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This article is about calculations of U-shaped regions of water heat network. The universal calculation
algorithm is used for various geometric schemes and simple self-compensating pipeline sections. The
influence of slenderness ratio and stress concentration factor in the smooth curved bends on voltages
and maximum permissible flight compensated shoulders of U-shaped regions for different geometric
configurations was taken into account in this work.
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HANPANCEHULL 8 SHYMBIX 21A0KUX OMBOOAX HA 3HAYEHUS HANPAICEHUU U HA NPeOeIbHO OONYCMUMbBII
6blIem KOMNEHCUpyemulx nied [1-00pa3nvlx yuacmro8 pa3iuitblx 2eoMempuieckux KoHpuaypayuil.

Kuiouegvie cnosa: paduanvuviii  I[1-00pasnvlii.  KOMREHCAMOp, paduaibHble KOMHEHCAMOpbl,
CAMOKOMNEHCAYUsi MeMNepamypHuIX pacuiuperuti mpyoonpoeooa, ko3g@uyuenm eubkocmu mpyobl,
Mmennogas cemo.

Abstract

The most vulnerable elements in the radial compensators of pipeline are taps. The cross-sectional
pipe wall ovalisation and increasing ductility in bending as compared with straight pipes appear in
taps. Taps are pipeline’s elements with sharp change in shape. This change leads to a concentration
of additional stresses in these elements arising under the influence of forces, their flattened cross-
section.

Calculation model radial compensator, based on the thermal expansion, can be represented as
a rod frame with rigid corners. In this case the taps geometry, their flexibility and concentration of
bending stresses in them are not taken into account. Differences in results with calculated model,
which reflects features of taps, are relevant.

The article has three computational models U-shaped pipe sections with aboveground way laying
in the horizontal plane. There are following assumptions: pillars are absolutely rigid, resistance to

friction forces movable bearings in longitudinal thermal expansion of pipeline is not considered.

Materials and Methods

When calculating pipeline to compensate radial thermal expansion compensators are determined
their dimensions, in which longitudinal bending stresses arising from the elastic deformation of pipe
will not exceed the permissible values. Rod model (pipeline’s length exceeds the outer diameter of more
than an order of magnitude) is used as a design scheme of pipeline. II-shaped radial compensator is a
simple (line called simple if it throughout its length from one to the other fixpoint has no branches) and
a flat (line called flat if the center line is located in the same plane) plot calculated self-compensating
pipe fixed between two fixed pillars. Computational model of this pipeline’s section under the influence
of stress is a statically indeterminate system. Statically indeterminate system is called such a system
in which the action of arbitrary load not all longitudinal and transverse forces and moments can be
found from the equations of equilibrium of a rigid body or a solids system. Additional equations, which
should express conditions of strain compatibility system, are introduced for calculations. Statically
indeterminate system is characterized with number of extra links that is the largest number of links
that can be removed at the same time without disturbing the geometric immutability and immobility
system. In order to obtain additional equations, it’s necessary to select a base system. To achieve
this goal n-defined statically indeterminate system is transformed into a statically determinate with
removing unnecessary links from it. The resulting system is called statically determinate basic.
Elimination of any links does not change internal forces and deformation of the system, if it makes
additional forces and moments, which are the reaction dropped connections. Thus, if you apply a given
load and response remote connections to basic system, this and considered systems will be equivalent.
In considered system the directions of available hard links, including those relationships discarded in

the transition to basic system, there can be no movement, and therefore in basic system moving in the
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directions of dropped connections must be zero. And for this reaction must have dropped connections
strictly defined values. Zero movement condition in the direction of any i-th connection of n-dropped

on basis of the superposition principle has the form

A= ) Byt dp=0, n
P(k)
where A;;, — movement in the direction of i-th communication system caused by the reaction of the
k-th connection;
A;r — movement in the direction of i-th communication system caused by the simultaneous
action of all external load.
In the method of reaction forces k-th connection usually denoted X,,. With this notation, and in the

power of Hooke’s law movement A;, can be written as
A= Sipxr, @

where &, — single (or specific) moving in the direction of i-th communication system caused by the
reaction of X = 1, i.e. reaction, which coincides with the direction of X, but unity.
Substituting (2) into (1), we obtain

