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An inverse boundary-value problem for n-dimensional parabolic equation with a parameter is considered.
Sufficient conditions for existence and uniqueness of solution in continuously differentiable class are
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Today inverse problems of mathematical physics play an important role in science and appli-
cations [1]. Coefficient inverse problems for parabolic equations are problems of finding solutions
of differential equation with one (or more) unknown coefficients.

An inverse problem for a parabolic equation with a parameter is investigated. The parameter
has the same dimension as the spatial variable.

Inverse problems with unknown parameter arise in various problems: in studying boundary-
value problems for mixed-type equations and equation systems [2,3]; in solving various inverse
problems [4-7]; in studying boundary-value problems for equation systems with small parame-
ters [8,9].

1. Problem formulation

We consider the boundary-value problem

ou(t, z,
% = Mqu(t,z,y) + (b y)f(t2,y),

U(O,m,y) = Uo(ﬁ,y),

1
2
3
4

u(t7 Zz, y) ‘(L‘EBQ = 0,

)
)
)
u(t, 2, y)|a=y = ot y), (t,7,y) € Qr, )

(
(
(
(

where
Qr ={(t,z,y)lt €[0,T], z € Q, y € D},

T > 0, Q is a rectangular cuboid [0,{1] x [0,l2] X - -+ x [0,1,] in R™, D is a compact subset of
Q with smooth boundary 0D, A, = E 2 is the Laplace operator, u(t,z,y) and pu(t,y) are
€Ly

i=1
unknown functions. Functions f(t¢,,y), uo(x,y) are given.
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We use following notation:
olel
D= ——m—
0“1xq...0%x,
is partial differential operator with respect to spatial variables z ... z,, where « is multi-index
notation (a = (ay,...,an), | =014+ +apn, a; 20, a; € Z);

918l
aﬁlyl - aﬁ"yn

DY =
is partial differential operator with respect to parameter y;
K, >0, ieN
are nonnegative constants that depends only on initial conditions of problem (1)—(4);

Zp() = {(ult,z,y), u(t,y)) [Dyu(t, z,y) € C([0,T] x Q@ x D),

[Dzult, z,y)| < K, p(t,y) € C([0,T] x D), |a] <p—2}

is the class of continuous functions.
Let us assume that the following conditions are fulfilled:

|f(t,y,y)| = K1 >0, yeD,

’D?Dfuo(l‘, y)| < K,

(t,2,y)
Dngm < K3, ’ngﬁt(t,y)‘ < Ky, (5)

laf <p, |B] <1,(t,z,y) € Qr, p=6;

ak

Uo
Ox¥

(-r17"'7xi7"'7m7l7y) z;=0,2;=1l; :07 (6)

k
@f(t,xl,...,xi,...,xmy) wi=02,=1;, =0, i=1,...,n, £=0,2,4,6. (7)

We prove the following statements:

Theorem 1.1. Let us assume that initial data of problem (1)-(4) satisfy (5)-(7) for some p.
Then the problem has a solution of class Z,.

Theorem 1.2. The solution of problem (1)-(4) of class Z, is unique.
Theorem 1.3. Let us consider the Cauchy problem (1), (2), (4) in domain

E={(t,z,y)|t € [0,T],z € R",y € D}.

a. This problem has a solution of class Z,(R™) if conditions (5) are fulfilled in domain E.
b. The solution of the problem is unique.

2. Proof of existence

The proof of Theorem 1.1 is based on reduction of boundary-value problem to Cauchy prob-
lem. We construct an extension of functions ug, f from set Q7 to E in n steps. At the first step
we extend functions ug, f to R with respect to variable x; as follows:

Uo(—x1, T2, oy T, Y) = —ug(T1, X2,y .y Tny YY),
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f(t7 —X1,T2,. .. 7xn7y) = _f(tuxtha cee 7-Tn7y)7 T € [0711]7
Uo(fl +2kl1,$27...,1’n,y) :U0($1,$27...,1’n,y)7
ft,xr + 2kl 20, ...y, y) = f(E 21,22, ., Ty Y), kE€Z, x1 €[0,11].

At i-th step (2 < @ < n) we extend functions ug, f from [0,/;] to R with respect to variable z; in
the same way. We denote the extensions of functions ug, f as ug, f*, respectively.

