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Some Examples of Finding the Sums of Multiple Series
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A method of finding residue integrals for some systems of non-algebraic equations are presented. Such
integrals are connected to the power sums of roots for the system of equations. It is shown how the
obtained results can be used for calculating sums of multidimensional series.
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Introduction

A method based on multidimensional residue theory for the elimination n unknowns from a
system of n non-linear algebraic equations (in the characteristic zero setting) was proposed by
L.A. Aizenberg [1]. Its further developments were implemented in [2-4]. The algorithmic method
(inspired by the Aizenberg and Yuzhakov strategy) introduced by M. Elkadi and A. Yger [5]. The
basic idea of the method is to find certain residue integrals connected to the power sums of roots
of a given system of equations (in the positive powers) avoiding finding the roots, and to apply
then the recurrent Newton formulas. This method is less time-consuming and does not increase
the multiplicity of the roots in comparison with the classical method.

The set of roots of a system of n non-algebraic equations in n variables is in general infinite.
Moreover, multi Newton sums (with exponents in N™) of the roots of such systems lead usually
to divergent series. In the present work, we attach residue integrals to specific systems of n non-
linear equations, compute such residue integrals, and deduce from this computation (provided
such series do converge) the values of the sums of multi-Newton series (with exponents in (—N*)™)
formed with the roots of such non-linear systems which do not belong to the union of coordinate
planes.

In the papers [6-10] a class of systems of equations containing entire or meromorphic functions
was considered. In [11] a computer algebra algorithm that computes the corresponding residue
integrals and applies to them the recurrent Newton formulas is presented.

Our goal is to generalize statements from the papers [6-10] to a another class of systems of
non-algebraic equations; to obtain formulas for calculation of residue integrals, to give connection
with power sums and to give the corresponding computer algebra algorithm.

In [6,7], the following system of functions was considered:

fl(Z)a fQ(Z)v . wfn(z)»

where z = (21, 22,...,2,). Each f;(2) is analytic in the neighborhood of 0 € C™ and has the
form

fi(2) =27 +Q;(2), j=1,2,...,n,
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, o , ; j

where 37 = (B1,3},...,/#) is a multi-index with integer nonnegative coordinates, 2% = z’f t.
J j , ~ , )

zg"’ -~-zﬁ’]‘7 and |37 =p]+ 65+ ...+ 6, =kj, j=1,2,...,n. Functions @, are expanded in a

neighborhood of zero into an absolutely and uniformly converging Taylor series of the form

Qi(z)= Y alz",

el >k;

where o = (a1, @2,...,ap), a; 20, oj € Z, and 2% = 27" - 252 - - 207,
The formulas for calculation of residue integrals

gL / 1 df
P @iy Jyy AU F

in terms of coefficients of Q;(z) were obtained.

Then such systems was considered in [8,11]. One received multidinensional Newton formulas
for such systems.

In the papers [9,10] was considered the class of systems in which functions

Fil2) = (" +Qi(2)el, j=1,2,....n, (1)

and in the paper [10] is given computer realization of considerable method.

Here we consider the system [12] in the case when the monomials ## in the system (1) are
replaced with products of linear functions.

1. Residue integrals

We consider a system of functions f1)(z), f2(2),..., fn(z) and a system of equations
() =0 =ayz)™ .o (1= a1nzn)™ + Q1(2)] D1(2) = 0,
f2(2) = [(1 —ag121)™2 ... - (1 = Ggnzn) ™" + Qa(2)] e™2(3) = 0, 2)
fn(z) = [(1 - anlzl)mnl el (1 - annzn)m"" + Qn(z)] efn(®) = 0,

where m;; are natural numbers, a;; are complex numbers, different for each fixed j, P;(z), and
Q;(z) are entire functions.