A=) By Xy + hip=0. G

P(k)
The physical meaning for equation (3): moving in the direction of basic system i-th dropped
connection is zero. Writing expressions, similar to (3), for the entire set of dropped connections, we

obtain the system of canonical equations force method, which can be represented as a single equation

2 (B Xy + Lip) = 0. )

P(@ik)
The total number of terms is determined with degree of the system’s redundancy and does not
depend on its specific characteristics. Single movement system is determined according to next

formula

6 _ VMiMk dl
ik = —x 4 ®)

where 6 — single movement of the i-th direction, caused by a single exposure, applied at the point

k;

M; —bending moment from a single exposure, applied at the point i;

M, —bending moment due to impact of the unit applied to the point k;

K — slenderness ratio element;

v — basic element stiffness to element’s stiffness;

[ — integrable element length.

The main problem of calculation for pipeline as a statically indeterminate system is formulated

as follows: for a given geometric scheme, the temperature difference between hot and cold pipeline

and size of pipes constituting portion is required to determine the effort and strain the system. In
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calculating the temperature effects on simple pipelines as the main unknown is usually accepted in
forces and moments of extra links, and therefore, this method is called the method of calculating
forces. According to the method forces, one of the fixed pillars calculated area is considered breakout,
and it’s applied to elastic deformation forces and bending moment replacing a dropped pillar.

To determine elastic forces arising in pipeline with thermal expansion, the authors use the method
of the elastic center. This method is well considered in [1, 2] and presents one of modifications of the
force method, which consists in the fact that all side coefficients of canonical equations (i.e., coefficients
dir, in which i #k) become zero. This is achieved by moving basic unknowns of fixpoint dropped into the
elastic center of gravity calculated of pipeline. The application point for basic unknowns is connected
to the point of placing a dropped pillar infinitely rigid hypothetical console. The pipeline’s axis will be
endowed with a certain distribution of the elastic mass proportional to its stiffness (Fig. 1).

Bending moment from forces of elastic deformation in any section of pipeline is determined with

the formula
M = (y —yo)P, — (x — x0)P,, 6)

where x, y — coordinates of considered section in the original coordinate system;
Xo, Vo — coordinates of gravity center calculated elastic pipeline section;
P, P,— elastic forces calculated center line of pipeline.
The basis for calculating the forces of elastic deformation has been put the Castigliano’s theorem.

Load is static and strain energy equal to work of external forces

A —aU 7
x—an, (7
Ay = ou 8
y_apyl ()
tY
0 . )
M mE
A’V " i
X1—>‘ 7N > X
Xz

Fig. 1. Computational scheme U-shaped compensator to the method of elastic center

Note: X, X,, M, — longitudinal and transverse forces and bending moment respectively; A — the application point force and
moment, replacing the dropped fixed pillar; yur — the point elastic center of gravity of the system with respect to coordinate;
P,, P, — vectors elastic forces relative to the coordinate axes X and Y, respectively; x,, ¥, — coordinates of the elastic center of
gravity relative to the coordinate axes X and Y, respectively.
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here U — strain energy;
P, P,— the same, in the formula (6);
Ax, Ay — displacement for the application point of force in its direction along respective axes.

Displacement Ax, Ay calculated thermal extensions

AX = aAth ) (9)
Ay = aAtL
y = abtly, (10)
where o — coefficient of linear thermal expansion;
At — design temperature drop;
L,, L, —lengths of axial line section of projections on axes.
Values of the basic unknown P, = X,, P, = X,
Ax]yo + AY]xyo
Po=——"—""3EJ, (11)
]xO]yO - ]xyO
A + Ax
p = y]xO ]xyO Et] ) (12)

y - 2
]xO]yO _]xyO

where Ax, Ay — calculated thermal expansion of area under consideration conduit in the direction x
and y axes, respectively;
E,— modulus of elasticity the pipe material at the calculation temperature;

J — inertia moment of the cross section of pipe wall

] =z [Dt - @, 20)"], (13)

where D, — outer diameter of pipeline;
& — pipe wall thickness;
Jw- Jyo — central inertia moments of the reduced length for the centerline of

pipeline section

_f 245, (ds

Jvo=1|Y ranrCl (14)
st ) ds

Jyo = X T Xt [ o (15)

here x,y, x, yo — the same, in the formula (6);
K — the same, in the formula (5);

J.y0 — central centrifugal inertia reduced length for the centerline of pipeline section

xyds ds
]xyO = JT_xOYOffﬁ (16)

Stiffness reduction factor is introduced in integrating along the curved pipeline sections, so here
straights K = 1, and for curved K <I.
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Elastic center coordinates can be determined from equations

ds
fx7 Sy
Xo =g =17 17)
f? P
ds
fyf Sy
Yo= =g =1 (18)
ff P

where S,, S, —static inertia moments of reduced length for the centerline of calculated pipeline section
relative to x and y axes, respectively;
L., —reduced length of axial line section.

