}_{n+1}(0)} =$$

$$= [F_{n}(F(s))]^{i} \frac{G(s) \cdot \mathcal{P}_{n}(F(s))}{G(F_{n}(0)) \cdot \mathcal{P}_{n}(0)} = \frac{G(s)}{G(F_{n}(0))} \cdot \mathcal{U}_{n}^{(i)}(F(s)).$$

Taking limit as $n \to \infty$ from here we get to (2.5).

The Theorem is proved.

PGF $\mathcal{U}(s)$ as a power series represents a continuous function in field of $0 \le s < 1$. According to properties of PGF it converges for all $s \in [0; 1-\varepsilon]$ and for any arbitrary small constant $\varepsilon > 0$.

Repeatedly using the iteration of PGF F(s) in the equation (2.5) leads us to the following relation:

$$\sigma^n \mathcal{U}(s) = \mathcal{P}_n(s) \mathcal{U}\left(F_n(s)\right). \tag{1.6}$$

The transition function analogue of (2.6) is

$$\sigma^n \cdot v_j = \sum_{i \in S} v_i p_{ij}^{(n)}. \tag{1.7}$$

Equality (2.7) indicates that the set of non-negative numbers $\{v_j, j \in \mathcal{S}\}$ represents an invariant measure for the chain $\{X_n\}$. Due to the condition $p_{00}^{(n)} > 0$ and the equality (2.7), all of $v_j < \infty$ and $v_j > 0$ for $j \in \mathcal{S}$. And

Due to the condition $p_{00}^{(n)} > 0$ and the equality (2.7), all of $v_j < \infty$ and $v_j > 0$ for $j \in \mathcal{S}$. And $v_0 = 1$ as well. Then by definition of the process $\{X_n\}$ and owing to (2.7) we have the following chain of equalities:

$$\sigma^{n} = \sigma^{n} \cdot v_{0} = \sum_{i \in \mathcal{S}} v_{i} p_{i0}^{(n)} =$$

$$= \sum_{i \in \mathcal{S}} v_{i} P_{i0}(n) p_{00}^{(n)} = p_{00}^{(n)} \sum_{i \in \mathcal{S}} v_{i} P_{10}^{i}(n),$$

where $P_{i0}(n) = \mathbb{P}_i\{Z_n = 0\}$ is a hitting probability to zero state of the process $\{Z_n\}$ without immigration and generated by PGF F(s). Since this probability is equal to $F_n(0)$, one can see $\sigma^n = \mathcal{P}_n(0)\mathcal{U}(F_n(0))$ and hence

$$\mathcal{U}(F_n(0)) = \frac{\sigma^n}{p_{00}^{(n)}},\tag{1.8}$$

for any $n \in \mathbb{N}$.

Let's consider the case $A \neq 1$. Due to continuity of $\mathcal{U}(s)$, from equality (2.8) we receive

$$\frac{\sigma^n}{p_{00}^{(n)}} \longrightarrow \mathcal{U}(q) < \infty, \quad \text{as} \quad n \to \infty.$$
 (1.9)

Here we considered that $F_n(0) \to q$. Now considering together the relations (2.1), (2.4) and (2.9), we can write the following theorem.

Theorem 2. If $A \neq 1$, then

$$\sigma^{-n}p_{ij}^{(n)} \longrightarrow \frac{q^iv_j}{\sum\limits_{k \in \mathcal{S}} q^kv_k}, \quad as \quad n \to \infty,$$

for all $i, j \in \mathcal{S}$, where $\sigma = G(q)$ and $v_j = \lim_{n \to \infty} p_{0j}^{(n)} / p_{00}^{(n)}$.

Further we expand our discussion concerning the equation (2.5) investigating properties of its solution.

Theorem 3. Let $A \neq 1$. Then there is a unique (up to a multiplicative constant) solution $\mathcal{U}(s)$ of the equation (2.5) for $s \in [0; q)$ such that

$$\mathcal{L}(t) = \mathcal{U}(q - t) \tag{1.10}$$

is a slowly varying function as $t \downarrow 0$.

