удк 538.955 Crystal Structure and Magnetic Properties in Pyroxenes Li_{0.7}Na_{0.3}FeGe₂O₆

Tamara V. Drokina^{*} German A. Petrakovskii[†]

Kirensky Institute of Physics SB RAS Akademgorodok, 50/38, Krasnoyarsk, 660036

Russia

Dmitrii A. Velikanov[‡]

Kirensky Institute of Physics SB RAS Akademgorodok, 50/38, Krasnoyarsk, 660036 Siberian Federal University Svobodny, 79, Krasnoyarsk, 660041

Russia

Maxim S. Molokeev[§]

Kirensky Institute of Physics SB RAS Akademgorodok 50/38, Krasnoyarsk, 660036 Far Eastern State Transport University Serysheva, 47, Khabarovsk, 680021

Russia

Elena G. Rezina[¶]

Siberian Federal University Svobodny, 79, Krasnoyarsk, 660041 Russia

Received 05.05.2015, received in revised form 08.06.2015, accepted 02.07.2015

The $Li_{0,7}Na_{0,3}FeGe_2O_6$ solid solution has been synthesized by the solid-phase reaction. The clinopyroxene compound has been investigated by X-ray diffraction and by bulk magnetic measurements. The structural properties of the cation substitution compound are presented. Using SQUID techniques the temperature dependence of the magnetic susceptibility was measured. It exhibits a sharp maximum, which is suggested the phase transition from the paramagnetic state to a magnetically ordered state below 15.5 K in the sample of pyroxene solid solution.

Keywords: solid solution, pyroxene, crystal structure, magnetic properties. DOI: 10.17516/1997-1397-2015-8-3-273-280

^{*}tvd@iph.krasn.ru

[†]gap@iph.krasn.ru

[‡]dpona@rambler.ru

[§]msmolokeev@mail.ru ¶prim67@mail.ru

[&]quot;primo/@maii.ru

 $[\]bigodot$ Siberian Federal University. All rights reserved

Introduction

Pyroxene inorganic compounds with the general chemical formula ABX_2O_6 (A = Na, Li and Ca; B = Mg, Cr, Cu, Ni, Fe, etc.; X = Ge, Si) have significant interest in solid state physics due to their physical properties. Magnetic studies have been carried out for the family pyroxenes compound: there are various types of magnetic state (antiferromagnetic [1–4], ferromagnetic [3–5], modulated magnetic structure [6,7], spin gap state [8]) connected to the features of the pyroxene crystal structure which allows the existence of competing magnetic exchange interactions.

Characteristic feature of the iron pyroxene $AFe^{3+}X_2O_6$ crystal structure is the isolated chains FeO_6 octahedra running along the c axis (Fig. 1) [9]. Magnetic interaction between the chains (Fe-O-Ge(Si)-O-Fe) is weakened due to the presence of non-magnetic $Ge(Si)O_4$ tetrahedra. Type of magnetic structure depends critically on the geometric topologies of the atomic structure which is determined the ratio of the intrachain (Fe-O-Fe) and interchain (Fe-O-X-O-Fe) exchange interactions parameters.

Fig. 1. Crystal structure of $AFeX_2O_6$ compounds: two chains of FeO_6 octahedra and its connections via $Ge(Si)O_4$ tetrahedra [9]. Balls represent Na(Li) ions

The NaFeGe₂O₆ and LiFeGe₂O₆ clinopyroxene-type germinates compounds exhibit different crystal and magnetic structures. The room temperature crystal structure of LiFeGe₂O₆ is monoclinic with space group $P2_1/c$ [10]. The room temperature crystal structure of NaFeGe₂O₆ is monoclinic with space group C2/c [11].

Structures of magnetic subsystem are quasi-one-dimensional in AFeGe₂O₆ compounds [9]. The magnetic structure of LiFeGe₂O₆ pyroxene is described to have an antiferromagnetic arrangement of spins within and between the octahedral B chains ($T_N = 20.5 \text{ K}$) [2]. NaFeGe₂O₆ characterized by Néel temperature $T_N = 13 \text{ K}$, below T = 11.5 K the incommensurate magnetic structure with a helical spin modulation is realized [6,12].

