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We observe the discrete-time Branching Process allowing Immigration. Limit properties of transition
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Introduction

Let the random function X,, denote the successive population size of the Galton-Watson
Branching Process allowing Immigration (GWPI) at the moment n € N, here Ny = {0} U{N =
1,2,...}. The state sequence {X,} is a homogeneous Markov chain with state space on Ny and
can be expressed recursively as

Xn—1

Xn: Zgnk""nnv fOT neNa
k=1

where independent and identically distributed (i.i.d.) random variables &, denote the offspring
number of k-th individual in the (n — 1)-th generation, and i.i.d. variables 7,, are not depend on
&nk interpreted as number of immigrants-individuals at the moment n. We assume Xy = 0 and
the process starts owing to immigrants. Each individual reproduces independently of each other
and according to the offspring law py, := P {&11 = k}. With probability h; := P {n = j} arrive
j € Ny immigrants in population in each moment n € N. These individuals undergo further
transformation by the reproduction law {p;}. Throughout the paper we assume py > 0 and

> hj=1
j€Np
We denote S C Ny to be the state space of the chain {X,,}. It is indicated by n-step transition
functions

P = Pi{ X, = j} = P{ Xppn = j| Xi = i},

for any n,k € Ny. Let

Pr(f)(s) =F;s%" = sz(-;")sj
JES
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is probability generating function (PGF). Denoting

G(S) = Z hjsj and F(s) = Z pjsj7

j€No J€ENg
P (s) = G(s) - P (F(s)). (0.1)
From (1.1) we have
PI(s) = [Fu(s)]' [ G (Fr(s)). (0.2)
k=0

where F,(s) is n-fold iterate of PGF F'(s); see, e.g., [1, p.263]. Now it is clear the probabilities
{pl(?)} are completely defined by means of probabilities {p;} and {h,}.

Classification of states of the chain {X,,} is one of fundamental problems in theory of GWPL
Direct differentiation of (1.2) gives us

(0% o
n Y i) A - when A#1,
EX, =Y jpl)) = <A1+Z> A—1 Vhem A7
je€S an+1 , when A =1,

where A = F’(1) and o = G’(1). The received formula for E; X, shows that classification of
states of GWPI depends on the value of parameter A is the mean number of direct descendants of
single individual as a result of transformation for one-step generation. Process {X,,} is classified
as sub-critical, critical and supercritical if A <1, A =1 and A > 1 accordingly.

The above described evolution process of individuals was considered first by Heathcote [3]
in 1965. Further long-term properties of states and a problem of existence and uniqueness of
invariant measures of GWPI were investigated in papers of Seneta [8, 10, 11], Pakes [4-7] and by
many other authors. Therein some moment conditions for PGF F(s) and G(s) was required to
be satisfied. In aforementioned works of Seneta the ergodic properties of {X,,} were investigated.
He has proved that in cases A < 1 there is a unique invariant measure {py, k € S} and besides
o = 1. Heathcote [2] and Pakes [7] have shown that in supercritical case S is transient. In
the critical case if the first moment of immigration law « := G’(1) is finite, then S can be
transient, null-recurrent or ergodic. In this case, if in addition to assume that 2B := F"/(1) < oo,
properties of § depend on value of parameter A = a/B: if A > 1 or A < 1, then § is transient or
null-recurrent accordingly. In the case when A = 1, Pakes [6] and Zubkov [15] studied necessary
and sufficient conditions for a null-recurrence property. Limiting distribution law for critical
process {X,,} was found first by Seneta [9]. By them it has been proved under the condition of
0 < A < oo the normalized process X,,/n has limiting Gamma distribution with density function

1 A1
I el —x/B
ey ( ) e , for =z >0,

where I'(x) is Euler’s Gamma function. This result without reference to Seneta has been estab-
lished also by Pakes [6].

More recent researches on asymptotic properties of process contain in papers [12-14] in which
the Bernoulli type GWPI was considered, i.e. both &, and 7, obey the Binomial distribution
law. Clearly Bernoulli type GWPI is a special class in the general theory of Branching Processes.
In this paper we consider processes in which both offspring law and immigration law are arbitrary.
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In Section 2 invariant properties of GWPI will be investigated. The analogue of the Ratio

Limit Property Theorem for transition functions {pgl)} will be proved (Theorem 1 below).
The Section 3 is devoted to estimate of speed of convergence of {n/\ pE?) } to invariant measures

in the critical case.