By (5), (6), functions u, f* have continuous partial derivatives with respect to variables
Z1, ..., Tn Up to p-th order on whole set R™. One should note that functions ug, f* are odd
and periodic with respect to variables x; with period 2l;. By this, the following conditions are
fulfilled:

ug(z1, . Ty oo Ty y) Fup (@, =T, 2, Y) =0, (8)
ug (@1, i F Xy T, y) Fug (@, — @y T, y) =0, 9)
f*(tvxl,“wxia"'axnvy)+f*(taxlv"'7_xi7"'7xnay) :07 (10)
f*(t7$1,,114’5&,,xn,y)+f*(t,x1,,Z»L*l'z,,xn,y) =0. (11)
We use ug, f* as the initial data for the Cauchy problem
ou ta‘rhy *
QUEL) _ \Ault,0) + (e ) (12,0, (12)
u(0,2,y) = u;(2,y), (13)
u(t,x,y)|z:y = ¢(tvy)7 (14)
fort €[0,7], x e R", y e D C R™.
After substitution z =y, y € D to (12) one can find u(t,y):
1
Mtay = 7 N ¢ tay _)‘Aa:u t7y7y ’ yED 15
(t,y) f*(t’y,y)( 1(t,y) (t,9,9)) (15)

Using (15), we reduce problem (12)—(14) to auxiliary Cauchy problem for nonclassic partial
differential equation

W = AAzu(tvmay) + m (¢t(ta y) - )‘Axu(tvya y)) f*(t7$7y)7 (16)
u(0,x,y) = uy(z,y), t€[0,T], z€R", yeD. (17)

Existence of solution of problem (16)—(17) is proved with the use of the method of weak
approximation (MWA, see [10-12]). We split the problem into two fractional steps and make
time shift by 7/ in the trace of unknown function:

W = 2AA1UT(t7x7y)a te (kTa (k +1 /2)7—]’ (18)
ou” )

- (g’t%y) B 2?%2: Z/C: z; (0t y) = ANAUT(t =T /o,5,9)),  t€ ((k+ /27 (k+1)7], (19)
u(0,2,y) = ui(z,y), k=0,...,N—1, Nr=T, zcR" yecD. (20)
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We prove (see Appendix 3.) that functions

0 0 0
aDguT(t,x,y), 8x'DguT(t,m,y), &y‘DguT(t,x,y), |a‘ <p72 (21)
3 3
are uniformly (with respect to 7) bounded in domain E. This implies uniform boundedness and
uniform equicontinuity of function sets {Du"}, |a| < p — 2 in compact subset

HM:{(t7l‘,y)|tE [OvT]v ‘131| <M7 yGDv ’L:L,TL}

Applying Arzela—Ascoli theorem about compactness, we show the existence of the subsequence
u™ (t,x,y) of sequence u”(t,x,y), which converges to some function wu(t,z,y) with its partial
derivatives {D%u"}, |a] < p — 2. It follows from the theorem on convergence of MWA that
function wu(t, z,y) is a solution to (16)—(17) in IIj; and

[Dgu” — DS“HC(HM) =0, |of<p-2

for 7 — 0. Since M is an arbitrary constant, function u(¢, z,y) is a solution to (16)—(17) in whole
domain .

We prove that pair of functions (u(t,z,y), p(t,y)) (where u(t,y) is given by (15)) is solution
to (12)—(14). Because u(t,x,y) is a solution to (16), (17) substitution of (u(t,z,y), u(t,y)) to
(12), (13) gives us identity (16), (17). After substitution z =y, y € D to (16), (17) we show
that u(t, z,y) satisfies

du(t,y,y)
ot

We assume that ¢(t,y) satisfies initial data:

= ¢t(t7y)7 Y € D

uo(y,y) = ¢(0,y), y € D.

Under this assumption function ¥(t) = u(t,y,y) — ¢(¢,y) is a solution to Cauchy problem

Thus ¥(t) = 0 and (14) is fulfilled.

Remark. If we assume that ufy, f* are arbitrary functions satisfying (5) in domain E then we
prove Theorem 1.3 a.