Denote by g;(z1,...,2,) expression of the form
qi(z1,- . y2n) = (1 —anz)™ ..o (1= apmzn)™™, i=1,...n (3)
Then, our system can be rewritten as
fi(21r o) = [@i(1, o 20) + Qulos o )] PG =12 (4)
For each i we define a function
q:(2), ecian a;; # 0, 114 Bcex  J;
= 1
hi(2) gi(z) - — ... —, ecuh a;j, =...= a;, =0. (5)
Zj1 Zjk
The system of equations
hi(2) =0, i=1,2,...,n (6)

- 516 —



Evgeniya K. Myshkina Some Examples of Finding the Sums of Multiple Series

has n! isolated roots in C " (C" is a theory of functions space). Let J = (j1, ..., jn) be multi-index
is a permutation of (1,...,n). Then the roots of (6) are
. { (1/arjys- -, an;,), ifall agj, #0, k=1,...,n;
7 (1/aijy, s O0]s -+ » Olig]s -+ -5 Lang, ), ifaij, =...= Qirji, =0,

where k,j =1,...,n.
Denote by I'y, the cycles

FhZ{ZECnZ|hi|=’I“i, r; >0, sz} (7)
For the case when all ay j, # 0 we define a cycle I'y, ., by

1 —ayj, 21| =1,
11 — agj, 22| = 72,

Ifajj,, =... = Qirj;, =0 for some 1, ..., then I'y, o, is defined by

11— ayj, 21| =71,

1

| — 7"7;17

Zi1

................ 9)
1

Z = Tips

‘1 - anjnzn| =Tn,

Lemma 1. For sufficiently small r; a global cycle Ty, has connected components (local cycles)
in the neighborhoods of the roots ay. Moreover, I'y, is homologous to the sum of the local cycles
Tha,-

Consider the system of equations

depending on the real parameter ¢ > 0.
Let r1,...7, > 0 be the fixed real numbers. Then, for sufficiently small ¢ > 0, the inequalities

’qz(z)| > |tQ1(z)|, i=1,...,n.

hold on the cycles
Iy = {ZE(Cn: |hz‘ =71 1= 1,...,77,}

because the cycles I'y, are compact.
By J,(t) we denote the residue integral

n= e [ LA
T ery=i)n Jp, 2 F
1 / 1 dFy  dF; dF,
_ — A== A
T

1 1 1 N ... )
Cry=D Jo, TR TR F,
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where v = (71, ...7,) is multi-index.
Denote
Gi(z,t) =qi(2)+t-Qi(2), i=1,2,...,n
Let I be a multi-index of the length n, consisting of s ones and n— s zeros (s = 0, ...,n). Denote
by A; Jacobian of the system of functions such that to each “one” on the j-th place in I there
corresponds j-th row of the derivatives (0G;/0%), 1 < ¢ < n in Ar; and, to each “zero” on the
k-th place in I there corresponds k-th row of the derivatives (0P /0z;), 1 <i < nin Aj.

Theorem 1 ( [12|). Under the assumptions made for the functions F; defined by (10) the fol-
lowing formulas for J,(t) as convergent series are valid:

=232y L NS0 N o )
ﬂ(aS,J)! 0z8° Z¥1+1-,,,-Z%7l+1 an+I(I’J) ,

zZ=ay

where (—1)*)) =1, if J is even permutation, and (—1)*)) = —1, if J is odd permutation of is
multi-index of order s, iy is a number of I-the unit of I, ¢* T1(I,.J) = ¢} H[]l] Cgse H[ inl,

and qp[jp] is product of all (1 —ap121)™? - . .- (1 = appzn)"7" besides (1 —ayp,, zjp)™ PJP, QY (I) =
Qil .. Q5
B(a®, J) = (myj, - (o, +1) = 1,...,mg, - (o +1)—1),

Bla®, ) =[] (mps, - (a5, +1) = 1),

ol i (@, + 1) =1fmg,, (a5, +1)—1

o928 9 maj, (S +1)—1 mj, (a3, +1)—1"

2 71 <. 0zZn

2. Residue integrals and power sums

Under certain restrictions on @; and P; the considered residue integrals are connected to the
power sums of roots of the system (2).
Suppose that Q;(z) are polynomials:

Qi(z) =212, »_ Chz® i=12,. (12)
]| >0
where « is a multi-index, z® = 27" - ... 29", and degzj Qi < myj, 1,7 =1,...,n for all non-zero

ai;. If a;; = 0 then there is no restriction on degzj Q;.
Functions P; (j =1,2,...,n) are the polynomials

Pi(z)= Y b2, (13)

0<|InlI<p;
where n = (11,...,m,) is a multi-index.
1
Assuming that all w; # 0, we substitute z; = —, j = 1,...,n in the functions
Wi