Proof. Let's propose that there is another solution $\widehat{\mathcal{U}}(s)$ of the equation (2.5). Then owing to equality (2.6) we write

$$\frac{\mathcal{U}(s)}{\widehat{\mathcal{U}}(s)} = \frac{\mathcal{U}(F_n(s))}{\widehat{\mathcal{U}}(F_n(s))}.$$
(1.11)

By definition the solution $\widehat{\mathcal{U}}(s)$ as well as $\mathcal{U}(s)$ monotonically increases. Since $F_n(0) \uparrow q$ then for given each $s \in [0; q)$ always there is $k \in \mathbb{N}$ such that $F_k(0) \leqslant s < F_{k+1}(0)$. Hence from equality (2.11) we will receive the following relations:

$$\frac{\mathcal{U}(s)}{\widehat{\mathcal{U}}(s)} \leqslant \frac{\mathcal{U}\left(F_{n+k+1}(0)\right)}{\widehat{\mathcal{U}}\left(F_{n+k}(0)\right)} = \frac{\mathcal{U}\left(F_{n+k+1}(0)\right)}{\widehat{\mathcal{U}}\left(F_{n+k+1}(0)\right)} \cdot \frac{\widehat{\mathcal{U}}\left(F_{n+k+1}(0)\right)}{\widehat{\mathcal{U}}\left(F_{n+k}(0)\right)}.$$

But again according to equality (2.11)

$$\frac{\mathcal{U}(F_n(0))}{\widehat{\mathcal{U}}(F_n(0))} = \frac{\mathcal{U}(0)}{\widehat{\mathcal{U}}(0)} = 1.$$

Then using once again (2.6) and the formula $\mathcal{P}_{n+1}(s) = \mathcal{P}_n(s) \cdot G(F_n(s))$, we have

$$\frac{\mathcal{U}(s)}{\widehat{\mathcal{U}}(s)} \leqslant \frac{\widehat{\mathcal{U}}\left(F_{n+k+1}(0)\right)}{\widehat{\mathcal{U}}\left(F_{n+k}(0)\right)} = \frac{\sigma}{G\left(F_{n+k}(0)\right)}.$$

Taking limit as

$$\frac{\mathcal{U}(s)}{\widehat{\mathcal{U}}(s)} \leqslant 1$$

because PGF G(s) continuously. By the similar way it is possible to establish the converse inequality $\mathcal{U}(s)/\widehat{\mathcal{U}}(s) \geq 1$. The received conclusions say that the equation (2.5) has a unique solution for all $s \in [0; q)$.

Now following a method of Seneta [8] we put

$$g(s) = G(q - s), \quad f(s) = q - F(q - s).$$

In the allowed designations the equation (2.5) becomes

$$\sigma \cdot \mathcal{L}(s) = q(s) \cdot \mathcal{L}(f(s)), \quad \text{for } s \in [0; q). \tag{1.12}$$

We will be convinced the function f(s)/s monotonically decreases on set of $0 \le s < q$ taking here the maximum $\beta = \lim_{s \downarrow 0} [f(s)/s]$ and the minimum $f(q)/q = 1 - p_0/q$ accordingly, where as before $\beta = F'(q)$. The function $\mathcal{L}(s)$ in form of (2.10) is also monotonically decreasing on this set and $\lim_{s \downarrow 0} g(s) = \sigma$. Then for any $\lambda \in [\beta; 1]$ one gets

$$\frac{\mathcal{L}\left(f(s)\right)}{\mathcal{L}(s)} = \frac{\mathcal{L}\left(\frac{f(s)}{s}s\right)}{\mathcal{L}(s)} \geqslant \frac{\mathcal{L}(\beta s)}{\mathcal{L}(s)} \geqslant \frac{\mathcal{L}(\lambda s)}{\mathcal{L}(s)} \geqslant 1.$$

On the other hand according to (2.12),

$$\frac{\mathcal{L}\left(f(s)\right)}{\mathcal{L}(s)} = \frac{\sigma}{g(s)} \longrightarrow 1, \quad as \ s \downarrow 0.$$

Hence,

$$\lim_{s\downarrow 0} \frac{\mathcal{L}(\lambda s)}{\mathcal{L}(s)} = 1,$$

for any $\lambda \in [\beta; 1]$. It is easy to be convinced that the last relation is valid for any $\lambda \in \mathbb{R}_+$, where \mathbb{R}_+ is set of positive real numbers. So $\mathcal{L}(s) = \mathcal{U}(q-s)$ is a slowly varying function as $s \downarrow 0$.

The Theorem is proved.

