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A method of finding residue integrals for systems of non-algebraic equations containing entire functions
is presented in the paper. Such integrals are connected with the power sums of roots of certain system of
equations. The proposed approach can be used for developing methods for the elimination of unknowns
from systems of non-algebraic equations. It is shown that obtained results can be used for investigation
some model of chemical kinetics.
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Introduction

A method for the elimination n unknowns from a system of n non-linear algebraic equations
(in the characteristic zero setting) based on multidimensional residue theory was proposed by
L.Aizenberg [1]. Further developments of the method can be found in [2—4].

In general, the set of roots of a system of n non-algebraic equations in n variables is infinite.
Moreover, multidimensional Newton series (with exponents in N™) of the roots of such systems is
usually divergent. In the paper, we connect residue integrals with specific systems of n non-linear
equations and compute such residue integrals. Then we obtain from this computation (provided
that such series do converge) the values of the sums of multidimensional Newton series (with
exponents in (—N*)™) formed with the roots of such non-linear systems which do not belong to
the union of coordinate planes.

A class of systems of equations containing entire or meromorphic functions was considered
in [5].

The purpose of this paper is to generalize results given in [5] to a wider class of systems of
non-algebraic equations; to obtain formulas for calculation of residue integrals and to reveal the
connection between residue integrals and multidimensional power sums of roots.

1. Preliminaries

A Kytmanov and Z.Potapova [5] considered the following system of functions:

fl(Z)a f2(z)7 .- '7fn(2)7

where z = (21, 22,...,2,). BEach function f;(z) is analytic in the neighborhood of 0 € C" and
has the form

fi(z) = 27 +Q,(2), i=12,...,n,
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; i i i . c J B8 B J
where 39 = (81, 85,...,/3)) is a vector of integer nonnegative indices, 2% = 2|* - 2,7 - - zﬁ”, and

16 =1+ 65 +...+ 6 = kj, 7 =1,2,...,n. Functions Q; are expanded in a neighborhood
of zero into an absolutely and uniformly converging Taylor series of the form

Qi(z)= Y alz",

llall >k

where a = (a1, a2,...,ay), a; 20, oj € Z, and 2% = 27" - 257 - - - 207,
The formulas for calculation of residue integrals

st / 1 df
Nz RS

in terms of coefficients of Q;(z) were obtained.
Our goal is to obtain similar results in a more general case.

2. Calculation of residue integrals

We consider a system of functions f1(z), f2(z),..., fn(2). They are analytic in a neighbor-
hood of the point 0 € C"*, z = (21, 22, ..., 2,,) and has the form

Fi(2) =G +Q(2)el®, j=1,2,...n, (1)

, o . ; j j j
where 37 = (8], 33,...,32) is a vector of integer nonnegative indices 2P = zfl . z§2 e zgi‘ and
i =8/ +8,+...+8. =k;,7=1,2,...,n. Functions Q;, P; are expanded in a neighborhood

1T P2 n j i g

of zero into an absolutely and uniformly converging Taylor series of the form

Qj(z): Z a’gzzav (2)

llall>k;
Pi(z) = ) )27, (3)
71120
where @ = (a1, a9,...,00), & 2 0, a; € Z, and 2% = 27" - 257 - 257 v = (1,72, -+, Tn),

v; 20,7 €Z,and 27 = 2" - 2% - 2.
Firstly this system was considered in [6,7].
So the degree of all monomials in @; greater then k;, j =1,...,n.
Consider the integration cycles v(r) = y(r1,r2,...,7,), that are skeletons of the polydisks:

vr)={2€C": |z =rs,s=1,2,...,n}, 71 >0,...,7, >0.

For sufficiently small 7;, cycles v(r) lie in the domain where functions f; are analytic. Therefore,

the series
E J |01 Qn
|Cla|’l“1 Ty
llal| >F;
E 1LY
|bzy|rl Tnn
Ivl =0

converge for j = 1,2,...,n. Then, on the cycle v(tr) = v(try,tre, ..., tr,), t > 0, we have

i j J j ;
|z|ﬁj T .T?l .¢§2 7“5" -

— 456 —



Olga V. Khodos On Some Systems of Non-algebraic Equations in C"

and
Qi) =] Y alz*|< > teljalre <ttt N7 jallr,
llal|>F; llol|>k; llol|>k;
0<tgl, j=1,...,n.

Therefore, for sufficiently small positive ¢, the following inequalities hold on the cycle v(¢r):

217 > 1Q;(2)l, j=1,2,...,n. (4)
Thus,
fi(z) #0 on ~(tr), j=1,2,...,n.