In this way, the possibility to synthesize the LiFeGe₂O₆ and NaFeGe₂O₆ solid solution is discovered the interesting physical properties. We have recently studied the crystal and magnetic structures of the Na_{0.5}Li_{0.5}FeGe₂O₆ compound [13]. The room crystal structure of Na_{0.5}Li_{0.5}FeGe₂O₆ is monoclinic C2/c (high temperature parameters of the cell: a = 10.0333(1), b = 8.8136(1), c = 5.5295(9)Å, $\beta = 108.921(1)^{\circ}$). Calorimetric investigations indicate a displacive first order phase transition at T = 276 K, and at temperature decreasing Na_{0.5}Li_{0.5}FeGe₂O₆ undergoes a space group change from C2/c to $P2_1/c$ (low temperature parameters of the cell: a= 9.9692(3), b = 8.8545(3), c = 5.4752(2)Å, $\beta = 108.494(1)^{\circ}$). Magnetic order has been found below the Néel temperature T_N ≈ 18 K and has been refined from neutron diffraction. The quasilow-dimensional magnetic spin system Na_{0.5}Li_{0.5}FeGe₂O₆ exhibits a collinear antiferromagnetic structure with the space group $P_a 2_1/c$ and the doubling of the unit cell along the crystallographic *a*-axis of the pyroxene crystal (propagation vector $\mathbf{k} = (1/2, 0, 0)$).

No magnetic properties and a detailed crystal structure data are available for germinate clinopyroxene-type solid solution compound $Li_{0.7}Na_{0.3}FeGe_2O_6$. In the present contribution in pyroxenes research we report the experimental data on the room crystal structure and magnetic characteristics of the synthesized solid solution $Li_{0.7}Na_{0.3}FeGe_2O_6$.

1. Sample preparation and experimental procedure

Polycrystalline sample of solid solution $Li_{0.7}Na_{0.3}FeGe_2O_6$ was synthesized by a solid-phase reaction method from the stoichiometric mixture of oxides GeO_2 , Fe_2O_3 , Na_2CO_3 , Li_2CO_3

 $2.00 \text{GeO}_2 + 0.50 \text{Fe}_2 \text{O}_3 + 0.15 \text{Na}_2 \text{CO}_3 + 0.35 \text{Li}_2 \text{CO}_3 \rightarrow \text{Li}_{0.7} \text{Na}_{0.3} \text{FeGe}_2 \text{O}_6 + \text{CO}_2.$

The mixture of the oxides was ground under ethanol, pressed into pellets and fired under ambient pressure at temperatures of $800-1000^{\circ}$ C in air at three stages each with duration of 24 h with intermediate regrinding. At each heating stage the samples were slowly cooled to room temperature, ground and pressed into pellets for next heat treatment. The prepared pellets were pale brown. The chemical and phase composition of the pellet milled into the powder was examined by X-ray diffraction and shows a single phase.

The X-ray powder diffraction data of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ for Rietveld analysis was collected at room temperature with a Bruker D8 ADVANCE powder diffractometer (Cu-K α radiation) and linear VANTEC detector. Refinement of the powder pattern was performed with TOPAS 4.2 (Bruker) [14].

A SQUID magnetometer operating from 300 K to 4 K at magnetic field 500 Oe was used to perform the dc magnetic measurements.

2. Experimental results and discussion

The X-ray powder diffraction pattern at 300 K reveals that $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ has the centrosymmetric C2/c space group with 4 formula units per the unit cell and the lattice parameters are close to those of NaFeGe₂O₆ [7,11]. Therefore the crystal structure of NaFeGe₂O₆ was used as the starting structural model for the Rietveld refinement of the room temperature crystal structure of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$. The site of Na ion was occupied by Li and Na ions with fixed occupation $p_{\text{Li}} = 0.5$ and $p_{\text{Na}} = 0.5$ respectively. The refinement was stable and gave low R-factors (Tab. 1, Fig. 2). Main parameters of refinement are shown in Tab. 1.