We prove that the solution of Cauchy problem w(t,x,y) satisfies boundary conditions (3).
Solution u™ of split problem (18)—(20) satisfies

W (b @1y ooy iy ooy Ty ) F U (21, ooy =Ty e oy Ty y) =0, (22)

u(t,x1, .l x, e, y) FUT (T, — Ty X, y) =0 (23)

for any 7 > 0, as it is proved in Appendix 3.. Because u7 (¢, x,y) converges to u(t,x,y) in Iy,
for any M > 0 we can set My > max(ly,...,I,). Then we have Qp C Iy, .

Relations (22)—(23) have a limit as 7 — 0. We assume 7 — 0 and x; = 0 in (22)—(23) and

obtain (3). Solution of Cauchy problem (12)—(14) satisfies (1), (2), (4) in Q7 and (3) is fulfilled.
This proves Theorem 1.1.

— 284 —



Kirill V. Korshun On some Inverse Problem for a Parabolic Equation with a Paramete

3. Proof of uniqueness

Let us assume that (uq (¢, z,v), 11 (t,v)), (u2(t,z,y), pe(t,y)) are two arbitrary solutions of
problem (1)—(4) of class Z,,. We denote u* = u3 —ug, u* = p1 — po. Functions u*, pu* satisfy the
following problem

QL) 3 (t2,0) + 0 (0,9 (1, ), 29
u*(0,z,y) =0, (25)
u(t, z,y)|veon = 0, (26)
0t lamy = O, 1)

for (t,z,y) € Qr.
After substitution z =y, y € D into (24) one can find p*(¢, y) using (15) with ¢(¢) = 0. Next
we substitute p*(¢,y) into (24). Function u* satisfies the following problem

ou*(t,x,y) A fta,y) - Agur(t,y,y)
P S — AA u* t, 1,7 y _ ) 7 ) 3 , 28
o ) Ft.v.) 9
u*(0,2,y) =0, (29)
U* (t7 xZ, y)‘-’EG({)Q = 05 (30)
for (t,z,y) € Qr.
2, %
We differentiate twice relations (28)-(30) with respect to x;. Then ——- is a solution to
second-order parabolic boundary-value problem '
82 *
p) 32 32 A g ftw,y) - Agu™(t,y,y)
— ——u*(t, =M\, =——u*(t, 31
82
@u*(O,x,y) =0, (32)
21
@U*(tvl’,y)heaﬂ =0, (33)
fori=1,...,n.

We apply the maximum principle to (31)—(33) and obtain

82
‘MU*(t7m7y)' < Kst sup |AxU*(t7a:7y)‘7 i = 1,...,7’l.

xeRn
Summation of these inequalities for i = 1,...,n gives
n
Z 2u (t x,y)‘ < Ksnt sup |Agu”(t, z,y)] Kgntz sup 2u (t x,y)’
oz reR™ i—1 zeR” oz

i=1
One can set £ so as K3né < 1 and obtain

n

Z sup

i—1 zER™

2

8xi

(t:cy)‘ 0, te]0,£.
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This proves that the right-hand side of (28) is equal to zero. By the maximum principle
u*(t,z,y) =0 for t € [0,£].

Let us consider problem (28), (30) for ¢ € [¢,T] with initial data u*(§,z,y) = 0. Using the
same reasoning we prove that u*(t,z,y) = 0 for t € [¢,2¢]. After finite number of steps we prove
that u*(t,z,y) =0 for ¢t € [0,T].

With «* = 0 in (24) we have

w () f(t z,y) =0, Ve € Q, Vy € D.

Since f(t,z,y) # 0 for x = y we have u(t,y) = 0. This proves Theorem 1.2.

Note. Let us assume that (u1, 1), (uz, u2) are two arbitrary solutions of the Cauchy problem
(1), (2), (4) in domain E and formulate the following Cauchy problem for u* = uy —ug, p* =

p1 — fi2:
ou*(t,x,y)

5 = )\Axu*(t,x,y) +u*(t,y)f(t,x,y), (34)
u*(0,z,y) =0, (35)
u* (ta Y, y) =0, <36)

for (t,z,y) € E.

One can prove in exactly the same way as we did it for (24)—(27) that v* =0 and p* =0.
This proves Theorem 1.3 b.