Fl(th):(QZ(Z)+tQZ(Z))BPl(Z)v i:132a"'an

Consequently, for i = 1,...,n we get

1 1 1 1 1 1 (1 1
() (B D) s (L)),
w1 Wnp, w1 W, w1 Wy,
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And finally we arrive at

1\™ 1\ 1 1 (L
(ot e -
w1 W, w1 Wn,

_ ((1>m . (1>m (W1 — @)™ - (W — ag)™ (14)

w1 Wnp,
1 1 (o
e ()) P _
w1 W,
1\ 1\™ ~ (1
) ) st
w1 Wn,
where ¢; are the functions
Z]vi = (’U.)l — aﬂ)m“ el (wn — ain)m’m,

and Q; are the polynomials

) 1 1
R A

) )
wq W,

In the above calculations it is not important whether a;; vanish or not. Indeed, assume that

in Fy(z,t) = (ql(z) —l—t'Qi(z))eP(z), i=1,...,n, some a;; = 0 vanishes. If, for instance, a;; =0,
then after substitution z; = —, j =1,...,n, the function F; takes the form
J

1 1 1 1 1 1 1 1
F1<7"'7at> = <(J1 (a7>+t Ql <7u)> epl(wljmvwnl i=12...n

wq Wn, w1 Wn, w1 Wy,
Then

Min

1 1 1\" 1
F1 (,...,,t>:<(1—a12> -...-(1—a1n> +
w1 Wy, w1 Wn,

+t - Q1 (1,...,1>> ePl(ﬁ"""%") =

1 degw1 Q1 1 Min
= (w) L (w) . (wl)degwl Q1 , L (wn _ aln)mm +
1 n

degwl Q1 Min ) 1 1
— <1> <1> . al(w)+t'Q1(w)> ePl(wﬁ*"'m)’

w1 Wnp,
where ¢ is the function ¢ = (wl)degwl Qu. .. (w,, — a1,)™m, and @1 are polynomials of the
~ d 1 1
form @, = wlegw1 @ cocwptn Q| —, ... — | . That is, one can take mi; = deg,, Q1.
w1 W,

From (12) we derive that

degwj @1 < maij, j=1...,n.
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Denote - _
Gi(w,t) = g(w)+t-Qi(w), i=1,2,...,n. (15)

When 0 < ¢ < 1, the system (15) has a finite number of roots in C", depending on parameter
t, and has no infinite roots in C” (see [13]).
Sufficiently close to zero t on the cycle

1 1
hi<,...>‘_€i, i:1,2,...,n},
w1

Wn,

Ty ={weC":

compactness of the cycle implies

1 1 1 1
G\ —,...— >t'Qi —_— . —
w1 W, w1 Wnp

Therefore fh is homologous to the sum of the cycles fh@ ;

, o 1=1,2,...,n.

1|
1*(111'1171 = £1,

N -
1—6121'2172 = &2,
1|
‘1 —aninm‘ = E&n.

obtained from the cycles I'y, o, by the substitution z; = —.
w;
The equation
1
1-— ajij —
w;

=€

defines a circle. Indeed, let us first rewrite it in the form

1
‘1—ajijw =¢, then |wj—aj;,|=celw;l.
j
Thus
2 2 2
aj;, e lajg, |
wj—ajij|2:£2|wj\2, then (1 —&?) wj—l_]ZJEQ = (I_J;;)a
2 2
Aji; 76 \aﬂ| .
wj—1_352 —(1_€2J)2, i=1,...,n.

For sufficiently small € the point aj;; lies inside this circle, and therefore fh,a , is homologous to
the cycle

|w1 - Cl1j1| = €1,
|w2 - a2j2| = &2,

Here some a;; can vanish.

Lemma 2 ( [12]|). Let P; be defined by (18), and the inequality

P+ <Ly (17)
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holds for a multi-index v = (Y1, ... ,Yn), where [9 = (l{, o 13) and lf is a degree of P; in z; for
i,j=1,...,n (i.e. n scalar inequalities I} + ...+ 1" < ; hold).
Then
—1)n dG,  dG, G,
J,(t) = ¥/ w Tt WPt et N - (18)
@rv-=1)" Ji, G1 Go Gn

(Inequality (17) means that it holds coordinatewise).

Lemma 3 ( [12]). Let A = A(w,t) be the Jacobian of the system Gy (w, 1), ..., Gy (w,t) us (15).