To obtain information on the magnetic properties of polycrystalline sample material of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ compound the dc magnetic measurements were perform. Magnetic properties are determined by Fe³⁺ ions as a $3d^5$. The measured temperature dependence of the magnetic susceptibility in an external magnetic field of H = 500 Oe of monophased powder $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ is shown in Fig. 3a. The magnetic susceptibility $\chi(T)$ of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ exhibits a sharp maximum at 24.8 K in its temperature dependence with the point of inflection being located at 15.5 K. This behavior is usually related to a phase transition from the paramagnetic to the magnetic susceptibility is negligible (Fig. 3 b).

Space group	C/2c
$a_i, Å$	10.02346(11)
$b_i, \mathrm{\AA}$	8.80980(9)
$c_i, \mathrm{\AA}$	5.52550(6)
$eta,^{o}$	108.9286~(6)
$V, Å^3$	461.54(1)
$D_x,{ m g/cm^3}$	4.445
	4
Angle range 2θ , deg.	5-140
Number of reflections	4391
Number of refined parameters	71
$R_{ t wp},\%$	2.155
$R_{p}, \%$	1.643
χ^2	1.450
$R_{\mathtt{B}},\%$	1.333

Table 1. Main parameters of crystal structure refinement in $Li_{0.7}Na_{0.3}FeGe_2O_6$ at 300 K

Designations: a, b, c, and β are the unit cell parameters; V is the unit cell volume; R_{B} , R_{wp} , R_{p} are the integrated (Bragg), weighted profile and profile factors, respectively; and χ^2 is the goodness-of-fit.

Fig. 2. Experimental (symbols), theoretical (line), and difference (lower line) X-ray powder diffraction pattern resulting from the Rietveld refinement of $Li_{0.7}Na_{0.3}FeGe_2O_6$ at 300 K

Fig. 3. Temperature dependence of the magnetic susceptibility, obtained in $Li_{0.7}Na_{0.3}FeGe_2O_6$ sample: the total magnetic susceptibility (a) and the diamagnetic contribution in the magnetic susceptibility (b)

In order to compare some details between NaFeGe₂O₆, LiFeGe₂O₆, Na_{0.5}Li_{0.5}FeGe₂O₆ and Li_{0.7}Na_{0.3}FeGe₂O₆ samples we summaries the room crystal structure and magnetic parameters in the Tabs. 2, 3.

Note, all materials of pyroxenes compound family $\operatorname{Na}_x\operatorname{Li}_{1-x}\operatorname{FeGe}_2O_6$ (x = 1, 0.5, 0.3 and 0) are monoclinic. End members (x = 0, 1) exhibit different space group of crystal structure ($P2_1/c, C2/c$). Intermediate compositions (x = 0.5, 0.3) exhibit C2/c space group at T = 300 K. It is interesting to examine the A cation substitution influences on magnetic properties too. In this solid solution the substitution Li⁺ ions by Na⁺ ions led to an increase in the lattice parameters and change the picture of the competing magnetic exchange interactions in the pyroxenes Na_xLi_{1-x}FeGe₂O₆ compound.

Table 2. Summary of the monoclinic crystal structure parameters for different pyroxene-type compounds at room temperature

Sample	$a_i, Å$	$b_i, \mathrm{\AA}$	$c_i, Å$	$\beta,^{o}$	Space	Reference
					group	
NaFeGe ₂ O ₆	10.0100	8.9400	5.5200	108.0000	C/2c	[11]
$Na_{0.5}Li_{0.5}FeGe_2O_6$	10.0333(1)	8.8136(1)	5.5295(9)	108.921(1)	C/2c	[13]
Li _{0.7} Na _{0.3} FeGe ₂ O ₆	10.02346(11)	8.80980(9)	5.52550(6)	108.9286(6)	C/2c	this study
LiFeGe ₂ O ₆	9.8792(7)	8.8095(5)	5.3754(3)	108.844(6)	$P/2_1c$	[10]