1. Invariant property of transition functions

First we are interested in long-time behavior of ratio pE;) / pég) for any 7,5 € S. Having

designation P, (s) := flo)(s), it follows from (1.2) that

v (s)
Pn(s)

—q', as n— oo, (1.1)

because of F,(s) — ¢ for 0 < s < 1; see [17, p. 53]. Recall that ¢ is an extinction probability of
the simple branching process without immigration with PGF F(s). It is the least nonnegative
solution of ¢ = F(q), and that ¢ =1if A <1 and ¢ <1if A > 1. Putting s =0 in (2.1) implies
pz(-g ) / pég) — ¢* as n — 0o. On purpose to receive the statement generally for all j € S, we write

Pry1(s) = Puls) - G (Fu(s))
and from here and considering the properties of PGF one can calculate derivatives of j-th order:

Ppii(s) B Pp(s) .
Osi T 9sd

G (Fu(s)) + Djn(s),

for all 0 < s < 1, where expression D; ,,(s) is a power series with nonnegative coefficients. Since
pé?) = &Ppi1(s)/0s? ‘5:0’ from last received results we obtain
(n+1) (n)
Do, > Po;
(nt+1) = (n)’
DPoo Poo

So the sequence of functions {pé?) / p(()g)} monotonously increases as n — oo. In our conditions

pgg) > 0 for any n € N. Therefore this sequence converges increasing to the finite non-negative

limit which we will designate as v;:

(n)
Z%ij<oo7 as n — oo. (1.2)
Doo

Let’s consider now more general ratio pl(-;l) / pgg). Denoting

(n)

U (s) = Zpgl)sj, for 0 <s <1,

jes Poo
we write the following equalities:
U (s) = pz(-?) J— i Pn(s) _ i
W) =D —iys = () 5 gy = Fa()) Un(s), (1.3)

jes Poo
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where

Now wee prove the following Ratio Limit Property (RLP) Theorem.
Theorem 1. The general GWPI satisfies the RLP for all i,7 € S:
p(n)
lim —. = ¢'v; < . (1.4)

n—oo (1)

Poo

An appropriate PGF of vj; = lim,, ;o0 pO])/p((Jg) is

= Z v’
JES
and it satisfies the functional equation
o-U(s)=G(s) - U(F(s)), (1.5)
in a region of its convergence, where o := G(q).

Proof. The statement (2.4) immediately follows from relations (2.2), (2.3) and that fact
F,(s) = q uniformly for 0 < s <r < 1asn — oo.

To prove the justice of the equation (2.5) we consider together the relations (1.1), (2.3) and
the known equality Py 11(s) = Pn(s) - G (F,(s)) and receive the following equalities:

(4) _ i _ i Pnia(s) _
Unii(s) = [Fapa(s)] Unta(s) = [Fn (F(s))] ﬁi(o) =
G(s)-Pu(F(s) _ _ G(s)

= [Fn (F(S))]z G (F,(0)) - P, (0) N G (F,(0)) o

Taking limit as n — oo from here we get to (2.5).
The Theorem is proved. O

PGF U(s) as a power series represents a continuous function in field of 0 < s < 1. According
to properties of PGF it converges for all s € [0; 1 —¢] and for any arbitrary small constant ¢ > 0.

