УДК 517.55+513.88

Об аналогах ряда Лорана для гармонических функций

Барлыкбай Б. Пренов*

Каракалпакский государственный университет, академика Ч.Абдирова 1, Нукус, 742000,

Узбекистан

Получена 18.01.2010, окончательный вариант 25.02.2010, принята к печати 10.04.2010

Целью работы является получение канонического представления для гармонических функций в полупространстве, равных нулю вне фиксированной особой точки на границе этих областей.

Ключевые слова: гармонические функции, полупространство, особые точки.

Рассмотрим задачу Дирихле нахождения гармонической функции u в области D с заданными предельными значениями u_0 на границе ∂D . Если y_0 — особая точка функции u_0 на ∂D , то нужна более тщательная интерпретация равенства $u=u_0$ в окрестности y_0 . В анализе многообразий с особенностями можно решить эту задачу достаточно просто [1]. Действительно, нужно требовать выполнение равенства $u=u_0$ вне точки y_0 на границе ∂D . Выполнение этого условия требует описания пространств гармонических функций в области, равных нулю на $\partial D \setminus \{y_0\}$, т.е. нулевого подпространства гармонических функций. Из структурной теоремы для распределений с точечным носителем следует, что каждая такая гармоническая функция есть линейная комбинация производных ядра Пуассона $P(x, y_0)$ для области D. Таким образом, можно контролировать нулевое подпространство, рассматривая решение в весовых пространствах с весовой функцией, равной некоторой степени расстояния $|x-y_0|$. Чтобы применить этот метод, данные Дирихле следует регуляризировать в точке y_0 нахождением распределения на ∂D , совпадающего с u_0 вне y_0 . Регуляризация состоит в вычитании конечного числа членов разложения Тейлора функции P(x,y) в точке $y=y_0$. Тогда коядро этой задачи порождается гармонической функцией в области D, которая равна нулю на $\partial D \setminus \{y_0\}$.

Целью этой статьи является получение канонического представления для гармонических функций в D, равных нулю на $\partial D \setminus \{y_0\}$. Оно может служить аналогом разложения Лорана для гармонических функций. Для того чтобы получить это разложение в явном виде, мы рассмотрим полупространство в \mathbb{R}^n . Случай шара рассмотрен в [2].

1. Ряд Лорана в полупространстве

Обозначим \mathbb{R}^{n+1}_+ верхнее полупространство. Оно состоит из точек (x,t) таких, что $x \in \mathbb{R}^n$, t > 0. Его границей является пространство \mathbb{R}^n . Введем ядро Пуассона для полупространства

$$P(x,t,y) = c_n \frac{t}{(|x-y|^2 + t^2)^{\frac{n+1}{2}}}, \qquad c_n = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}},$$

где $x, y \in \mathbb{R}^n$, t > 0.

^{*}prenov@doda.uz

[©] Siberian Federal University. All rights reserved

Обозначим оператор Лапласа в \mathbb{R}^{n+1} через $\Delta = \Delta_{x,t} = \sum_{k=1}^{n} \frac{\partial^2}{\partial x_k^2} + \frac{\partial^2}{\partial t^2}$, а оператор Лапласа

в
$$\mathbb{R}^n$$
 через $\Delta_x = \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2}$.

Следующие три леммы взяты из [2]. Они не зависят от вида ядра Пуассона и вида области, поэтому они верны для верхнего полупространства.

Для любого $\beta \in \mathbb{Z}_+^{n-1}$ потенциалы $(-\partial_{y'})^\beta P(x,t,y_0)$ есть гармонические функции в \mathbb{R}_+^{n+1} , равные нулю на $\mathbb{R}^n \setminus \{y_0\}$. Использование гиперфункций позволяет отказаться от жестких условий конечности порядка роста вблизи \mathbb{R}^n . Напомним, что любая гармоническая функция u в \mathbb{R}_+^{n+1} имеет граничное значение u_0 на \mathbb{R}^n , которое является гиперфункцией (аналитическим функционалом в случае компактного носителя). Более того, продолжение u в \mathbb{R}_+^{n+1} может быть дано по аналитическому функционалу u_0 формулой Пуассона $u(x) = \langle u_0, P(x, \cdot) \rangle$ для всех $x \in B$. Обратно, для данного аналитического функционала u_0 на \mathbb{R}^n функция $u(x) = \langle u_0, P(x, \cdot) \rangle$ является гармонической в \mathbb{R}_+^{n+1} , и ее предельные значения на \mathbb{R}^n совпадают с u_0 [3].