In the critical case it has been proved by Pakes [5] that the sequence $\{n^{\lambda}\mathcal{P}_n(s)\}$ converges to the limiting PGF $\pi(s)$ uniformly for $0 \le s \le r < 1$ which is a solution of the equation (2.5):

$$\pi(s) = G(s)\pi\left(F(s)\right),\,$$

where as before $\lambda = \alpha/B$. It was supposed therein that the moments

$$\sum_{j \in \mathcal{S}} p_j j^2 \ln j \quad \text{and} \quad \sum_{j \in \mathcal{S}} h_j j \ln j$$

are finite. An advantage of assertion of the Theorem 1 from aforementioned result of Pakes consists that in our case the invariant measure $\{v_j\}$ for GWPI and corresponding for it the equation (2.5) is established without any moment assumptions concerning distributions $\{p_j\}$ and $\{h_j\}$. In the final Section of the paper we investigate a speed of convergence

$$n^{\lambda} \mathcal{P}_n(s) \longrightarrow \pi(s)$$
, as $n \to \infty$,

strengthening aforementioned result of Pakes.

2. A speed rate of convergence to invariant measures in critical situation

Consider the critical GWPI with transition functions $p_{ij}^{(n)} = \mathbb{P}_i \{X_n = j\}$. Recall the appropriate PGF

$$\mathcal{P}_n(s) = \sum_{j \in S} p_{0j}^{(n)} s^j = \prod_{k=0}^{n-1} G(F_k(s)), \tag{2.1}$$

where G(s) and F(s) are PGF's of immigration stream law and the process offspring law accordingly. Provided that moments G''(1) and $F^{IV}(1)$ are finite, Pakes [5] investigated a rate of convergence $\{n^{\lambda}\mathcal{P}_n(s)\}$ to the limiting PGF $\pi(s) = \sum_{j \in \mathcal{S}} \pi_j s^j$, which is being the solution of functional equation $\pi(s) = G(s) \cdot \pi(F(s))$. So the nonnegative numbers $\{\pi_j\}$ satisfy the relation

$$\pi_j = \sum_{i \in \mathcal{S}} \pi_i p_{ij}^{(n)}.$$

In this section we improve aforementioned result of Pakes, holding to condition of the third order factorial moment of offspring PGF is finite.

Theorem 4. Let A=1, 2B:=F''(1), $\alpha:=G'(1)$ and $\lambda=\alpha/B$. If $C:=F'''(1)<\infty$, then the sequence $\{n^{\lambda}\mathcal{P}_n(s)\}$ converges to $\pi(s)$ uniformly for $0 \leq s \leq r < 1$, and besides

$$n^{\lambda} \mathcal{P}_n(s) = \pi(s) \cdot \left(1 + \Delta \cdot \frac{\ln b_n(s)}{b_n(s)} \left(1 + o(1) \right) \right), \quad as \quad n \to \infty, \tag{2.2}$$

where $\Delta := \alpha \left(\frac{C}{6B^2} - 1 \right)$ and

$$b_n(s) = Bn + \frac{1}{1-s}.$$

Proof. It follows from (3.1) that

$$n^{\lambda} \mathcal{P}_{n}(s) = n^{\lambda} \prod_{k=0}^{n-1} G(F_{k}(s)) =$$

$$= G(s) \prod_{k=1}^{n-1} \left(1 + \frac{1}{k}\right)^{\lambda} G(F_{k}(s)) = G(s) \prod_{k=1}^{n-1} A_{k}(s),$$
(2.3)

where $A_k(s) = \left(1 + \frac{1}{k}\right)^{\lambda} G(F_k(s))$. It is known that the infinite product $\prod_{k \in \mathbb{N}} A_k(s)$ and the series $\sum_{k \in \mathbb{N}} (A_k(s) - 1)$ converge or diverge simultaneously. Therefore we investigate the last series. Using elementary expansion $(1 + 1/k)^{\lambda} = 1 + \lambda/k + \varepsilon_k$, we have the following representation:

$$A_{k}(s) - 1 = \frac{\lambda}{k} - (1 - G(F_{k}(s))) - \frac{\lambda}{k} (1 - G(F_{k}(s))) + \varepsilon_{k} G(F_{k}(s)), \qquad (2.4)$$

where $\varepsilon_k = O(1/k^2)$. We write

$$1 - G(s) = \alpha \cdot (1 - s) - \delta(s) (1 - s), \qquad (2.5)$$

where $0 \le \delta(s) = (1-s) G''(\theta)/2$ and $s < \theta < 1$; obviously that $\delta(s) = o(1)$ as $s \uparrow 1$. In turn we know that (see [1, p.74]):

$$|1 - F_n(s)| \le 2(1 - F_n(0)),$$
 (2.6)