Table 3. Summary of the magnetic parameters for different pyroxene-type compounds

Sample	T_N, K	T_{max}, K	Reference
$NaFeGe_2O_6$	13	25	[12, 15]
$LiFeGe_2O_6$	20.2	24.4	[2]
$Na_{0.5}Li_{0.5}FeGe_2O_6$	18	27.5	[13]
$\mathrm{Li}_{0.7}\mathrm{Na}_{0.3}\mathrm{FeGe}_2\mathrm{O}_6$	15.5	24.8	this study

Conclusion

The solid solution clinopyroxene compound $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ was synthesized by solid-phase reaction. The chemical and phase composition of clinopyroxenes compound was examined by X-ray diffraction and shows a single phase. The room crystal structure and magnetic properties of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ were investigated as function of temperature in range 4 K – 300 K.

The room temperature crystal structure of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ is characterized by monoclinic symmetry and space group C2/c with parameters a = 10.02346(11), b = 8.80980(9), $c = 5.52550(6)\text{\AA}$, $\beta = 108.9286(6)^{\circ}$. $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ is isostructural to NaFeGe₂O₆ at T = 300 K.

The transition from the paramagnetic state to the magnetic long-range ordered state occurring at $T_{\rm N}$ = 15.5 K.

Note, the clinopyroxene compounds show a variety of phase crystal structure transitions as a function of temperature. In the case of LiFeGe₂O₆ and Na_{0.5}Li_{0.5}FeGe₂O₆ compounds the changes in symmetry from a low temperature $P2_1/c$ to a high temperature C2/c structure were observed at a transition temperature T_{tr} = 789 K and 276 K correspondingly [10,13]. NaFeGe₂O₆ compound exhibits C2/c symmetry between 1.6 and 1000 K [10]. This result indicates that a change in composition of pyroxene-type compounds can have effect on the $P2_1/c \leftrightarrow C2/c$ displacive phase transition. It is not clear the crystal structure of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ with temperature changes in symmetry or not. It is expected that this pyroxene compound transforms to $P2_1/c$ structure at some low temperatures. The possible magnetic structure depends on crystal structure at low temperatures. In order to further characterize the magnetic state of $\text{Li}_{0.7}\text{Na}_{0.3}\text{FeGe}_2\text{O}_6$ compound it is necessary the neutron diffraction investigation to determine the magnetic structure.