Repeatedly using the iteration of PGF F(s) in the equation (2.5) leads us to the following
relation:

o"U(s) = Pn(s)U (Fr(s)) . (1.6)

The transition function analogue of (2.6) is

= vl (1.7)

€S
Equality (2.7) indicates that the set of non-negative numbers {v;, j € S} represents an invariant
measure for the chain {X,}.
Due to the condition p(()g) > 0 and the equality (2.7), all of v; < co and v; > 0 for j € S. And
vg = 1 as well. Then by definition of the process {X,,} and owing to (2.7) we have the following
chain of equalities:

o = "y = g ’Ungg)—
€S
= E:Uz 0 ( poo —poo E UlPlO n),
iES €S
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where Pjo(n) = P;{Z, = 0} is a hitting probability to zero state of the process {Z,,} without
immigration and generated by PGF F'(s). Since this probability is equal to F,(0), one can see
o™ =P, (0)U (F,(0)) and hence

O_n
U(Fa(0) = 45 (1.8)
Poo
for any n € N.
Let’s consider the case A # 1. Due to continuity of U(s), from equality (2.8) we receive
O.n
5 U(g) < oo, as n— oo. (1.9)
DPoo
Here we considered that F;,(0) — ¢. Now considering together the relations (2.1), (2.4) and

(2.9), we can write the following theorem.

Theorem 2. If A+# 1, then

i
—n (n q v;
o ”pl(.j)_>7;, as n — 00,
> qFug
keS

o — _ (n) [ (n)
foralli,j eS8, where o = G(q) and v; = nl;rrgopoj /poo .
Further we expand our discussion concerning the equation (2.5) investigating properties of
its solution.

Theorem 3. Let A # 1. Then there is a unique (up to a multiplicative constant) solution U(s)
of the equation (2.5) for s € [0; q) such that

L(t)=U(q—1) (1.10)
s a slowly varying function as t | 0.

Proof. Let’s propose that there is another solution u (s) of the equation (2.5). Then owing

to equality (2.6) we write
UG) _UE(s) oy
U(s) U (Fn(s))

By definition the solution 7/ (s) as well as U(s) monotonically increases. Since F,(0) 1 ¢ then
for given each s € [0; q) always there is k € N such that F;(0) < s < Fj41(0). Hence from
equality (2.11) we will receive the following relations:

U(s) < U(Friri1(0)) U (Friri1(0)) Fn+k+1(0)).

U
Us)  UFr(0)  U(Fayrs1(0) U (Fnpr(0))

But again according to equality (2.11)

U (F(0) _ U(0)

== =1
U (F,(0))  U(0)

Then using once again (2.6) and the formula P,,11(s) = Ppn(s) - G (F,.(8)), we have

U(s) < AA(Fn+k+1(O)) _ o
Uu

U(s)  U(Fur(0) G (Fayr(0)
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Taking limit as

because PGF G(s) continuously. By the similar way it is possible to establish the converse

inequality U(s) / U(s) = 1. The received conclusions say that the equation (2.5) has a unique

solution for all s € [0; ¢).
Now following a method of Seneta [§8] we put

9(s) =Glg—s), [f(s)=q—F(g—s).
In the allowed designations the equation (2.5) becomes
o-L(s)=g(s)-L(f(s)), for se€]0;q). (1.12)

We will be convinced the function f(s)/s monotonically decreases on set of 0 < s < ¢ taking
here the maximum S = limg o [f(s)/s] and the minimum f(q)/q = 1 — po/q accordingly, where
as before 8 = F’(q). The function £(s) in form of (2.10) is also monotonically decreasing on this
set and limg g g(s) = 0. Then for any A € [§; 1] one gets

I(s)
L) _ e(5%) L L) | £0s)
L(s) Ls) = L(s) = L(s) ~
On the other hand according to (2.12),
L(f(s) _ o us s
L) g et

Hence, )

. L(As)

e T b

for any A € [3; 1]. It is easy to be convinced that the last relation is valid for any A € R, where
R, is set of positive real numbers. So L(s) = U(q — s) is a slowly varying function as s | 0.
The Theorem is proved. O

In the critical case it has been proved by Pakes [5] that the sequence {n*P,(s)} converges
to the limiting PGF 7 (s) uniformly for 0 < s < r < 1 which is a solution of the equation (2.5):

where as before A = a/B. It was supposed therein that the moments

ijj21nj and Zhjjlnj

jes JES
are finite. An advantage of assertion of the Theorem 1 from aforementioned result of Pakes
consists that in our case the invariant measure {v,;} for GWPI and corresponding for it the

equation (2.5) is established without any moment assumptions concerning distributions {p;}
and {h;}. In the final Section of the paper we investigate a speed of convergence

n P, (s) — m(s), as n— oo,

strengthening aforementioned result of Pakes.
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2. A speed rate of convergence to invariant measures
in critical situation