Karman researches have shown that the curvature bends causes ovalisation their original cross-
sectional area and stiffness reduction. Flattening of initial round section causes essential changes in
distribution of bending stress compared with bending solid beams. To determine the coefficient of
flexibility Karman used the energy method, followed by a solution of the Ritz method. The decision was
received in form of trigonometric series. It is alleged that results obtained by T. Karman significantly
diverged from the experimental data. Note that in the derivation of the coefficient of flexibility in order
to facilitate mathematical calculations Karman made a number of assumptions and, in particular, he
disregarded pipe radius relation to bend radius, considering this relationship as a very small amount.
He also did not consider displacement of the neutral layer. Reported assumptions may be valid only for
a relatively small pipe curves of curvature, i.e. a larger radius of curved (4 — 5 outer diameter) [3]. At
the moment the calculating problem of pipe elbows has produced many works. For example, in [4, 5]
there are analytical solutions for curves pipes. Materials [6, 7] are devoted to solution curves of pipes
using the finite element method.

Karman coefficient for curved smooth retraction we calculate according to [§]

K =1/(K,$), (19)
where K, —slenderness ratio, excluding constraint deformation ends of the curved portion pipeline
- 1,65 20
P 1,50 0,5’ (20)
A [1 + Iz

here A — geometric characteristic flexibility removal

1= 4R6 71
ROEDE .
where R —radius of curvature for tap;
D,,6 — the same, in the formula (13);
o — dimensionless parameter
_3e4 R 2
O R, 05 @2



Yuri L. Lipovka, Vitaliy I. Belilovets... The Influence of Slenderness Ratio and Stress Concentration...

where P — excess internal pressure in pipeline;
R — the same, in the formula (21);
D,,0 — the same, in the formula (13);
E,— the same, in the formula (11);
& — coefficient reflecting the uneasiness of deformation at the ends of curved element (tap), at
A < 1,65 calculated with the formula

1 A A
$=17u1s T [1_65 +YP1® — O3 (1 - E)S] , (23)

here y — angular parameter

l)b = 19\/ ZR/(DH - S) ’ (24)

where R — the same, in the formula (21)
D,,6 — the same, in the formula (13);
9 — central angle of tap in radians.
When A > 1,65 value for ¢ is set equal to 1.0. Slenderness ratio bent pipe with straight sections at
the ends with A > 2,2 is 1.0, while A < 2,2 is calculated with formula (19).
When bending tap under the influence of forces, flattened their cross section, there are significant
local stresses. If longitudinal stresses, calculated in the usual theory of bending, are denoted by o, then

the maximum longitudinal stresses can be determined with the formula
o™ = .o, (25)

where i, — concentration ratio of longitudinal stresses in tap;

' 0.9 (26)
o= —5—,
0 AZ/3

where 1 — the same, in the formula (20).

9-element model pipeline section

Calculation algorithms to compensate for thermal expansion of pipeline sections certain
geometric configurations are presented in references for design of heat networks in section strength
calculations. If you submit a calculation algorithm based on using a certain number of standard
elements that are building design model, the resulting algorithm is applied to self-compensating
schemes pipelines of various geometric configurations. Further, consider the scheme of 9 elements.
This circuit includes straight 5 pipes and 4 of the same smooth curved drainages random rotation
angle. We give as an illustrative example Il-shaped pipeline section between two fixed pillars.
Mentally divide it into nine elements: five straight pipes and four identical taps. The following is an
algorithm based on self-compensation for thermal expansion of sector and its design scheme. This
algorithm may be applied to other design schemes by removing unnecessary components, changes
in steering angle taps (Fig. 2).