Лемма 1. Пусть u_0 есть аналитический функционал на $\mathbb{R}^n \setminus \{y_0\}$ и $u_{0,R}$ — любое продолжение u_0 до аналитического функционала на всем \mathbb{R}^n . Тогда любая гармоническая функция $u \in \mathbb{R}^{n+1}_+$, равная u_0 на $\mathbb{R}^n \setminus \{y_0\}$, имеет вид

$$u(x,t) = \langle u_{0,R}, P(x,t,\cdot) \rangle + \sum_{\beta \in \mathbb{Z}_{+}^{n-1}} c_{\beta} (-\partial_{y'})^{\beta} P(x,t,y_{0}), \qquad (x,t) \in \mathbb{R}_{+}^{n+1}, \tag{1}$$

где $(c_{eta})_{eta \in \mathbb{Z}^{n-1}_+}$ — последовательность комплексных чисел таких, что

$$\lim_{|\beta| \to \infty} \sqrt{|\beta| |c_{\beta}|} = 0. \tag{2}$$

Мы напомним, что любая гиперфункция u_0 на $\mathbb{R}^n \setminus \{y_0\}$ может быть продолжена до гиперфункции на S, поскольку пучок гиперфункций вялый (см., например, [3]).

Заметим, что условие (2) на коэффициенты гарантирует, что ряд в правой части (1) сходится равномерно по (x,t) на компактных подмножествах U в \mathbb{R}^{n+1}_+ . Это следует из действительной аналитичности ядра Пуассона P(x,t,y) по $(x,t,y) \in \mathbb{R}^{n+1}_+ \times U$.

Лемма 2. Для каждого $\beta \in \mathbb{Z}_{+}^{n-1}$ функция $(-\partial_{y'})^{\beta}P(x,t,y_0)$ гармонична по $x \in \mathbb{R}_{+}^{n+1}$ и равна нулю на $\mathbb{R}^n \setminus \{y_0\}$.

Хорошо известно следующее утверждение.

Лемма 3. Любая функция u, гармоническая в \mathbb{R}^{n+1}_+ u равная нулю на непустом открытом подмножестве V на \mathbb{R}^n , продолжается гармонически через V в $\mathbb{R}^{n+1} \setminus \overline{\mathbb{R}}^{n+1}_+$.

Отметим только, что гармоническое продолжение функции из верхнего полупространства в нижнее дается формулой

$$U(x,t) = \begin{cases} u(x,t), & (x,t) \in \mathbb{R}_+^{n=1}, \\ -u(x,-t), & (x,t) \in \mathbb{R}^{n+1} \setminus \overline{\mathbb{R}}_+^{n+1}. \end{cases}$$
(3)

Прямым подсчетом нетрудно показать, что

$$\partial_y^{\beta} P(x, t, y_0) = \frac{h_k(x - y_0)}{(|x - y_0|^2 + t^2)^k} \cdot P(x, t, y_0),$$

где $h_k(x-y_0)$ — однородные полиномы степени $k=|\beta|$. Подставляя это равенство в формулу (1), получим

$$u(x,t) = \langle u_{0,R}, P(x,t,\cdot) \rangle + \left(\sum_{k=0}^{\infty} \frac{h_k(x-y_0)}{(|x-y_0|^2 + t^2)^k} \right) P(x,t,y_0), \tag{4}$$

где $(x,t) \in \mathbb{R}^{n+1}_+$ и коэффициенты полиномов $h_k(x-y_0)$ удовлетворяют оценкам на рост

$$\lim_{k \to \infty} \sqrt[2k]{\frac{1}{k!} |h_k(D)^* h_k(z)|} = 0, \tag{5}$$

где $D = \left(\frac{\partial}{\partial z_*}, \dots, \frac{\partial}{\partial z_-}\right)$, а "*" означает знак сопряженного оператора.

Лемма 4. Пусть $h_k(z) - oднородный полином степени <math>k \in \mathbb{R}^n$. Для того чтобы функция

$$\frac{h_k(x-y_0)}{(|x-y_0|^2+t^2)^k} \cdot P(x,t,y_0)$$

была гармонической в \mathbb{R}^{n+1} , необходимо и достаточно, чтобы $\Delta_x h_k(x-y_0)=0$.