In what follows we assume that ¢t = 1.
Consider the system of equations

fi(z) =0,
A (5)
fn(z) =0

In general, system (5) can have non-discrete set of roots.
It follows from (4) that for sufficiently small r; the following integrals exist:

1 df 1 dfy  dfs df,
AU Zﬁ1+1‘2ﬁ2+1"'25"+1.F/\E/\.”/\E7
v(r) Y(r1,r2,.Tn) ! 2

where 51 >0, 82 20,...,0, 20, 5; € Z, U = (1,1,...,1). We call such integrals the residue
integrals. These integrals are not the standard Grothendieck residues, since the cicle v(r) does

not connect with fuctions fq,..., f,. The Logarithmic Residue Theorem is not applicable to
such integrals as well.
These integrals do not depend on (rq,...,r,) under condition (4) on ~(r).

Let us introduce the following notations

gL / 1 df
O @iy Jypy AU

and f;(2) = 2% +Q;(2), j=1,...,n.
Let us assume that I° is a vector of indices. The vector has n components and con-

sists of s ones and n — s zeros (s = 0,...,n). More exactly, each I* = Ifi1,...,is] =
i i

(O,...,O,1170,...70,1,0,...,0) € ({0,1})™ where iy,...,is are the places of "one" in I?,

1 <id; < ... < iy <n. In what follows Ajs stands for the Jacobian matrix of the system

of functions such that to each "one" on the j-th place in I® there corresponds j-th row of the
derivatives (8};—/821-), 1 <i< nin Ays and to each "zero" on the k-th place in I there corre-
sponds k-th row of the derivatives (0P /0z;), 1 <i < nin Ajs.

Theorem 1 ( [6,7]). Under the assumptions made for the functions f; defined by (1), (2), (3)

the following relations are valid:

B n (,1)Ha5|\
Jﬁ_zz Z (,3+(af+1)ﬁif+...+(a§+1)ﬁi§)!x

5=0 I¢ || ||<||8]l+min(s ke, +...4ks,)
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9 (Aps - Q" (1))

92+ +1)B T 4.+ (a3 +1)873

z=0

3D S S B ©
S+ +1)B T 4.+ (az+1)85 |

=0 I* Jla*[I<[|Bll4min(n ki) +...+ki, )

or

where o is a vector of indices with s components; i}, is the index of the k-th 1 in I°; I

18 + (af + DB + .o+ (a2 + DBE[; B = Bi- Bal-- Bl Q¥ (I7) = QU - Q- QS

|l

a”"f”go 6’YI+.‘.’Y"SD dm l l h L
= ;an 18 a linear functional that assigns constant term to a Laurent
027 02110237 - Dz f g
polynomial.

Remark 1. According to the proof the relation given in the statement of Theorem 1 contains
only a finite number of coefficients of the functions Q;(z) and Pj(z).

Corollary 1 ([7]). If all 37 = (0,0,...,0), j =1,...,n, then the integral Jg is

s

T = ZZ S (-1l {AIQZEBI)&} _

s=0 I* Jla*|I<[IB]]

3

_ylle’ll gl .
S o (ar0)

s=0 I fa*[<||8] o

In the case of 87 = (0,0,...,0), it is also possible to obtain relation for Jz with the use of
the Cauchy integral formula for several complex variables, since f;(0) #0 forall j =1,...,n

3. Power sums

Our next goal is to connect considered above integrals with power sums of roots of system (5).

We must reduce the class of functions f;. At first we take Q; (j =1,2,...,n) as polynomials of
the form
= > alz", (7)
a€M;

where M; is finite set of multi-indexes such that for o € M; coordinates aj < i, k =
1,2,...,n, k # j, but ||a| > k; for all @« € M; as before. Functions P; (j = 1,2,...,n)
are polynomials of the form

Pj(z) = Z b 2. (8)

(US[R]IES ¥
1
Let us introduce the substitution z; = —, j =1,2,...,n. Therefore, we obtain
17w,
1 1 1 1 1 1 1 P, L . L
fJ (wva"'a) = |:,HJ+QJ (a,-.-,):l e ](wl w2 w") =
1 W2 Wnp, w w1 Wy Wn
1 s; | = p(L, L L
:W(U/;]+Qj(w1,U/2,...,wn))e ](wl w2 w")7
where s; is the degree of w;, e! = (1,0,...,0), e = (0,1,...,0), ..., e® = (0,0,...,1), and

degree of polynomials

A ~ g el 1 1 1
Qj(w1,w2,...7wn):Qj(w):wﬁ+J 'Qj <’w’”.7>
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is less than s;.
According to the Bezout theorem the system of nonlinear algebraic equations

fj(w):w;j—FQj(w):O, i=12,...,n, (9)
has a finite number of roots that equals to s; - s3---s, and it has no roots on the infinite
hyperplane CP" \ C".