and according to the Basic Lemma of the theory of critical processes $1 - F_n(0) \sim 1/Bn$; see e.g. [1, p.19]. Hence from relations (3.4)–(3.6) we will easily be convinced that

$$A_k(s) - 1 = O\left(\frac{1}{k^2}\right), \text{ as } k \to \infty,$$

uniformly for $0 \le s \le r < 1$. Last statement testifies to a uniform convergence of the series $\sum_{k \in \mathbb{N}} (A_k(s) - 1)$ and hence the infinite product $G(s) \prod_{k \in \mathbb{N}} A_k(s)$. We denote this as

$$\pi(s) := \lim_{n \to \infty} n^{\lambda} \mathcal{P}_n(s) = G(s) \prod_{k \in \mathbb{N}} A_k(s). \tag{2.7}$$

Now to the proof of relation (3.2), we will estimate the error term of difference $n^{\lambda}\mathcal{P}_{n}(s) - \pi(s)$. So using representation (3.3) and equality (3.7) we obtain

$$n^{\lambda} \mathcal{P}_{n}(s) - \pi(s) = G(s) \cdot \left[\prod_{k=1}^{n-1} A_{k}(s) - \prod_{k=1}^{\infty} A_{k}(s) \right] =$$

$$= G(s) \prod_{k=1}^{n-1} A_{k}(s) \cdot \left[1 - \prod_{k=n}^{\infty} A_{k}(s) \right].$$
(2.8)

According to the positiveness property of PGF we see $A_k(s) > 0$ for all $0 \le s < 1$. Then using the elementary inequality $\ln(1-x) \ge -x - x^2/(1-x)$ we write down the following equalities:

$$\ln \prod_{k \geqslant n} A_k(s) = \sum_{k \geqslant n} \ln \{1 - (1 - A_k(s))\} =
= -\sum_{k \geqslant n} (1 - A_k(s)) + \rho_n^{(1)}(s) =: \Sigma_n(s) + \rho_n^{(1)}(s),$$
(2.9)

where

$$\Sigma_n(s) = -\sum_{k \geqslant n} (1 - A_k(s)),$$

and

$$0 \ge \rho_n^{(1)}(s) \ge -\sum_{k \ge n} \frac{[1 - A_k(s)]^2}{A_k(s)} >$$

$$> -(1 - G(F_n(s))) \sum_{k \ge n} \frac{1 - A_k(s)}{A_k(s)} >$$

$$> \frac{1 - G(F_n(s))}{G(F_n(s))} \cdot \Sigma_n(s).$$

The monotone property of PGFs used in the last step.

Replacing s by $F_k(s)$ it follows from (3.5) that

$$1 - G(F_n(s)) = \alpha (1 - F_n(s)) + \delta (F_n(s)) (1 - F_n(s)). \tag{2.10}$$

Owing to (3.6) and (3.10) $1 - G(F_n(s)) \sim \lambda/n$ and hence the augend in (3.9) $\rho_n^{(1)}(s) \to 0$ always supposing the first term $\Sigma_n(s)$ has a finite limit as $n \to \infty$. In turn in our conditions and owing to (3.6) $\delta(F_n(s)) = O(1/n)$. Therefore combining (3.4), (3.6) and (3.10) we will receive the following equality for first term in (3.9):

$$\Sigma_n(s) = -\sum_{k \ge n} \left(\alpha \left(1 - F_k(s) \right) - \frac{\lambda}{k} \right) + \sum_{k \ge n} O\left(\frac{1}{k^2} \right). \tag{2.11}$$

Further we use the following asymptotic expansion for the function $1 - F_n(s)$ which holds in the conditions of our theorem:

$$1 - F_n(s) = \frac{1}{b_n(s)} + \widetilde{\Delta} \cdot \frac{\ln b_n(s) + K(s)}{(b_n(s))^2} (1 + o(1)), \qquad (2.12)$$

as $n \to \infty$, where $\widetilde{\Delta} = \frac{C}{6B} - B$ and K(s) is some bounded function depending on form of F(s) and $b_n(s)$ is same as in the theorem statement. The formula (3.12) was established in the paper [16] and we have reduced it in a bit modified form. So $b_n(s) = O(n)$ as $n \to \infty$, considering the expansion (3.12), we rewrite the equality (3.11) in form of

$$\Sigma_n(s) = -\alpha \widetilde{\Delta} \cdot \sum_{k > n} \chi(k) + \rho_n^{(2)}(s), \qquad (2.13)$$

where $\rho_n^{(2)}(s) = \sum_{k \geqslant n} O\left(1/k^2\right)$ and

$$\chi(k) = \frac{\ln b_k(s)}{(b_k(s))^2}.$$

One can see that the function $\chi(k)$ is positive and monotonically decreases with respect $k \in \mathbb{N}$ and for all $0 \le s < 1$.