Elements /,, /5, s, [, are parallel to the coordinate axis X.
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Distance from ends of curved element (tap) from its center of gravity in the direction of the

reference coordinate system, according to design scheme of curved element (Fig. 3), determined by
the formula

= plsin® i ( L Q)ﬂ '
a=R _sm > sinf + | 2sin 2 57296 cos 2) % 57,296_, 27
[ _p P @\ cosp ]
=R - —(2sin=————— —)]——57,2
b -sm > sinf ( sin > 57,296COS 2) <p 57, 96<' (28)
= plsin? _( nP__9 ﬂ)ﬂ '
c=R _sm > cosfs 2sin 2 75729 cos 2) % 57,296_, 29)
tY
7 [5 a8
Iy lg
ty ‘ i
ot P,
E 3}[: i :kﬂ s
X X > X
f 2 13 "

Fig. 2. Calculation scheme 9-celement IT -shaped pipeline section
Note: numbers on the diagram below to identify numbers of sections; yur — elastic center of gravity; /,, ,, L,..., l, elements

of calculated area; P,, P, — elastic resistance forces (basic unknowns); x,, y, — distance from the center of gravity and elastic
axes.

AY’

Fig. 3. Calculation scheme curved element (tap)

Note: a,b,c,d — distance from ends of the curved element (tap) to its center of gravity; R — radius of tap’s curvature; ¢ — central
angle of tap; f — chord angle curved element (tap) to its axis of ordinates.



Yuri L. Lipovka, Vitaliy I. Belilovets... The Influence of Slenderness Ratio and Stress Concentration...

sin
d=R [sin%cosﬁ + (ZSinf— Ld (p) d

2 5729 cos > 57,296], (30)

where angles ¢, f are measured in degrees.
Projection lengths taps on the coordinate axes are defined as

Per axle x
L,=c+d, 31

where ¢, d — the same, in the formula (27) and (28);
i — tap number (index takes values 1, 2, 3, 4).

Per axle y
Liy =a+b B (32)

where a, b —the same, in the formula (29) and (30);
i — the same, in the formula (27).

The length of the axial line for calculated total pipe section is determined by the formula
an = l1 + l3 + ls + l7 + lg + 410-“3 ’ (33)

where [, L, Is, [, [, — length of straight pipes, corresponding calculation scheme (Fig. 2);

Iy, — length axial line for tap

@R

lors = 57796k 7 34)

where ¢, R the same, in the formulas (27) — (30);
K — the same, in the formula (19).
Center coordinates of gravity of individual elements, according to calculation scheme area (Fig. 2)
with respect to the x-axis defined by the formulas

Relative to the axis x

L
Xcl = E ) (35)
xcz = ll + d ) (36)
1
Xeg =l + Ly + El3cosq), (37)
Xea = Ui + L1y + lzcosp + ¢, (38)
1
Xes = U + Ly + l5c05¢ + Loy + Els , (39
xc6 = ll + le + l3COS(p + LZX + l5 + d , (40)
1
Xe7 =l + Ly +13c05¢ + Loy + 15 + Ly + El7cosg0, @1
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Xeg = Uy + L1y + 1zc05¢ + Loy + I+ Ly, + Lycos9p + C, 42)

1
xcg = ll + le + lgCOS(p + sz + 15 + L3X + l7COS(p + L4x + Elg, (43)

Relative to the axis y

1
Ve = EllsmO =0, 44)
Ye2 = b, (45)
1.
Ye3 = L1y + Elssln‘l" (46)
Yea = Lqy + I3sing + q, “@7)
Yes = Liy + l3sing + Ly, (48)
Yee = L1y + l3sing +a, 49)
. 1.
Ye7 = L1y + l3sing — §l7sm<p, (50)
Yeg = L1y + l3sing — l;sing — a, (&)
Yeo = l3sing — L;sing, (52)

where x. — X.9; Vi — Yo — S€ction elements;

I, L, Is, I, [, — length for corresponding calculation scheme (Fig. 2) elements;

L, — L4, — the same, in the formula (31);

Ly, L,,— the same, in the formula (32);

a, b, ¢, d — the same, in the formulas (27) — (30);

¢ — the same, in the formulas (27) — (30).