Then
1 olsIl | - @K
- _plIKE[l+n s Tl gt
Jy(t) = (—t) > (1) FED oub A-wl T w) () ,
KeR J ’ w=ay
where Q¥ :Qlfl o QFn and

R={K = (k1,...,kn): there exists i such that |[K|| <~y +2, i=1,...,n}.
All the notations here are as in Theorem 1.

Denote by 20 (t) = (2j1(t),...,2jn(t)), 5 = 1,...,p the zeros of the system (2) with the
functions ¢Q);, where @); are defined by (12) and do not lie on coordinate subspaces. Since w;
do not lie on coordinate subspaces, then z;, = ——, m = 1,...,n and therefore we have finite

Ws

Jgm
number of zeros. Consequently p < s.

Theorem 2 ( [12]). The following equality holds:

- 1
— Zjl(t)’nﬂ . zjg(t)'Y2+1 oo zjn(t)’Y"‘H

J

= Z (_t)HKIIJrnZ(_l)S(J)# . M ﬁ(t) cwP et NL
A ; B, "UEE)|

1

Thus, the power sum of (zeros of (15)) is a polynomial on ¢, and therefore, the equality in
Theorem 2 also holdg for t = 1.
1

Denote o1 = g NAT L At
j=1~j1 J2 Jn

where z0) = (zj1, -5 2in) = (221(1), ..., 20 (1)),

j=1,...,n.

Theorem 3 ( [12]). For the system (2) with functions f; defined by (4) and Q; defined by (12)
the following formulas are valid:

P
1
Oy+1 = Z NAT el el
j=1 ~j1 j2 Jn
~ <
_ # Z (_1)|\K|H—n Z<_1)S(J) / 8'w¥1+1--.w2”’+1 — il -_...gn+ldz
(2mv=1)" Il K1=0 J i @t
h,ay
1 olBll | - QK
— _DlIKl+n 1) = At ,
2 VI ) G e | B U EEg) |
. w=ay

where z9) = 20)(1).
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3. Examples

Example 1.1. Consider the system of equations in two complex variables

fi(z1,22) = (1 + a121 — agzo)elr1He222) =, (19)
fa(z1,22) = (1 — byzy + byzo)eldrz1td2z2) —
Jacobian A = a1by — agby different from zero.

b b
The root of system (19) is z; = _G2 2 =4 + 01

. Here we suppose, that the root
not lie on the coordinate planes. Therefore a; + by # 0, as + by # 0, then

(_1)"/1+’Yz LA 22
(al + bl)’Yerl(aQ + b2)’71+1 .

Oy+1 =

In particular,
A4
(a1 + b1)2(as + b2)?’

1
We make the change of variables z1 = — u 29 = —. System will go into
w1 w2

922 =

JEl = wiws + agws — agwy = (w1 + a1)(we — az) + ajaz =0,
fo = wiwa — biwa + bawy = (w1 — b1) (w2 + ba) + biby =0,

its Jacobian is A = (we — ag)(wy — by) — (w1 + a1)(wa + ba).
Now Theorem 3 implies

Jy = 0yir =

= Z : / wi T wP - (arag)t (bibo)*e - A
Fon(@mi)? J (wi+ar)M s (g —ag)B e (wy = by)ReFL - (wg 4 by)Re !

(21)

d”U.)l AN dwg,

Tgay

where ® = {y| 3i:7 +2>k +ky, i=1,2},al,,, are cycles of the form {|w; + a;| =
711, |wa + ba| = 722}, taken with positive orientation and {|wg — as| = r12, w1 — b1| = 721}, taken
with negative orientation.

Calculate these integrals, in particular, we have

2a1a3b?  2a%asbi  2a3bib3 2a2b3bo

a1+b1 a2+b2 a1+b1 a2+b2

Ty = aib + a3bt -

2a3b3b3 2a3b3b3 2a3a3b? 2a2a3b3 2a3azbtby  2a1a3bib3
(a1 +0b1)% (a2 +02)? (a1 +b1)? (a2 +b2)2 (a1 +01)? (a2 +b2)?
Therefore
At 2a1a3b7  2a3azb3  2a3bi1b3  2a3b3by

212 2712
=aiby + a3b] — -
2 172 271 a; + by as + by a; + by as + by

(a1 + b1)2(a2 + bg)