We consider now an alternative function $\chi(t)$ for $t \in \mathbb{R}_+$. Obviously this function is positive, monotonically decreases and also is continuous. Moreover

$$\int \chi(t)dt = X(t) + const,$$

where

$$\mathbf{X}(t) = -\frac{1}{B} \left(\frac{\ln b_t(s)}{b_t(s)} + \frac{1}{b_t(s)} \right),$$

for $0 \le s < 1$ and $X(t) \to 0$ as $t \to \infty$. Therefore due to the Mc'Loren-Cauchy test (see [18, pp. 283–284]) the following inequalities hold:

$$\frac{1}{B} \frac{\ln b_n(s)}{b_n(s)} + \frac{1}{b_n(s)} \leqslant \sum_{k \geqslant n} \chi(k) \leqslant \frac{1}{B} \frac{\ln b_{n-1}(s)}{b_{n-1}(s)} + \frac{1}{b_{n-1}(s)}.$$

By means of the last inequalities and considering that $b_n(s) = O(n)$ as $n \to \infty$ we write estimation

$$\left| \sum_{k \geqslant n} \chi(k) - \frac{1}{B} \frac{\ln b_n(s)}{b_n(s)} \right| = O\left(\frac{1}{n}\right), \quad \text{as} \quad n \to \infty,$$
 (2.14)

for $0 \leq s < 1$.

Almost obviously that $\rho_n^{(2)}(s) = \sum_{k \ge n} O\left(1/k^2\right) = O\left(1/n\right)$. Considering it and exploiting (3.14) in (3.13) we will obtain

$$\Sigma_n(s) = -\Delta \cdot \frac{\ln b_n(s)}{b_n(s)} + O\left(\frac{1}{n}\right), \quad \text{as} \quad n \to \infty,$$
 (2.15)

where $\Delta = \alpha \left(\frac{C}{6B^2} - 1 \right)$.

Return now to the equality (3.9). Due to (3.15) and the fact $1 - G(F_n(s)) \sim \lambda/n$ arises $\rho_n^{(1)}(s) = O(\ln n/n^2)$. Then from (3.9) and (3.15) we conclude

$$\prod_{k \geqslant n} A_k(s) = \exp\left\{-\Delta \cdot \frac{\ln b_n(s)}{b_n(s)} \left(1 + o\left(1\right)\right)\right\}, \quad \text{as} \quad n \to \infty.$$

Finally using last expansion in (3.8) with combination of the formula $1 - e^{-x} \sim x$, $x \to 0$, we complete the theorem proof.

From Theorem 4 we receive the following

Corollary 1. In conditions of Theorem 4 the following assertion is valid

$$n^{\lambda}p_{00}^{(n)} = \pi_0 \left(1 + \frac{\Delta}{B} \cdot \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)\right), \quad as \quad n \to \infty,$$

where Δ is defined in Theorem 4.

The following theorem generalizes the previous one.

Theorem 5. Let conditions of the Theorem 4 are satisfied. Then the sequence $\left\{n^{\lambda}\mathcal{P}_{n}^{(i)}(s)\right\}$ converges to the limiting function $\pi(s)$ uniformly on the set of $0 \le s \le r < 1$, and

$$n^{\lambda} \mathcal{P}_{n}^{(i)}(s) = \pi(s) \left(\delta_{n}^{(i)}(s) + \Delta_{n}^{(i)}(s) \cdot \frac{\ln b_{n}(s)}{b_{n}(s)} \left(1 + o\left(1\right) \right) \right), \tag{2.16}$$

as $n \to \infty$, where $\Delta_n^{(i)}(s) = \Delta \cdot \delta_n^{(i)}(s)$ and

$$\delta_n^{(i)}(s) = 1 - \frac{i}{b_n(s)},$$

and expressions Δ and $b_n(s)$ are defined in Theorem 4.