Static inertia moments of length pipeline components in original coordinate system, according to

calculation scheme area (Fig. 2), are determined by formulas

Relative to the axis x

Sx1 = LYer ©3)
Sx2 = lorsYeas (54)
Sx3 = l3Ve3) (55)
Sxa = lorsYea (56)
Sxs = lsYcs, (57)
Sx6 = lorsYce: (58)
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Sx7 = bYen (59
Sxs = lorsYcss (60)
Sxo = lo¥eco, ©1)

Relative to the axis y

Sy1 = Lixeq, (62)
Sy2 = lorsXc2, (63)
Syz = laxcs, (64)
Sys = lorsXcar (65)
Sys = lsxcs, (66)
Sy6 = lorsXces (67)
Sy7 = lzXc7, (68)
Syg = lorsXcss (69)
Syo = loxco, (70)

where x. — X.9; Vi — Vo — Section elements;
L, b, I, 1, s, I, I, Ig, Iy — length for corresponding calculation scheme (Fig. 2) elements;
I, — the same, in the formula (34).
Coordinates elastic center of gravity relative to origin of the coordinate system according to

calculation scheme area (Fig. 2) have the following form

The axis x
= Sy1+ Sy + Sy3 + Sys + Sys + Sy + Sy7 + Syg + Sy e
0 Lup ,
The axis y
— le + sz + Sx3 + Sx4 + SxS + Sx6 + Sx7 + Sx8 + 5‘x9 (72)
Yo Lo )

where S, — S,y — the same, in the formulas (62) — (70);
S — Sy — the same, in the formulas (53) — (61);
L,, —the same, in the formula (33).
Coefficients for calculating inertia moments of its own elements 3 and 7 of the calculation scheme
area (Fig. 2) relative to initial coordinate system defined by the formulas

The axis x

(73)
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The axis y

cos?g
Cpr = —5— (74)

where ¢ — the same, in the formulas (27) — (30).
Factor to calculate the inertia moment of its own centrifugal element 3 the calculation scheme area

(Fig. 2) relative to the initial coordinate system is calculated by the formula

sinpcose
C =—, 75
xy1(3) 12 (75)
where ¢ — the same, in the formulas (27) — (30).
Factor to calculate the inertia moment of its own centrifugal element 7 the calculation scheme area

(Fig. 2) relative to the initial coordinate system is calculated by the formula

singpcos@

ny1(7) = _T, (76)

where ¢ — the same, in the formulas (27) — (30).
Coefficients for calculating inertia moments of its own curvilinear elements (taps) relative to the
initial coordinate system defined by the formulas

The axis x

Cyp = (57 296isin2£—sin )sinzﬁ +lsin - 57 296isin2£+L (77)
x2 ) ¢ 2 ST = 0 eZD S S 5 (57,296)
The axis y
4 1 4
Cy, = (57,29655in2 % - sin<p> cos?p + Esimp - 57,296551'712 % + % , (78)

where ¢, f — the same, in the formulas (27) — (30).
Coefficients for calculating inertia moment of its own centrifugal curvilinear elements 2 and 4 of

the calculation scheme section relative to the initial coordinate system is calculated by the formula

4
Cry2(2,4) = (57,296 " sin? % - simp) sinfcosp, (79)

where ¢, f — the same, in the formulas (27) — (30).
Coefficients for calculating inertia moment of its own centrifugal curvilinear elements 6 and 8 of

the calculation scheme section relative to the initial coordinate system is calculated by the formula

4
Cry2(6:8) = — (57,296551'712 % - sintp) sinfcosp, (80)

where ¢, f — the same, in the formulas (27) — (30).
Inertia moments of element lengths for pipeline in the original coordinate system relative to the

x-axis are determined by formulas
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The axis x
sin?(0%)
Ja=h (112 1 + yc12), (81)
R ®
Jo =% (RZsz +Ye2” m) (82)
Jx3 = l3(l32Cx1 +¥e?), (83)
R %
Jus = 7 (RCao + Yes> 052, (34)
sin?(0%)
Jus =15 (lsz BEVEE c52>: (85)
R ®
Jxe =% (RZsz +Yee” m) (86)
Jx7 = l7(l72Cx1 +Yer?), (87)
R %
Jxe =5 (RZsz + Yes® m) (88)
sin?(0°
Jxo =g 192# + yc‘)z ’ (89)
12
where J,, —J,, — section elements;
R — the same, in the formulas (27) — (30);
K — the same, in the formula (19);
Vel — Veo — the same, in the formulas (44) — (52);
L, L, Is, I, [y — length for corresponding calculation scheme (Fig. 2) elements;
¢ — the same, in the formulas (27) — (30);
C,, — the same, in the formula (73);
C,, — the same, in the formula (77).
The axis y
cos?(0%)
Jn=h (llz 1 +x:42 ), (90)
R @
=g (chyz + e 57,296)' O
Jyz = l3(l3zcy1 + xc32): 92)
R %
Jys = E(RZCW + e 57,296)' ©3)
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cos2(0%)
Jys =15 (152 EEVEE + xcsz),