Appendix

A. Proof of statement (21)

Split-problem (18)—(20) is n-dimensional Cauchy problem for parabolic equation (18), (20)
at the first fractional step and the Cauchy problem for ordinary differential equation (19), (20)
at the second fractional step. Note that the initial data of split-problem satisfies (5).

We use the following notation:

ap(t)= sup  sup [DIDJu" (€ z,y)|, UT(t) =

£€lo,t] xeR™,yeD
= Z Z U;,ﬁ(t)7 UT(” = Z U;,O(t)> (37)

lel<p |81 lal<p

are nonnegative increasing functions. They are bounds of v™ and its partial derivatives.
Zeroth whole step (k = 0) is considered. At the first fractional step we differentiate (18), (20)
up to p times with respect to x; and once with respect to y; and obtain

8 « T « T T n
&DIDgu (t,z,y) :2)\AID$D5u (t,x,y), t€ (0,7 /o], z€R", y€D.

The application of the maximum principle to this equation gives

DYDI (t,z,y)| < Ka, t€[0,7 /2). (38)
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Solution of problem (18), (20) at the second fractional step can be expressed in explicit form:

b fE,y)
/2 f(é-?yay)

Upon differentiating this identity with respect to x;, we obtain bounds for respective partial
derivatives:

UT(taxvy) = uT(T/Q’x7y) +2 i (¢t(§ay) - )\AIUT(f =7 /27yay))d£’ te [T/27T]'

[DZu”(t, 2, y)| < [Dgu” (7 /2,2, y)] +K5T<1 +€ sup ]\AzuT(é - /z,y,y)|>, tel /2] (39)
€™ /2,7

Using (37), inequalities (38)—(39) can be expressed in the following form:

(‘;,O(t) < ;,0(0)7 te [OaT /2]3
Tolt) S UZo(0) + Kar | 14 37 UZo(0) | SUZo(0) + Kar (1407(0)). ¢ [0.7]
|a]=2

The same technique can be applied on the first and subsequent whole steps. At the first
whole step (k = 1) bounds for u” and its partial derivatives are

70(t) SULp(0) + Ksm (14 07(0)), te[r? /o),
at the first fractional step and
|Dgu’ (t,z,y)| < |Dgu” (7 /2, 2,y)| + K57 <1+E [511/p2 ]IAmuT(f =7 /2,y7y)|>, t € [’7/s,27],
€(°7 /2,27

at the second fractional step. Hence
70(t) SUZo(0) + K7 (14 07(0) + 14 07(r)), te [r27].

After applying this technique k times, we obtain

k
7o) SUL(0) + Ksm Y (1 +U((j - 1)7)), te0kr], k=1,...,N. (40)
j=1

Then we sum (40) over all a, |a| < p and prove that

U™ (t) < +K6rzk:(l+UT (G —Dr ))

Jj=

<(1+UT(0)) 1+ Ker)* —1< K7, te[0,kr], k=1,...,N. (41)

—

Because v
(14 Ko7)" < (14 Ko7)™ < (ef07) 7 = elolNT = KT

K7 does not depend on 7 and (41) is the uniform bound.
Consider first-order partial derivatives — D%u”. The partial derivatives can be estimated

Ay
by (38) with |3| = 1 at every first fractional step. At second fractional steps we first differentiate
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the explicit solution of (19), (20) with respect to z; and then with respect to y; (considering
u”(€,y,y) as composite function of y):

9 9 ! 9 f(§xy)
D2u(t,x,y) = =—D2u" (" /2, z, +/ <2Dg‘ ”) x
y; (t,y) 0y; (/22y) /s oyi f(&v,y)

t
X (d1(&,y) — AALuT(E=T /a,y,y)) dE + [/ <2ng> y

0
AzuT(§ =7 /25y7y) - AayAx’U/T(f =7 /27y7y)> dé-

0 0
X <6yi¢t(§73}) - )\81:1'

Because every partial derivative D2u” is bounded by (41) the following inequalities are true:

0 0
‘&yiDguT(t,Ly)’ < ‘8%Dgu7(7/2,w,y)’ + T(K3 (Ky+ AK7) + K3~<K4 + K7+
8 T T
+)‘ sup aiA:Eu (g_ /Qayay) 3
€0, /2] | OYi