Proof. Since $F_n(s) \leq 1$ and $F_n(s) \uparrow 1$ as $n \to \infty$, it follows from (1.2) and Theorem 4 that $\left\{n^{\lambda} \mathcal{P}_n^{(i)}(s)\right\}$ converges uniformly to $\pi(s)$ for $0 \leq s \leq r < 1$. Write

$$n^{\lambda} \mathcal{P}_n^{(i)}(s) = (F_n(s))^i n^{\lambda} \mathcal{P}_n(s). \tag{2.17}$$

It is obvious for fixed i and at large values of number n

$$(F_n(s))^i = 1 - i (1 - F_n(s)) (1 + o(1)).$$

From here and using (3.12) follows

$$(F_n(s))^i = 1 - \frac{i}{b_n(s)} (1 + o(1)), \text{ as } n \to \infty.$$
 (2.18)

Now the theorem statement follows from equalities (3.17) and (3.18), with application of the statements (3.2) and (3.12).

Corollary 2. In conditions of Theorem 5 the following assertion is valid:

$$n^{\lambda} p_{ij}^{(n)} = \pi_j \left(\delta_n^{(i)} + \Delta \delta_n^{(i)} \cdot \frac{\ln Bn}{Bn} \left(1 + o(1) \right) \right), \quad as \quad n \to \infty,$$

for all $i, j \in \mathcal{S}$, where $\delta_n^{(i)} = 1 - i/Bn$.

References

- [1] K.B.Athreva, P.E.Nev, Branching processes, Springer, New York, 1972.
- [2] C.R.Heathcote, Corrections and comments on the paper "A branching process allowing immigration", *Journal of the Royal Statistical Society*, **B-28**(1966), 213–217.
- [3] C.R.Heathcote, A branching process allowing immigration, *Journal of the Royal Statistical Society*, **B-27**(1965), 138–143.
- [4] A.G.Pakes, Limit for the simple branching process allowing immigration, I. The case of finite offspring mean, *Advances in Applied Probability*, **11**(1979), 31–62.
- [5] A.G.Pakes, Futher results on the critical Galton-Watson process with immigration, *Journal of Australian Mathematical Society*, **13**(1972), no. 3, 277–290.
- [6] A.G.Pakes, On the critical Galton-Watson process with immigration, *Journal of Australian Mathematical Society*, **12**(1971), 476–482.
- [7] A.G.Pakes, Branching processes with immigration, *Journal in Applied Probability*, 8 (1971), no. 1, 32–42.
- [8] E.Seneta, On invariant measures for simple branching process, *Journal in Applied Probability*, 8(1971), 43–51.
- [9] E.Seneta, An explicit-limit theorem for the critical Galton-Watson process with immigration, *Journal of the Royal Statistical Society*, **B-32**(1970), no. 1, 149–152.
- [10] E.Seneta, Functional equations and the Galton-Watson process, Advances in Applied Probability, 1(1969), 1–42.
- [11] E.Seneta, The stationary distribution of a branching process allowing immigration: A remark on the critical case, *Journal of the Royal Statistical Society*, **B-30**(1968), no. 1, 176–179.
- [12] Y.Uchimura, K.Saitô, Asymptotic behavior of the Bernoulli type Galton-Watson branching process with immigration, *Random Operators and Stochastic Equations*, **23**(2015), no. 1, 1–10.
- [13] Y.Uchimura, K.Saitô, Limiting distributions of Galton-Watson branching processes with immigration, *Communications on Stochastic Analysis*, **6**(2012), no. 2, 281–295.

- [14] Y.Uchimura, K.Saitô, Stationary distributions of the Bernoulli type Galton-Watson branching process with immigration, *Communications on Stochastic Analysis*, **5**(2011), no. 3, 457–480.
- [15] A.M.Zubkov, Life-Periods of a Branching Process with Immigration, *Theory Probab. Appl.*, **17**(1972), no. 1, 179–188.
- [16] S.V.Nagaev, R.Myhammedzhanova, Some limit theorems of the theory of branching random processes, Limit theorems and statistical inference, Fan, Tashkent, 1966, 90–112 (in Russian).
- [17] B.A.Sevastyanov, Branching processes, Nauka, Moscow, 1971 (in Russian).
- [18] G.M.Fikhtengolts, Course of differential and integral calculus, V. 2, Nauka, Moscow, 1970 (in Russian).

Об асимптотическом поведении состояний ветвящихся процессов Гальтона-Ватсона с иммиграцией

Азам А. Имомов

В работе рассматривается ветвящийся процесс с иммиграцией дискретного времени. Исследуются предельные свойства переходных вероятностей и их сходимость к инвариантным мерам. В критическом случае определяется скорость этой сходимости.

Ключевые слова: ветвящийся процесс, иммиграция, переходные вероятности, инвариантные меры, скорость сходимости к инвариантным мерам.