R @
Jye = E(RZCW + e’ 57,296)’

Jy7 = l7(l726y1 + xc72)'

R (&
Jys = E(RZCW + Xeg® 57,296)'

2,00
Jyo =g <l92 % + xcgz);
where J,, —J, — section elements;
R — the same, in the formulas (27) — (30);
K — the same, in the formula (19);
X, — X9 — the same, in the formulas (35) — (43);
I, L, Is, I, Iy — for corresponding calculation scheme (Fig. 2) elements;
¢ — the same, in the formulas (27) — (30);
C,, —the same, in the formula (74);

C,, — the same, in the formula (78).

©4)

©35)

96)

O7)

%)

Centrifugal inertia moments for length of pipeline components in the original coordinate system

(Fig. 2) are determined by formulas

3 , sin (0%)cos(0°)
]xyl _ll ll T c1)cl |y

R ) @
]xyz = E (R ny2(2;4-) + Xc2Ve2 m) ’
Jxy3z = l3(l3zcxy1(3) + xc33’c3)'

R/, L
Juya =% (R Caya(zia) * XcaVea m) '

sin (0%)cos(0)
]xyS =l (152 - 12 + XesVes |

R/, Ld
]xy6 = E <R ny2(6;8) + Xe6Yco 57,76) ’

]xy7 = l7(l7Zny1(7) + xc7yc7) ,

R( Q@
]xy8 = E(R ny2(6;8) + XcgYVcs m) ,

99

(100)

(101)

(102)

(103)

(104)

(105)

(106)
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sin (0%)cos(0°)
Jxyo =1y <l92 — 1 + Xc9¥eo | (107)

where J,,; —J,,0 — section elements;
R — the same, in the formulas (27) — (30);
K — the same, in the formula (19);
X, — X — the same, in the formulas (35) — (43);
Vel — Veo — the same, in the formulas (44) — (52);
I, L, Is, I, Iy — for corresponding calculation scheme (Fig. 2) elements;
¢ — the same, in the formulas (27) — (30);
Cyi3)> Cyi(r) — the same, in the formulas (75) and (76);
Cy20:4), Cryoes) — the same, in the formulas (79) and (80).
Central inertia moments calculated for total length of pipeline relative to the axis passing through

the elastic center of gravity, according to calculation scheme area (Fig. 2) calculated by the formulas

The axis x
9
Jxo = Y Jt = Lup¥o®, (108)
i=1
The axis y
9
Jyo = Z]yi — Lipxo?, (109)
i=1

where J,; — the same, in the formulas (81) — (89);
J,; — the same, in the formulas (90) — (98);
L,, —the same, in the formula (33);
Xo, Vo — the same, in the formulas (71) u (72).
Central centrifugal inertia moment total calculated pipeline section relative to the axis passing

through the elastic center of gravity, according to calculation scheme section (Fig. 2) is defined as

9
Jxyo = Z]xyi — LupXoYo, (110)

=1

where J,,; —the same, in the formulas (99) — (107);
L.y, Xo, o — the same, in the formulas (33), (71), (72).
Calculated temperature elongation for total calculated pipeline section are determined by
formulas

The axis x

Ax = gA(t]_ - tz)(ll + le + lgCOS(p + L2x + l5 + L3x + l7C05§0 + L4_x + lg), (111)
The axis y
Ay = gA(tl - tZ)(Lly + l3Sin(p + Lzy - L3y - l7Sin(p - L4_y), (112)

where € — primary pipeline stretching coefficient;
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A — linear thermal expansion of piping material at an estimated coolant temperature (pipe
wall);
t, — calculated coolant temperature (pipe wall);
t, — installation temperature;
I, L, Is, I, Iy — for corresponding calculation scheme (Fig. 2) elements;
L, — L4, — the same, in the formula (31);
Ly, L,,— the same, in the formula (32);
¢ — the same, in the formulas (27) — (30).
Distance from the gravity’s center of the arc for the curved element (tap) to the center of curvature

along the bisector (Fig. 3) is determined by the formula

25in%

p = 57,296 R, (113)