Consider the critical GWPI with transition functions pl(-;l) =P;{X,, = j}. Recall the appro-
priate PGF

n—1
Puls) = > poy's’ = [ G (Fils)), (2.1)

jES k=0
where G(s) and F(s) are PGF’s of immigration stream law and the process offspring law ac-
cordingly. Provided that moments G”(1) and F!V (1) are finite, Pakes [5] investigated a rate
of convergence {n*P,(s)} to the limiting PGF m(s) = > 7;s7, which is being the solution of

JES

functional equation 7(s) = G(s)-m (F(s)). So the nonnegative numbers {7} satisfy the relation

7Tj = Z Wlpgy)
€S

In this section we improve aforementioned result of Pakes, holding to condition of the third
order factorial moment of offspring PGF is finite.

Theorem 4. Let A=1, 2B :=F"(1), a:=G'(1) and A = a/B. If C := F"'(1) < o0, then the
sequence {n’\’Pn(s)} converges to w(s) uniformly for 0 < s <r <1, and besides

" Py (s) = m(s) - (1 FA- h;)b’(’s()s) 1+ 0(1))> ., as n— oo, (2.2)
C
where A := « (632 — 1) and
bn(s) = Bn+ 1%
Proof. Tt follows from (3.1) that
n—1
n P, (s) = n H G (Fy(s)) =
h=0 (2.3)

n—1 1 A n—1
6@ [ (1+7) 6@ =66 [T
k=1

A
1
where Ag(s) = (1 + k‘) G (Fy(s)). It is known that the infinite product [] Ax(s) and the
keN
series > (Ag(s) — 1) converge or diverge simultaneously. Therefore we investigate the last series.
keN

Using elementary expansion (1+ 1/k)* =14 A/k + ez, we have the following representation:

Aels) =1= 2~ (1= G (Fels)) — 2 (- G (Rlo) + G (Fis) . (24)

where g, = O (1//€2). We write

1-G(s)=a-(1—5)—=46(s)(1—9), (2.5)
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where 0 < 6(s) = (1 —s)G"(0)/2 and s < 6 < 1; obviously that §(s) = o(1) as s T 1. In turn we
know that (see [1, p.74]):

and according to the Basic Lemma of the theory of critical processes 1 — F,,(0) ~ 1/Bn; see
e.g. [1, p.19]. Hence from relations (3.4)—(3.6) we will easily be convinced that

Ak(s)lO(]iQ), as k — oo,

uniformly for 0 < s < r < 1. Last statement testifies to a uniform convergence of the series

>~ (Ak(s) — 1) and hence the infinite product G(s) [] Ax(s). We denote this as
keN kEN

7(s) == lim n*P, H Ag(s (2.7)

n—o0
keN

Now to the proof of relation (3.2), we will estimate the error term of difference n*P,, (s) —7(s).
So using representation (3.3) and equality (3.7) we obtain

n—1 oo
IT4xs) -] 4
k=1 =

n/\Pn(s) —m(s) =

n—1 o]
s) [T Ax(s) - [1 = ] Ax(s)
k=1 k=n

According to the positiveness property of PGF we see Ag(s) > 0 for all 0 < s < 1. Then using
the elementary inequality In (1 — z) > —x — 22 / (1 — z) we write down the following equalities:

In J] Ak(s) =D In{1 — (1 - Ax(s))} =

k>n k>n
(2.9)
= =D (1= Ak() + k) (s) =2 Zuls) + 91 (5),
k>n
where
Sn(s) = =D (1= Ax(s))
k>2n
and
1— Ag(s)]
0> ,M(s) > — [ k
- - Z 1— Ak
1—G(Fu(s))
————2 . 3,(9).
G
The monotone property of PGFs used in the last step.
Replacing s by Fj(s) it follows from (3.5) that
1= G (Fu(s)) = a(l = Fu(s)) + 0 (Fu(s)) (1 = Fu(s)) - (2.10)
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Owing to (3.6) and (3.10) 1 — G (F,(s)) ~ A/n and hence the augend in (3.9) pg)(s) — 0 always
supposing the first term X,,(s) has a finite limit as n — co. In turn in our conditions and owing
to (3.6) 0 (Fn(s)) = O(1/n). Therefore combining (3.4), (3.6) and (3.10) we will receive the
following equality for first term in (3.9):

zdgz—g;Cul—&@»—2>+g;0(;>. (2.11)