2a2b3b3 2a3b2b3 2a2a3b? 2a2a2b3  2a%asb?by  2aia3bib3
(a1 +01)% (a2 +02)* (a1 +01)>  (a2+02)* (a1 +b1)> (a2 +b2)*
Example 1.2. Recall the expansion of I'-function an infinite product:

qres R | (PR

k=1
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where v is Euler constant.
Consider the system of equations

e’Y(*a121+azz2) 0 —a121 + a222 —ayz14agzo
21, 22) = = 1 T TR ) e
fi(z1, 22) I'(1—=(=a121 + az22)) ,};II < k )
(23)
f (Z 2 ) o e’Y(b121—b222) B lo_o[ . M em 0
2(21,22) = T = (o —bama)) ok . : —0.

Each function is expanded into an infinite product of functions from the system of type (20).
The roots of the system (23) are the points

( ass + bok a1s + bk )

arby — azb1’ arby — azby

In our case a1bs # agb;.

Therefore -

(a1by — agby)?
2,2)=J = .
o(2,2) (1,1) kgl (a1s + bik)2(azs + bok)?

. . ]412 al ]4)2 an
This series converges when — # — and — # —
S

Thus
0(2,2) =Jay) =
_ i a1b2 + a3b? Z 2a1a2b2 Z 2a1a2b1 i 2a3b3by B
o gt k252 k2s(ags + bok) k2s(ays + b1 k) k ks?(ags + baok)
Z _ 2aibiby N i 2a3b3b3 N i 2a2b3b3 Z _ 2afa3b3
ks?( als—l—blkz) ) s2(azs + bak)? —~ s2(a1s + bik) k2(ags + bok)2 (ags + bak)?
2a2a3b 2a1a2b1b2 2a3azb?by
+Zk2a18+b1 Z k5a25+b2 Zk5a15+b1 )
Therefore from (22) we have, that
i (a1by — agby)? _ i atb3 + a3b? B
) m4(a1s + b1k)2(ags + bak)? Pyt k252
2a1a2b2 2a1a2b1 2a2b ba 2a1b1b2
Z k2 s(azs + bak) Z k2 s(a1s + bik) Z ks2 (ags + bok) Z ks2 (a1s + bik)
2a§b2b2 = 2a3b3b2 2a1a2b2 2a1a262
N Z 52(ags + bak)? + ]g:: s2(ays + bik)? Z k2(ags + byk)? Z k2(ays + b1k)?
2a1a3b1b3 2a2azb?by
+Zk3a23—|—bg ijsa13+b1 k)2’
Use the identity [14, Ch. 5, Item 5.1. no. 2,12]
= (*1)" (n—1)
kZ:O k+a)™ (n— 1)!1/) (@),
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Zk:(lml—|—m) :%[¢<%+1)+C}’

k=1
I (¢
where ¥(t) = T ((t)>
We obtain
o0 o0 1
Z I<:23+ak: 7za2k34 272
kys=1 k=1 k=1
o0 oo o0 oo
1 1 bs C 1 bs a
[ il 1 cl = ~ il el
kzgz:lszk(ak-i-bs) ;bs3 [Z/J( * )+ } z:: 3+;bs3 [w<a>+bs}’
Z :i ! —i i ! Y(as+1)+Cl+
ks(k + as)? k + as)? as?k(k + as) k + as) — a2$3
kys=1 kys=1 =1 s=1
=1 =1 ,
* Z adst Z as? (as).
s=1 s=1
Transform the expression
S (a1bz — asby)* 202 >
b2 + a2b?)
kzzl m(a1s + b1k)?(azs + bok)? o kszl k2 o
4a2b3b2 4a1b1b3 > 1 > C
+< all i 2 _ 8a2a2 — 8b2b3 ;ﬁ — (2a2agby + 2a1a3by) ;7{

72a1a2b22 <b2k) —2a1a blz (blk)

w0 (i), o ()
2 2 '
+(2a1b1b2 - 2a2b1b2 Zl 2a2blbg — 2a1b162 Zl 83 +
0o wl b; ) 00 ,(/}/ (%l
+2a303 > (7 +2a3b7 ) 71)+

k=1 k=1

o /(%) o (ale)
2a2b? — 2aya2b1b — 27 4 (24202 — 2a1a2b1bo)
+(2a3b7 a1a212); < + (2a3b3 a1a2122