Bending moments in cross sections at ends of linear elements and in the middle taps according to

calculation scheme area (Fig. 2) are determined as
My = =yob + xoby, (114)
My = =yoP — (ly — x0) Py, (115)
My =[b-(R- p)sin%— Yol P — [l +d + (R - p)cos%— xo| Py, (116)
My = (Liy = yo)P. = (I + Lix — %0)Py, (117)
M = (Lly + I3sing — yO)Px — (g + Ly + lzco50 — x0) Py, (118)

. .9
Mg = [L1y + I3sing + a + (R — p)smi - yo] Pe-

(119)

1%
- [ll + Ly + l3cosp +c— (R — p)cosE - xo] B,
M; = (Lyy + l3sing + Ly — yo) P — (120)
_(ll + le + l3COS(p + sz - XO)P )
Mg = (Lyy + Lzsing + Lyy — yo) P — (121)
_(ll + le + lgCOSQD + sz + l5 - xO)Py )
My = [Lly + lzsing +a+ (R — p)sing - yO] P, -

2 (122)
- [11 + Ly, +l3co50+ Ly + s +d+ (R— p)cos%— xO] P,
Myo = (Liy + L3sing — yo)P; — (123)

_(l1 + le + l3COS§0 + sz + l5 + L3X - xO)Py )



Yuri L. Lipovka, Vitaliy I. Belilovets... The Influence of Slenderness Ratio and Stress Concentration...

M, = (Lly + Izsing — l;singp — yo)Px —

(124)
—(ly + L1y + l3¢050 + Loy + ls + L3, + lycosep — xy)P, ,
M, = [Lly + l3sing — l;sing —a — (R — p)sinf - yo] P, —
2 (125)
- [ll + Ly, + lscos@ + Ly, + ls + Ly, + L,cosp + ¢ — (R — p)cos% - xo] P,,
M5 = (Izsing — l;sing — yo) P, — (126)
—(ly + Lix + lzc05¢ + Lyy + ls + Lzy + 1;c08¢ + Lay — X0)P,,
My, = (Izsing — l;sing — yo) P, — (127)
—(ly + Lix + l3c05¢0 + Lyy + I + Ly + 1;c05¢0 + Lyy + lg — x0) Py,
where M, — M,, — numbers of sections according to calculation scheme (Fig. 2);
P,, P, —the same, in the formulas (11) and (12);
l, L, Is, I, Iy — for corresponding calculation scheme (Fig. 2) elements;
L, — L4, — the same, in the formula (31);
Ly, L,,— the same, in the formula (32);
¢ — the same, in the formulas (27) — (30);
p — the same, in the formula (113);
Xo, Vo — the same, in the formulas (71) and (72).
Section modulus of the pipe wall defined as
w4 128
=5 (128)

where J— the same, in the formula (13);
D, — the same, in the formula (13).
Bending compensation voltage in the i-th section, according to calculation scheme area (Fig. 2),

determined by the formula

M;
[ow@] =7, (129)
where M, — the same, in the formulas (114) — (127);
W — the same, in the formula (128).

Results of research for computational models
of U-shaped compensators

Consider three computational model U-shaped compensators located in the horizontal plane and
are not clamped by the ground. For each computational model variate is the radius of curvature tap.
Please find enclosed characteristics of computational models below. In calculations of fixed points
were considered to be absolutely rigid and do not take into account the resistance of friction forces

movable pillars.
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Table 1. Characteristics of computational models U-shaped compensators

Calculated value Dimension Value
External pipe diameter / nominal wall thickness compensator number 1 m 159/4,5
Fly / back width compensator number 1 (excluding taps size) m 3/1,5
Allowable compensation voltage compensator number 1 MPa 146
External pipe diameter / nominal wall thickness compensator number 2 mm 219/6
Fly / back width compensator number 2 (excluding taps size) m 4/2
Allowable compensation voltage compensator number 2 MPa 154
External pipe diameter / nominal wall thickness compensator number 3 mm 426/7
Fly / back width compensator number 3 (excluding taps size) m 6/3
Allowable compensation voltage compensator number 3 MPa 150
Pre-stretch coefficient nondimegsional |

quantity
Calculated coolant temperature (the pipe wall) °C 130
Installation temperature °C -20
The elastic modulus of piping material at a working temperature MPa 196000
Excessive internal pressure MPa 1,6
o TP Tl i
Strength reduction factor of weld joint action at any load other than the nondimensional 1
bending moment quantity
Reduction factor of weld joint strength at bending moment nondimegsional 0.9
quantity ’