UZs(t) SUL5(0)+ Ks7 [ 14+ > UL 5(0) | <UL 500+ Kst (1+UT(0)), te[0,7]. (42)

lor|=2
Using the same line of reasoning on every whole step, we obtain

k
UL 5(t) S UL 5(0)+ Ksm > (L+UT((j —1)7)), te[0kr], k=1,...,N. (43)

j=1
Then we sum (43) over all a, 3, || < p, |f] =1 and obtain
k
UT(t) SUT(0) + Kor ¥ (1+UT((j — 1)7)) <
<(14+U7(0) (14 Kor)¥ —1 5{10, te[0,kr), k=1,...,N.
Inequality (44) shows uniform (with respect to 7) boundedness of partial derivatives

Dg‘DguT(t, z,y).

We differentiate (18), (19) with respect to x; up to p — 2 times. Because the right-hand side
contains uniformly bounded functions then the left-hand side

0
&DgUT(tJU’ZU)a |a| < p— 27

is also uniformly bounded. This proves statement (21).
B. Proof of relations (22) and (23)
We prove relations (22) and (23) with the use of the method of fractional steps.
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At t = 0 relations (22), (23) are fulfilled. It follows from (8) and (9). At the first fractional
step u” satisfies the Cauchy problem (18), (20). The solution of this problem is of the form

(see [13])
’U,T(t,l'h.’ﬂg, oo 7$n71/) = /n ug(ghg?; v 7€’n7 y)W(‘r7§7t>O)d§1d€2 cee df’na (45)

N (@i—i)?
; ( = )
4(t — 2)

1

W(I1,I2,---,Imfl,fz,---,fmt,z): exp | —

A (t — 2)y/(2A)" (46)

We substitute this solution into (22) and (23) and obtain
W (b @1y G Ty Ty ) FUT (BT, G — Ty ey T, Y) =
(ci+ o = &)+ X (z; — &)

. ua(glv"'7€n7y) - J#i
- / W amt@aynz | Y, +

(ci =i = &)* + 2 (x5 — &)?

+exp | - ST déy ...de, =

> (7 —&)°
7/ ug(fl,...,ci—fi,...,fn,y)exp 7# «
n Amt(20)n/2 8\t

. )2 )2
X [exp <_(z184:\fz)> + exp (—(ng)\fz)>:| dgl...dfn, i=1,...,n, ¢;=0,l1, t € (O,T/g].

Note that all integrands are odd functions with respect to &;, hence all integrals are equal to

Z€ero.
At the second fractional step, u” have the following form:

s =w (a2 [ FERB o) —aa e v de, te ]

We substitute this expression into (22) and (23) and obtain

T T
w1,y G+ Thy oo Ty Y) U (G T1y e G — Ty e Ty, Y) =

(T (T
=u §7x1,...,ci+xi7...,xn,y +u §,x1,...7ci—a:i,...,xn,y +

t
+2/ (f*(g,xh...,Ci+$i,.~.,xn,y)+f*(§,x17...7cz‘—mi,.-.,ivf,“y))'~~~df:0,

2

where i = 1,...,n, ¢; =0,l;. All terms in this identity are equal to zero by statements proved

earlier.
Thus, relations (22) and (23) are fulfilled for ¢ € [0,7]. Using the same line of reasoning k

times, we prove that (22) and (23) are fulfilled for ¢ € [0, k7] and, therefore, for all ¢t € [0, T].
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O06 ogHOIT 0OpaTHOIl 3aj1ate AJid MTapadoJIMIECcCKOT0 YPAaBHEHUST
C ImapaMeTpoMm

Kupnaa B. Kopinyn

B cmamwve paccmompena xpaesas obpamnas 3a0a4a 0AA N-MEPHO20 NAPABOAUECKO20 YPABHEHUA C NG~

pamempom. Ilosyuenv, docmamourvie Ycaosusa na 8Lxodnve dartoie, 0becnevusarowue 00HO3HAYHYIO Pa3-

DEWUMOCTD 3a004U 6 KAGCCE 2AGOKUT PYHKUU.

Karoueswie caosa: dugdeperyuanvrvie ypasrenus, Kpaeeas 3a0ayua, mMemod ciaboti GnnpoKcuUMaUUL.
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