Consider the expression

Differentiate its by ¢. We have

-~ Y(th) | - Y (th)
< k3 - Z k2
k=1 t
Therefore, our double series expressed in terms of one-dimensional series of the same type.
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Example 2.1. Consider the system of equations in three complex variables

fi(z1,22,23) =1 — a121 — G222 — azzs + a1a22122 + A1a32123 + A2a32223 =

)
(1 — alzl)(l — CLQZQ)(l — agzg) + a1a0a3212223 = 0,
(

f2 21,22, 23) =1- b1z1 — bQZQ — ngg + b1b22122 + b1b321Z3 + b2b32223 = (24)
= (1 - blzl)(l — b222)(1 — b323) + b1bob3z1 2923 = 0,
fa(z1,22,23) =1 — c121 — cazo — €323 + C1C221 22 + C1C321 23 + CaC32223 =
= (1 — 612’1)(1 — 022’2)(1 - 0323) + C1C2C3212223 = 0.
The roots of system (24) are (21, 252, 2;3),J = 1,2, 3.
1 1 1
We make the change of variables z; = —, 2o = — and z3 = —. Our system transforms
w1 Wo w3
into
J?l = WjWaW3 — Q] W2W3 — QW1W3 — A3W1W2 + A162W3 + A163W2 + A203W] =
= (w1 — (11)(1[]2 — ag)(wg, — Clg) + ajaoas = O,
f2 = Wiwaw3z — biwawsz — baywiwz — bzwiwa + bibaws + bibzwy + babzw, = (25)

= (w1 — b1) (w2 — b2) (w3 — b3) + b1b2bs = 0,

f3 = wiwaws — crwaws — cowiW3 — C3WiWe + C1CW3 + c1C3Ws + CaCzwy =

= (w1 — ¢1)(w2 — ¢2) (w3 — ¢3) + cicacs = 0,

where A is Jacobian of system (25)

A = (wz—az)(wz—az)[(w1 —b1)(ws —b3) (w1 —c1)(we —ca) — (w1 —b1) (w2 —be) (w1 —c1 ) (w3 —c3)] -

— (w1 —a1) (w3 — a3)[(w2 — bz) (w3 — bs) (w1 — c1) (w2 — c2) — (w1 — b1) (w2 — b2) (w2 — c2) (w3 — c3)]+

+(w1 — a1) (w2 — az)[(wz — b2)(ws — bz) (w1 — c1) (w3 — c3) — (w1 — b1) (w3 — b3) (w2 — c2) (w3 — c3)].

Now Theorem 3 implies

Z 1 / W1 WoaW3 + (alagag)kl (blbgbg)kz (610263)k3 . K «
Pl B e e e e
T

J0,0,00) = 0(1,1,1) =

q,a g
dw1 AN d’LU2 A d’LU3

X
(wl — bl)k2+1(u)2 — b2)k2+1(w3 — bs)k?2+1 . (wl — Cl)k?3+1(w2 — 62)k3+1(u}3 — C3)k3+1’

where T, o, are cycles of the form {|wy —a1| = 711, |wa — ba| = 792, |ws — c3| = ra3}; {|ws —as| =
713, [w1 — b1] = ra1, |wa — co| = r32}; {|wa — az| = 12, |wz — b3| = 7oz, |w1 — c1] = r31} taken
with positive orientation and {|w; — a1| = r11, |ws — bg| = ra3, |wa — co| = r32}; {Jwa — as| =
12, [wi —b1| = a1, [wz — 3| = r33}; {|ws —az| = 13, [wa — ba| = rog, |w1 —c1| = 731} taken with
negative orientation.
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Calculate these integrals. We obtain