Further we use the following asymptotic expansion for the function 1 — F,(s) which holds in
the conditions of our theorem:

1 LA Inb,(s) + K(s)

LR =) (bu(s))”

(I+0(1)), (2.12)

~ C
as n — 00, where A = 6B " B and K(s) is some bounded function depending on form of
F(s) and by(s) is same as in the theorem statement. The formula (3.12) was established in the

paper [16] and we have reduced it in a bit modified form. So b, (s) = O(n) as n — oo, considering
the expansion (3.12), we rewrite the equality (3.11) in form of

En(s) = —al - x(k) +pD(5), (213)

k>2n

where pg)(s) =Y O(1/k?*) and
k>n

o In bk (8)
= 3
(bx(s))
One can see that the function x(k) is positive and monotonically decreases with respect k € N
and for all 0 < s < 1.

We consider now an alternative function x(¢) for ¢t € R;. Obviously this function is positive,
monotonically decreases and also is continuous. Moreover

x(k)

/&@ﬁ:X®+mmm

1 [Inby(s) 1
X@“B(m@ *ma)

for 0 < s < 1 and X(¢) — 0 as t — oo. Therefore due to the Mc’Loren-Cauchy test (see
[18, pp. 283-284]) the following inequalities hold:

where

1 Inb,(s) 1 11Inb,_1(s) 1
5o e S XM S g i

k>n

By means of the last inequalities and considering that b, (s) = O(n) as n — oo we write estimation

Z x(k) — ;IIZ:?S) =0 <;) , as n — 00, (2.14)

for0<s< 1.
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Almost obviously that p{? (s)= > O(1/k?) = O (1/n). Considering it and exploiting (3.14)

in (3.13) we will obtain

SRR LUAC) B (;) s n— oo, (2.15)

C
whereA:a(W—l).

Return now to the equality (3.9). Due to (3.15) and the fact 1 — G (Fy,(s)) ~ A/n arises
psll)(s) = O (Inn/n?). Then from (3.9) and (3.15) we conclude

HAk(s)—exp{A-lnb”;s) (1+0(1))}, as n — o0o.

o b (s)

Finally using last expansion in (3.8) with combination of the formula 1 — e ™ ~ z, x — 0, we
complete the theorem proof. |

From Theorem 4 we receive the following

Corollary 1. In conditions of Theorem /4 the following assertion is valid

A (n) A Inn Inn
n"pyy’ = To 1+§'7n +o0 W ;a8 M= 00,

where A is defined in Theorem 4.

The following theorem generalizes the previous one.

Theorem 5. Let conditions of the Theorem 4 are satisfied. Then the sequence {n)‘Py(Li)(s)}

converges to the limiting function m(s) uniformly on the set of 0 < s <r <1, and

Inby(s)

n{S

nA P (s) = m(s) (555)(5) + A (s) (1+o (1))> ; (2.16)

as n — oo, where Agf)(s) =A- 67(li)(s) and

and expressions A and b, (s) are defined in Theorem 4.

Proof. Since F,,(s) < 1 and F,(s) T 1 as n — oo, it follows from (1.2) and Theorem 4 that
{nAPT(f)(s)} converges uniformly to w(s) for 0 < s < r < 1. Write

nAPr(Li)(S) = (Fn(s))l n)\Pn(S)- (2.17)
It is obvious for fixed i and at large values of number n
(Fals))" =1—i(1 = Fu(s)) (1+0(1)).

From here and using (3.12) follows

(1+0(1)), as n—oo. (2.18)
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Now the theorem statement follows from equalities (3.17) and (3.18), with application of the
statements (3.2) and (3.12). O

Corollary 2. In conditions of Theorem & the following assertion is valid:

§ | . B
n/\p(') =7 <57(11) + A(ST(Z) . nBinn (1+ 0(1))) , as n— oo,

ij

foralli,j €S, where o) =1— i/Bn.