Let us denote roots of system (5) not lying on coordinate planes as wgy = (wi),
1 1

W1 (k) 7 W2 (k) ’

Wak)s -+ W(ky)s k = 1,2,...,M, M < s1-53---5,. Then points zg) = (

. ) are the roots of system (5), not lying on coordinate planes. So we have the fol-
Wn (k)
lowing assertion

Lemma 1. System (5) with polynomials Q; of the form (7) and P; of the form (8) has a finite
number of roots z(1y, 2(2), - - -, Z(ar) Mot lying on coordinate planes {z, =0}, s =1,2,...,n

Let us introduce notation

OB+I = T(B1+1,82+1,....00+1) = Z e 52+1 Botl:
k) T F20k) 7 Pn(k)

This expression is the sum of roots of system (5) to negative powers. The roots are not lying on
coordinate planes.

Theorem 2. For system (5) with polynomials Q; of the form (7) and P; of the form (8), for
which

Pt 41" < B, (10)

where I = (l{, .., 13) and lg is the degree of polynomial P; with respect to variable zj; i,j =
1,...,n, the relation
Jg = (=1)"op41,

holds (multi-index a < (3, if this inequality is true for all coordinates).

1
Proof. We perform the substitution of variables z; = —, 7 =1,2,...,n in integral Jg. With
wj
this substitution the cycle vy(r) is transformed to the cycle

(=) <1, i, ce 1) = (-1)"v(Ry, Ra, ..., Rp).

T2 Tn
Let us denote multi-index 37 + sjej asy’,j=1,2,...,n. Then

1

f] (wl’wz "’“’n) df]( ) _2": dek XH:L(P])/

2
f'] (wl Y awg )t 'LUln) fJ( ) k=1 o k=1 wk

Therefore

N Y (AT R S
"= (2mi)" /W(R)w ’ (fl(w) - e g Zwﬁ (Pl)(zk)dwk> AREE
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n

dfn(w) - n dwg
VAN = — c—_— =
( fn(w) J;Wk Wk k

We can easily show that all integrals of the form

/ wﬁ“dfl(w) A Hw)

1 ,
(P, dwy | .
w7 (Pn) (a1 “’k)

dwj,

t
>

not containing
n 1 ,
— (P, dw
Z 2 (2 (z1)
=1 Uk
vanish if 0 <! < n and R; are sufficiently large.
In a similar way we can prove that if integrand expression contains the differentials dP; and

dw
ZF then these integrals also vanish.
w

k
Then we show that all integrals of the form
df d 11 1 11 1
/ pordh) o dhw) (,,...,)/\.../\dPn<,,...,> (12)
v(R) fi(w) Fi(w) wy w2 W,

with condition (10) vanish if 0 <! < n and R; are sufficiently large.
Thus, we have

Js = 7(_1,)2 / w1 400 dn(w)
(2,”2) fl(w) fn(w)
v(R)

According to the Yuzhakov Theorem on Logarithmic Residue the last integral is equal the
sum of values of holomorphic function w”*! at all roots of system (9). However, the value of
function w”*t! at the root of system (9), lying on coordinate plane, is equal to zero.

Therefore, we obtain

Jg = (=1)"0p41.

O
Let us extend our consideration. Let us assume that functions f; have the form
e
fj(z):J(T7 i=12,...,n, (13)
fi7 ()

where f;l) (z) and f]@) (z) are entire functions in C™ of finite order of growth. They are represented
by infinite product (uniformly converging in C")

=TI ¢, £26 = Hf<2<>

s=1 s=1

Moreover, each factor has the form (2% + Q. (2))er:(#). Polynomials Q;,(z) and Pj, (z) are of
the form (7), (8) and degrees of all polynomials deg P;, < p, j=1,2,...,n,s=1,2,...,00
Thus f;l)(z) u fj@)(z) are entire functions with finite order of growth not greater than p.