J(0,0,00 = 0(1,1,1) = a1bacz + a1bzce + azbics + asbscr + azbico + azbaci+

+ a3C1C2C3 b1 b2 al b1 bg b3 C3 + C2o +
a3 — C3 bl—Cl bQ—CQ al—bl Cg—bg Cg—bg
+a2b1bzb3 . ¢, _a n asbybabs 2, _a n
az — by c3 — b3 c1— by az — b3 ey — by c1 — by (26)
aic bacacz  bzcacs | asaszby  azasbs n
ay—c1 |bp—c2 b3—c3 ax—by az—bs3
asCy biciecs | bscicy | ajazbs  ajasb;
as — C2 blfcl bg*Cg agfbg al—bl '
Example 2.2. Consider the system of equations
f (z s ) sin \/alzl + agz29 + a323 — a1A22122 — A1A32123 — A3A32223
1(%1,%22,23) = =
’ ’ \/CL12’1 + agz29 + a3z3 — A10A22129 — A1032123 — Q3432223
- IO_O[ 1 a121 + aszo + a3z3 — a1a22129 — A1032123 — 3432223 -0
Pk k2752 ’
f (Z s ) sin \/blzl + bozg + b3zz — bi1boz129 — b1b3z123 — b3b3za2s
2\%1,%22,23) = =
\/blzl + b222 + ngg — b1b22:12:2 — blbgzlzg — b3b32’223 (27)
o i)_o[ 1— b121 + b22’2 + b32’3 — blbgzlzg — b1b32’12’3 — b3b32223 -0
— 272 ’
f (z - ) sin \/clzl + Co20 4+ €323 — C1C22122 — C1C32123 — C3C32223
3(21,%22,%23) = =
Y V€121 + Coza + €323 — C1C22122 — C1C32123 — C3C32223
5 C121 + C222 + €323 — C1C22122 — C1C32123 — C3C32223
=11 (1- =0
a1 m2m2 )

Each function is expanded into an infinite product of functions from the sytems of the type
(25). Transform Formula (26). We obtain

o0
a1bacs + arbsco + asbics + asbser + asbica + asbacy
Jo00) = Y +

m6k252m?2
k,s,m=1
oo
n Z a3C1C2C3 bl + b2
- mOm2(agm? — c3k?) [bim? — 152 bam? — cos?
k,s,m=1
o _ B}
+ Z a1b1b2bs3 C3 + C2 +
w052 (a182 — b1k2) [c3s? —bym2  cos? — bom?
k,s,m=1 - -
o _ B}
4 Z a2b1b2b3 C3 i C1 4
m052(ag82 — bok?) | 382 —bym?  c182 — bym?
k,s,m=1 - -
oo _ B}
+ Z a3b1b2b3 C2 T C1 +
m052(a3s? — b3k?) | cas? —bam?  c182 — bym?
k,s,m=1 - -
oo
+ Z aicy bQCQC3 + b30263 +
w8 (a;m? — c1k2 m2(bam? — cys2 m2(bsm? — c352
k,s,m=1 3 3

> aicy CLQCLng a2a3b3
+ & s;:l 7r6(a1m2 — ClkZ) |:k2(a252 — b2k2) + k2(a352 — bng):| +
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n Z asca . bicics bscics
w8 (agm? — cok?) | m2(bym? — c182)  m2(bsm? — c38?)

k,s,m=1
+ i agCo . alagbg a1a3b1
it 78 (aam?2 — cok?) | k2(azs? — b3k?)  k2(ays? — b1k?2) |’

. . R 1
Second member of identity has the form . S% 652 (as? = bk (es? — dm?)”

1 1 wcth(wa)

Use identity [14, Ch. 5, Item 5.1.25, no. 4] (if & > 0) Z ) =522 + oy Then
we have
i 1 B WCth(T{' —a/bs) "
i 7652 (as? — bk?)(cs? — dm?2) 7T6bd8 2( a/b 2\/—a/bs

X

-1 7 eth(my/—c/ds) ]

_l’_
2(—c/d)s? 2y/—c/ds
_i 1 +i cth(my/—c/ds) +Z cth(my/— Z my/—a/bs) - cth(my/—c/ds)
N — AmSacs® = Ax®\/—cdas® = 4nOy/—ab i 474/ abeds* .

Let o®; (%, e?!; e 2) be a basic hypergeometric series (see,for example, [14, p. 793]).
Consider known formula [14, Ch. 5, Item 5.2.18, no. 13]

o0 s—1 oo

T 1 x? 1 T 2t 2t At 1 2t 2, At
7:75 = —. o Pi(e”t, e e, x) = o®q (e, et e™, ).
262155_1 T 1e2ts_1 r eft —1 ( ’ ’ ’) edt _ 1 ( ’ ’ ’)
s= s=