References

- E.Baum, W.Treutmann, M.Behruzi, W.Lottermoser, G.Amthauer, Structural and magnetic properties of the clinopyroxenes NaFeSi₂O₆ and LiFeSi₂O₆, *FurKristal*, 183(1988), 273–284.
- [2] G.J.Redhammer, G.Roth, W.Treutmann, M.Hoelzel, W.Paulus, G.Andre, C.Pietzonka, G.Amthauer, The magnetic structure of clinopyroxene-type LiFeGe₂O₆ and revised data on multiferroic LiFeSi₂O₆, J. Solid State Chem, 182(2009), 2374–2484.
- [3] A.N.Vasiliev, O.L.Ignatchik, A.N.Sokolov, Z.Hiroi, M.Isobe, Y.Ueda, Long-range magnetic order in quasi-one-dimensional chromium-based (S=3/2) pyroxenes (Li, Na)Cr(Si, Ge)₂O₆, *Physical Review B*, **72**(2005), 012412.
- [4] A.N.Vasiliev, O.L.Ignatchik, M.Isobe, Y. Ueda, Long range Néel order in the quasi-onedimensional vanadium-based (S=1) pyroxenes (Li, Na)V(Si, Ge)₂O₆, *Physical Review B*, 70(2004), 132415.
- [5] G.Nenert, C.Ritter, M.Isobe, O.Isnard, A.N.Vasiliev, Y.Ueda, Magnetic and crystal structures of the one-dimensional ferromagnetic chain pyroxene NaCrGe₂O₆, *Physical Review B*, 80(2009), 024402.
- [6] T.Drokina, G.Petrakovskii, L.Keller, J.Schefer, Investigation of the magnetic structure in NaFeGe₂O₆ using neutron powder diffraction, *Journal of Physics: Conference Series*, 251(2010), 012016.
- [7] G.J.Redhammer, A.Senyshyn, M.Meven, G.Roth, S.Prinz, A.Pachler, G.Tippelt, C.Pietzonka, W.Treutmann, M.Hoelzel, B.Pedersen, G.Amthauer, Nuclear and incommensurate magnetic structure of NaFeGe₂O₆ between 5 K and 298 K and new data on multiferroic NaFeSi₂O₆, *Phys. Chem. Miner.*, **38**(2011), 139–158.
- [8] G.J. M.Isobe, E.Ninomiya, A.N.Vasiliev, Y.Ueda, Novel Phase Transition in Spin-1/2 Linear Chain Systems: NaTiSi₂O₆ and LiTiSi₂O₆, J. Phys. Soc. Japan., 71(2002), 1423–1426.
- [9] S.V.Streltsov, D.I. Khomskii, Electronic structure and magnetic properties of pyroxenes (Li, Na)TM(Si, Ge)₂O₆: Low-dimensional magnets with 90° bonds, *Physical Review B*, 77(2008), 064405.
- [10] G.J.Redhammer, F.Cámara, M.Alvaro, F.Nestola, G.Tippelt, S.Prinz, J.Simons, G.Roth, G.Amthauer, Thermal expansion and high-temperature P2₁/c - C2/c phase transition in clinopyroxene-type LiFeGe₂O₆ and comparison to NaFe(Si, Ge)₂O₆, *Phys. Chem. Miner.*, **37**(2010), 685–704.
- [11] L.Solovyova, V.Bakakin, X-ray investigation of Na, Fe-metagermanate NaFeGe₂O₆, Krystallographiya, 12(1967), 591–594 (in Russian).

- [12] T.V.Drokina, G.A.Petrakovskii, L.Keller, J.Schefer, A.D.Balaev, A.V. Kartashev, D.A.Ivanov, Modulated magnetic structure in quasi-one-dimensional clinopyroxene NaFeGe₂O₆, *Journal of Experimental and Theoretical Physics*, **112**(2011), 121–126 (in Russian).
- [13] T.V.Drokina, G.A.Petrakovskii, M.S.Molokeev, S.V.Misyul, V.S.Bondarev, D.A.Velikanov, M.Frontzek, J.Schefer, Crystal and magnetic structures, phase transitions in quasi-onedimensional pyroxenes Na_{0.5}Li_{0.5}FeGe₂O₆, Journal of Magnetism and Magnetic Materials, **385**(2015), 243.
- [14] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data, User's Manual, Bruker AXS, Karlsruhe, Germany, 2008.
- [15] T.V.Drokina, O.A.Bayukov, G.A.Petrakovskii, D.A.Velikanov, A.F. Bovina, G.N.Stepanov, D.A.Ivanov, Synthesis and properties of NaFeGe₂O₆ polycrystals, *Fizika Tverd. Tela*, 50(2008), 2050–2053 (in Russian).

Структурные и магнитные свойства пироксена ${\rm Li}_{0.7}{\rm Na}_{0.3}{\rm FeGe}_2{\rm O}_6$

Тамара В. Дрокина Герман А. Петраковский Дмитрий А. Великанов Максим С. Молокеев Елена Г. Резина

Поликристаллические образцы $Li_{0,7}Na_{0,3}FeGe_2O_6$ были получены твердофазным синтезом и исследованы методами рентгеновской дифракции и СКВИД-метрии. Представлены характеристики структурных свойств. Показано, что температурная зависимость магнитной восприимчивости при температуре 15,5 К имеет излом, характерный для переходов в магнитоупорядоченное состояние.

Ключевые слова: твердый раствор, пироксен, кристаллическая структура, магнитные свойства.