References

1
2]

3]

[4]

15]

16]

7]

18]

19]

[10]

[11]

[12]

[13]

K.B.Athreya, P.E.Ney, Branching processes, Springer, New York, 1972.

C.R.Heathcote, Corrections and comments on the paper "A branching process allowing
immigration", Journal of the Royal Statistical Society, B-28(1966), 213-217.

C.R.Heathcote, A branching process allowing immigration, Journal of the Royal Statistical
Society, B-27(1965), 138-143.

A.G.Pakes, Limit for the simple branching process allowing immigration, I. The case of finite
offspring mean, Advances in Applied Probability, 11(1979), 31-62.

A.G.Pakes, Futher results on the critical Galton-Watson process with immigration, Journal
of Australian Mathematical Soceity, 13(1972), no. 3, 277-290.

A.G.Pakes, On the critical Galton-Watson process with immigration, Journal of Australian
Mathematical Soceity, 12(1971), 476-482.

A.G.Pakes, Branching processes with immigration, Journal in Applied Probabiliry, 8 (1971),
no. 1, 32-42.

E.Seneta, On invariant measures for simple branching process, Journal in Applied Proba-
biliry, 8(1971), 43-51.

E.Seneta, An explicit-limit theorem for the critical Galton-Watson process with immigra-
tion, Journal of the Royal Statistical Society, B-32(1970), no. 1, 149-152.

E.Seneta, Functional equations and the Galton-Watson process, Advances in Applied Prob-
ability, 1(1969), 1-42.

E.Seneta, The stationary distribution of a branching process allowing immigration: A
remark on the critical case, Journal of the Royal Statistical Society, B-30(1968), no. 1,
176-179.

Y.Uchimura, K.Saitd6, Asymptotic behavior of the Bernoulli type Galton-Watson branching
process with immigration, Random Operators and Stochastic Equations, 23(2015), no.1,
1-10.

Y.Uchimura, K.Sait6, Limiting distributions of Galton-Watson branching processes with
immigration, Communications on Stochastic Analysis, 6(2012), no. 2, 281-295.

—404 —



Azam A.Imomov On Long-time Behaviors of States of Galton-Watson Branching Processes ...

[14] Y.Uchimura, K.Saito, Stationary distributions of the Bernoulli type Galton-Watson branch-
ing process with immigration, Communications on Stochastic Analysis, 5(2011), no. 3,
457-480.

[15] A.M.Zubkov, Life-Periods of a Branching Process with Immigration, Theory Probab. Appl.,
17(1972), no. 1, 179-188.

[16] S.V.Nagaev, R.Myhammedzhanova, Some limit theorems of the theory of branching ran-
dom processes, Limit theorems and statistical inference, Fan, Tashkent, 1966, 90-112 (in
Russian).

[17] B.A.Sevastyanov, Branching processes, Nauka, Moscow, 1971 (in Russian).

[18] G.M.Fikhtengolts, Course of differential and integral calculus, V. 2, Nauka, Moscow, 1970
(in Russian).

06 acuMIITOTUYECKOM IIoBeaeHmnum COCTOAHUM

BeTBsIMUXCcH mpolieccoB lanbroHa-Barcona ¢ mummurpanmeii

A3zam A.VMmomoB

B pabome paccmampueaemca 8emMEAUUICA NPOUECC C UMMULPAYUEY Juckpemmozo spemeny. Hccaedy-
romca npedeavHvle C80UCMNEA NEPETOOHBLT BEPOAMHOCTNEN U UT CTOOUMOCTND K UHBAPUGHIIHBDIM MEPAM.
B xpumuueckom cayuae onpedessemca cKopocms 3moti CrooUuMOCmMu.

Karoueswie crosa: 6emsawuiica npouece, umMmuepayus, neperoonve 6epoAmHOCIU, UHEAPUAHITIHDIE Me-
Dbl, CKOPOCT® CTOOUMOCTNU K UHBAPUAGHTIVHOLM MEPAM.
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