Therefore
. cth(ts) =1 > 1
IR LIS pRINE) SRR
5 5 5(2ts _

s=1 § s=1 $ s=1 § (6 * 1)
=1 1 v ® 1 1 v
2—5 —dy fda:/ —dw/_wadv/ 2 ®1 (e, et et ) du.
p— o Y o T 0o w v 0

Integrating by parts, easy to show, that

T 1 wl v 1 1
/ —dy / fdx/ —dw/ fdv/ 2@ (e et et ) du = f/ ln4y-2@1(62t,62t;e4t,y)dy.
0o w o v 0 4 Jo

Therefore

Q

th(ts) 1 b 2 2t 4t
=<(5)+mA In y-2¢1(6 ,€5¢€ 7y)dy

&S]
s=1

Simplify the expression

i cth(as) - cth(bs) i 1 14e205 1425

e s 1 _e-2as ] _ g-20s
So:ol s=1 (28)
=> Y R - !
- g4 e2as _ 1 e2bs _ 1 (e2as _ 1)(62173 _ 1)
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4

Now consider the expression (2 —1)(eB = 1)

. Substituting % = 2, we have

4 4 1 1 1

(e2as _ 1)(62173 _ 1) - (eQbs _ 1)2(62178 + 1) 2(62178 _ 1)2 B 4(62bs _ 1) + 4(62175 + 1) :

We note that

a 1 B 2sebs 2s 2s
ob | e2bs — 1 (e2bs _ 1)2 - (eQbs _ 1) (62bs _ 1)2'
Thus
1 1 1 6f 1
(eQbs _ 1)2 T e2bs _ 1 25 Ob |e2bs —1|°
Therefore,
0 |1 1 1 1
b l; 945 g2bs _ 1] T si(ebs —1)2 + st(e2s — 1)
1 0
Of the formulas obtained above the sum (28) is equal to 3 fol Inty- 5 [2@1(e?, €5 e%, )] dy.
Therefore
i 1 o
i 7652(as? — bk?)(cs2 —dm?2)  3780ac

L el (L Kvwrmvereedl ity oy (P, 2T Ty gy )

4719+/ —cda 2(6471' —c/d __ 1) 0
I 1 ) C(5) I 1 /1 1n4y.2®1(627r\/—a/b’627r\/—a/b;e47r\/—a/b7y) dy +

475/ —abc 2(64m/—a/b 1) Jo

1
+7_
360+ abed
1 1 !
_ . 1n3 ) 6277\/*a/b7EZW\/*a/b;e‘Lﬂ'\/*a/b’ d
abed (i T/b_n/o Yy 2P y)dy
1 1

1
o . 1113  od 6271’\/7c/d,627r\/7c/d;6471'\/7(:/d7 dy+
i abed (ot T/dn/o Y- 2P ( y)dy

3 1 !
+ . 1n3 ) eQTI’\/—C/d7 eQw\/—c/d; t,:,47r\/—c/d7 dy—
32mtvabed  (¢Amv/—e/d ) /0 y-2® v)dy

1 L4
= .| my-
84V abed /0 Y omy/—c/d | gAmv/ —¢/d _q

1 1 !
_ _ . 1Il3 ) 6271'1/7c/d,_1;_6271'\/7c/d7 d ,
3274V abed  64m*Vabed /0 y -2 y)dy

[ad
substituting given Z— =2
c

Thus we have, that o(; ;1) calculated in terms of well-known expression.

a ]- —cC T —C T —C
[ . 2<I>1(€27r\/ /d762 4 /d§€4 v /dvy) dy—
€
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HeKOTOpre IIpuMepbl HAXO02KJAE€HNUA CYMM KPAaTHbBIX PAJ0B

EBrenunga K. MeImmknaa

Paccmompen MEMOO HATOHCOEHUA GHIMETHDIT uHme2panos ons onpeﬁe/teﬁmnx cucmem Hecmee6pau%ec-

ruxr ypaeHeHuﬁ. Taxue uHmezpandv,. Ce8A3aHd, CO CMENEHHBIMU CYMMAMU, K‘OpH@’li cucmemat ypaeHeHua.

HO%’LZSG/HO, Kax amu pe3yavmainmovl MOHCHO NPUMEHUMD K HATOHCOEHUIO CYMM, KPAMmMHbLL pﬂ@OG.

Karoueswie caosa: sviuemmoiil uxnmeezpan, CmeneHHas CYmma, Kpammovie pﬂdbb.
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