Rated allowable stress of piping material at the operating temperature MPa 140

rated voltage
5 allowable stress for the sectionin the horizontal plane

- allowable stress for the sectionin the vertical plane

— rated voltage (excluding the impact of taps geometry, flexibility and coefficients of

stress concentration)

F Fy

Voltage, ™
AMPa

] 1 1 3 4 H ] 7 ] ]

Fig. 4. Graph of stress distribution compensator number 1 at radius of the outer diameter of tap pipe to one
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Voltage, :A
MPa e

] 1 F) ] 4 % L ' L} L 10 it} () 5] " %

Section on length calculated area

Fig. 6. Graph of stress distribution compensator number 3 in radius of three tap pipe outer diameters

Allowable compensation voltage was determined in all cases [8].

Below are graphs of the stress distribution on calculated cross sections of these models U-shaped
compensators.

If you pay attention, you can see that the maximum voltage with and without consideration of
coefficients are comparable in the first two computational models within approximately tap equal to

three outer diameters of pipe. For the third calculation model similar graph is as follows
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250
200
Total length including coefficients
compensating ., flexibility taps and
shoulders, m stress concentration
100 excluding taps and
- flexibility coefficients
of stress concentration
50
0
0 200 400 600 800 1000 1200

Tap radius, mm

Fig. 7. A plot of the maximum total departure adjacent compensated shoulders the radius of taps curvature for
calculation model compensator number 1

350
300
250
Total leug-th including coefficients
compensating 200 —s. Hlexibility taps and stress
shoulders, m concentration
150 aE excluding taps and
flexibility coefficients of
100 stress concentration
50
0

0 200 400 600 800 1000 1200 1400 1600 1800

Tap radius, mm

Fig. 8. A plot of the maximum total departure adjacent compensated shoulders the radius of taps curvature for
calculation model compensator number 2

It is evident that a similar comparison with the first model calculations on the graph above is not
observed. Now pay attention to plots of the maximum total departure from adjacent compensated
shoulder radius of curvature taps.

These are graphs the first two computational models for compensators. It is seen that lines on
graphs in both cases intersect at about 3.5 diameters (note markers on charts). Here is a chart of the
third calculation model

Intersection happens here at 4 diameters. Therefore there is a lack of comparability graphs of

stress distribution on cross sections of area.
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450
400

350

Total length 3pp including coefficients

compensating s s flexibility taps and stress
shoulders, m concentration

an excluding taps and

150 flexibility coefficients of

stress concentration
100
50
0

0 400 800 1200 1600 2000 2400 2300 3200

Tap radius, mm

Fig. 9. A plot of the maximum total departure adjacent compensated shoulders the radius of taps curvature for
calculation model compensator number 3

200 e
180 400
:: 30 mcluding coefficients
00 flexibility taps and stress
Total length l;lj 20 —— concentration
compensating xo —a excluding tzps and
shoulders, m 4 1% flexibility cosfficients of
a 100 stress conosntration
20 %
0 0
o 500 1000

o 40 B0 10 1600 h00 MO0 FEDD 3RO

Tap radius, mm Tap radius, mm

Fig. 10. Plots of the maximum total departure adjacent compensated shoulders the radius of taps curvature for
calculation model compensator number 3 with a thickness of 12 mm (left) and 7 mm (right)

If the third calculation model to increase the wall thickness from 7 to 12 mm, the point of
intersection graphs of maximum total departure from adjacent compensated shoulder radius of

curvature taps shifts to the origin

Findings
Chart analysis suggests the following conclusions:
1. Most unfavorable from the viewpoint of safety factors is the use of taps in which the radius of
curvature is one outside diameter of pipe

2. Increasing the radius of curvature taps from one to two outer diameters increases the maximum

departure compensated shoulders twice.
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3. In calculations coefficients of flexibility taps and stress concentrations should take into account
because ignoring the latter leads to incorrect results.
4. In case of tap radius reduction and increasing the wall thickness of pipe in calculation model

there is comparing the coefficients of flexibility and taps them stress concentration to unity.
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