For all set of indexes j1,...,Jn, where ji,...,J, € N, and each set of numbers iy,...,1%,,
where i1, ...,1, are equal to 1 or 2, systems of non-linear algebraic equations
M@ =0 BRE =0 15 @) =0, (14)
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have (according to Lemma 1) finite number of roots not lying on coordinate planes.
Number of roots of such system is not more than countable set. Let us denote the roots as

Z(l), Z(g), SN ,Z(l), e
Let us introduce the following expression

oo

— €l
IB+1 = Z Bitl  _Botl . Butl’
=1 “1(1) " *2() “n(l)
Here (31, ..., (3, are nonnegative integer numbers and the sign of ¢; is equal to 41 if the system of

the form (14), which root is z(;), contains even number of functions f](f); and the sign of ¢; is equal
to —1, if the system of the form (14), which root is z(;), contains odd number of functions fj(f)
For system (5), which consists of functions of the form (13), the points 2 are roots or
singular points (poles). All functions f; are analytic in some neighborhood of 0.
Let us introduce multi-undex 7 = (14, ..., 1), where I/ is the maximum degree of polynomial
P; with respect to variable z;; ¢,7 = 1,...,n contained in decomposition of f; (multi-index oo <
if this inequality valid fore all coordinates).

Theorem 3. Let us assume that the degrees of all polynomials P; used in decomposition of
functions of the form (13) in system (5) are bounded by number p and inequality

P +1"<p,

holds. Then the following relations
Jo = (—1)"0pss

are valid.

The proof of this theorem immediately follows from Theorem 2.

4. Model of Zel’dovich—Semenov

We show that the considered methods of complex analysis can be useful in the study of the
equations of chemical kinetics.

Consider the model of Zel’dovich-Semenov ideal mixing reactor (see. [9, Ch. 2, Eq. (2.2.1)].
It has the form

v T dzr

1— I+8y) — — = —
(1—w)e Da ~ dr’
Y Yy dy

1— T — 2 — -2
(1= z)e Se  dr

where 3, D, a, S, e are positive parameters.
Denote Da = a, Se = b. Stationary states of the system satisfy the equations

(1 - )T -~ =,
(15)

<

(1—z)em™m — < =0.
b
In [9, r1.2] qualitative study of the system conducted(15). We consider here a quantitative
study.

From the Equations (15), we obtain that = = %y. Substituting this expression into the first

equation, we have
Y

b—ay

Y
eltBy =
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We make the substitution

Y z
= - 16
by b (16)
zb
then y = ———. Hence we have
b+az
e TFTa = 2, (17)
b
We introduce the notation
1 G4 a
- = - =
b 77 b k)
1
ie. b= ot a = (o — 3)b. Then from (17) we obtain the equation
eTFaz =z, (18)

First examine the function

]. z
= — . 1+az
ple) =~ e

for positive z. Find the derivative

—a?2? —2(2a—-1) -1

22(1+ az)?

¢ (z) = eTias -

Investigate quadratic trinomial in the numerator of the fraction on the mark. Obtain that
its discriminant D = 1 — 4a, then at 0 < o < 1/4 derivative ¢’(z) has two roots z; < z2, and
at @ > 1/4 is one root. Exploring the position of the vertex of the parabola, we obtain that for
a < 1/2 it is positive, and for o > 1/2 it is negative.

Therefore, if the derivative has two roots, they are both positive. In this case, the smaller
root z; is a minimum point, and the larger root 25 is a maximum point.

Asymptotes of the functions ¢(z) are: z = 0 is vertical asymptote (¢(z) — +o00 as z — +0),
and the axis OZ is the horizontal asymptote (¢(z) — +0 as z — +00).

Consider the equation

p(z) =, (19)

equivalent to Equation (17).

From the previous studies, we obtain that Equation (19) at 0 < a < 1/4 has three roots at
w(z1) < v < @(z2). And if 0 < o < 1/4, Equation (19) has one root, when either z > ¢(z2),
either z < p(z1).

At a > 1/4 Equation (19) has one root for all -, since the function ¢ is strictly decreasing.
Calculating z; and z3 at o < 1/4, we obtain

1—2a—+vD 1—2a+ VD
n=———, zn=—--——— D=1—-4a.
202 202
Then

() = T 2

Z1) =€ 2 . ,

S 1-2a—+D

and

( ) L+v/D 202

29) =€ 222 ——M ———— |

Pie 1-2a+vVD
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Proposition 1. Let D =1 —4a > 0. Equation (19) has three positive roots at

1,\/25 2&2 < 1+\/25 20{2
€ 2« — € 2o —,
1—-2a—+VD 7 1—2a++VD
one root if either
S 1+vD 202
V> et
1—2a++VD
either
< 1-vD 202
e 2a2 —
7 1-2a—+D

If D=1-4a <0, Equation (19) has only one positive root.
Returning to the variables a, b, 3 we obtain

Corollary 2. If D' =3+ % < 1/4, then Equation (17) has three positive roots at

—14vD" 1 —2(B+a/b) — VD' —1-vBT 1 —2(f+a/b) +/D’

e2(B+a/b)? . >b> e2(B+a/b)? .