Доказательство. Поскольку

$$\frac{h_k(x-y_0)}{(|x-y_0|^2+t^2)^k} \cdot P(x,t,y_0) = \frac{1}{\sigma_n} \cdot \frac{h_k(x-y_0)t}{(|x-y_0|^2+t^2)^{k+\frac{n+1}{2}}},$$

то, применяя оператор Лапласа, получим

$$\Delta \frac{h_k(x - y_0)t}{(|x - y_0|^2 + t^2)^{k + \frac{n+1}{2}}} = 0$$

в том и только в том случае, если $\Delta h_k(x-y_0)t=t\Delta_x h_k(x-y_0)=0$. Отсюда следует утверждение леммы.

Пусть $\{Y_{k,l}(z)\}$ есть множество однородных гармонических полиномов в \mathbb{R}^n , сужения которых на единичную сферу S образуют ортонормальный базис в $\mathcal{L}^2(S)$ (см., например,

Для k=0 существует только один однородный гармонический полином степени k вида: $h_0(z)=Y_{0,1}=\frac{1}{\sqrt{\sigma_n}}.$ Для любого $k\geqslant 1$ положим

$$h_k(z) = \sum_{l=1}^{\sigma(n,k)} c_{k,l} Y_{k,l}(z).$$
 (6)

Тогда

$$U(x,t) = \sum_{k=0}^{\infty} \left(\sum_{l=1}^{\sigma(n,k)} c_n \frac{c_{k,l} Y_{k,l}(z) t}{(|x|^2 + t^2)^{k + \frac{n+1}{2}}} \right).$$

Этот ряд сходится равномерно на компактных подмножествах из \mathbb{R}^n (при фиксированном t>0). Умножая данный ряд почленно на $\overline{Y}_{\mu,\nu}(x)$ и интегрируя по сфере S, получим

$$\int_{S} U(x,t)\overline{Y}_{\mu,\nu}(x) d\sigma = c_{\mu,\nu} \frac{t}{(1+t^2)^{k+\frac{n+1}{2}}}.$$

Полагая t=1, имеем

$$\int_{S} U(x,t)\overline{Y}_{\mu,\nu}(x) d\sigma = c_{\mu,\nu} \left(\frac{1}{2}\right)^{\frac{n+2k+1}{2}},$$

т.е.

$$c_{\mu,\nu} = 2^{\frac{n+2k+1}{2}} \int_{S} U(x,t)\overline{Y}_{\mu,\nu}(x) d\sigma, \qquad (7)$$

где $\nu=1,\ldots,\sigma(n,k),\ \mu=1,\ldots$ Данные формулы однозначно определяют коэффициенты $c_{\mu,\nu}.$

Теорема 1. Пусть u_0 есть аналитический функционал на $\mathbb{R}^n \setminus \{y_0\}$ и $u_{0,R}$ — любое продолжение u_0 как аналитического функционала на все \mathbb{R}^n . Тогда каждая гармоническая функция U на \mathbb{R}^{n+1}_+ , равная u_0 на $\mathbb{R}^n \setminus \{y_0\}$, имеет вид

$$u(x,t) = \langle u_{0,R}, P(x,t,\cdot) \rangle + \sum_{i=0}^{\infty} \frac{h_j(x-y_0)}{(|x-y_0|^2 + t^2)^j} P(x,t,y_0),$$

где $\{h_j(z)\}_{j=0,1,...}$ — последовательность однородных гармонических полиномов степени j в \mathbb{R}^n , которая однозначно определяется формулами (6), (7) с $u-\langle u_{0,R}, P(x,t,\cdot)\rangle$ вместо u.

Доказательство. Теорема следует из леммы 1, завершаемая соотношениями (7). Однозначность разложения доказывается, как в теореме 1 из [2].

Список литературы

- [1] В.А. Кондратьев, Граничные задачи для эллиптических уравнений в областях с коническими точками, Труды Моск. мат. общест., 16(1967), 209–292.
- [2] B. Prenov, N. Tarkhanov, Kernel-Spikes of Singular Problems, Comm. Partial Diff. Eq., 28(2003), №3,4, 505–516.
- [3] M. Sato, T. Kawai, M. Kashiwara, Hyperfunctions and pseudodifferential equations, *Springer Lecture Notes in Math.*, **287**(1973), 265–529.
- [4] С.Л. Соболев, Введение в теорию кубатурных формул, М., Наука, 1974.
- [5] E.M. Stein, G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.

On Analogues of Laurent Series for Harmonic Functions

Barlikbay B. Prenov

The purpose of our paper is to obtain a canonical representation for harmonic functions defined in a half-space and vanishing everywhere on the boundary of the domains except at a fixed singular point.

Keywords: harmonic functions, half-space, singular points.