2(8 + a/b)? 2(8 + a/b)? ’

has one positive root, if either

—1vET 1 —2(B+a/b) — VD’

2(B+a/b)2 . <b
‘ 2(3 + a/b)? ’

etther
< R 1220 VD
2(8+ a/b)?

At B+ % > 1/4 Equation (17) has one positive root.

Thus, the system (15) has no more than three roots with positive coordinates.
Let us consider how the system (15) has complex roots.

(ie. y =

), we get

t
Solving it by making the change t = T3

Y
1+ By

(t_1> t+¥_0
b1—pt) a)° T ab(l—pr)
t

$:1—76_t

b(1 — Bt)

Hence
(at —b(1 — Bt))e +t = 0. (20)

Denote by
Y(t) = (at — b(1 — Bt))e! +t.

Recall Hadamard theorem for functions of finite order of growth (see, for example, [8]).

Definition 1. Ezpressions E(u,0) =1 — u,
u? uP
B(u,p) = (1 - w5+,

p=1,2,... are called primary factors.
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If the function f(z) in the complex plane has a finite order of growth, then there is not
depending on n an integer p < p that the product

i z
I = (p) (21)
n=1 “n

converges for all values of z, if the series converges

3 (;)pﬂ (22)

where 71,73, ... are modules zeros of function f(z), and this series converges for all values of r,
ifp+12=p.

Definition 2. Product (21) with the least of the integers p for which the series converges is
called the canonical product, constructed from the zeros of f(z), and is the smallest p is called
its  genus.

Theorem 4 (Hadamard). If a function f(z) is entire of order p with zeros z1,za, ..., what is
more f(0) #£ 0, then
f(z) = 9P P(2), (23)

where P(z) is canonical product constructed from the zeros of f(z), and Q(z) is polynomial of
degree not higher than p (see, for example, [8]).

Function 9(t) is a entire function of the first order and exponential type 1. Let function ()
have a finite number of zeros in C. Then by Hadamard’s theorem it has the form

P(t) = et - Py(t),

=) (-4).

and t1, to, ..., t, are zeros of function ¥(t).
Then

where a polynomial

(at —b(1 — Bt))e' +t =e' - Py(t).
Hence
" —1
e =
at —b(1 — Bt) — P,(t)’
which is impossible since the right is a rational function.

Thus the number of zeros of ¥(t) is infinite. These zeros have no limit points in C. If they
are denoted by t1, ..., tn,..., their modules |t,,| — o0 as n — oo.

Denote by (zn,yn) (n =1,...) are roots of the system (15). Since y = , then y,, — —=

t
1—pt 16

as n — oo. Since Y(t,) = 0, then

t tn
eln = — ,
at, — b(1 — Bt,)
1
hence e’ — T
Since z =1 — me_t, then z,, — —%.
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Proposition 2. System (15) has an infinite number of complex roots (z,,yn) € C2, n =1,....
. . . . a 1
there is a limit to this sequence of complex zeros when n — oo and is equal to — %, E .
Let us consider the order of convergence of zeros y,,. Since the function ¥(¢) is a first order,

then (see, for example, [8]) > “I%ﬂ <oo forall e>0.
n=1"'"

Hence we obtain

Corollary 3. Series

o0

>

n=1

1 1+e
— 4+ 0 < oo forall €>0.

n
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O HeKOTOpBLIX cucTeMax HeaJireoOpamdeckux ypaBHeHuii B C"

Oapra B. Xogoc

Paccmompen memod HaToHCOeHUA BOIHEMHBT UHMEZPAN0E OASL CUCTEM HEAN2EOPAUNECKUT YPasHeHU,
COCOAWUT U3 yeavix Pyrrkuul. Takue unmezpaivs C8A3GHL CO CMENEHHBLMU CYMMAMU KOPHET cucme-
Mol ypasrenuti. [Ipedrosrcernviti nodrod moscem bbimsb UCTIOAL3OBAH OAA PA3EUMUA MEMOIA UCKAIOYE-
HUA HEUSBECTNHBIT U3 cucmem Heaszebpauieckur ypasHerut. Iloka3arno, wmo nosywerrvie pe3yibmamol
MO2YM ObiMb UCTOABIOBAHDL OAA UCCAEI0BAHUA 00HOT MOOEAYU TUMUNECKOT KUHEMUKY.

Karoueswie caosa: Hea/LZ@6an%€C’KJU6 CUCMEMDL ypaeHeHmi, 8viemmLl urmeezpan, CmeneHHbvle CYmMmal.
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