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A new approach to determination of the equilibrium magnetization in discrete model of a ferromagnetic is

presented. Solving this problem is reduced to a system of linear inhomogeneous equations with Lagrange

multipliers. The possibility of finding the numerical solutions of such systems is shown by applying of

a modified power method. The efficiency of this approach is proved by examples of modelling magnetic

microstructure and magnetization reversal process in a nanostructured thin magnetic film.
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Introduction

Determination of the equilibrium configuration of magnetic moments is the base of micro-

magnetic modeling, and plays a key role in studying magnetic microstructures [1, 2], processes of

magnetization reversal [3, 4], in calculation of magnetic normal modes [5] and absorption spectra

[6] in nanostructures. There exist different methods to find the equilibrium configuration [7].

The commonly used approach based on performing a Runge-Kutta integration of the Landau-

Lifshitz equation with a damping term is very popular due to its physical transparency, guaran-

teed convergence and large experience accumulated in numerical analysis for solving systems of

ordinary differential equations. But this method has numerous disadvantages. The major ones

are interrelated problems — the magnetization length preserving and the long calculation time

[8].

The Monte-Carlo approach is the most efficient method for the global energy minimization.

However this approach becomes very slow for more than a few dipoles.

The third approach is the total-energy minimization method. Its algorithm is based on some

standard numerical methods for the minimization of multivariable functions. The constraint of

the dipole’s length makes this problem nonlinear and very difficult for estimating convergence.
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The most successful method involves organization of an iteration procedure based on the fact

that in the equilibrium state the magnetization should be aligned parallel to the corresponding

effective field. In this method one can occasionally get trapped by repetitively jumping between

two unstable configurations [9]. But for most situations it proved to be the fastest and the most

reliable method.

Here we present a new efficient approach to find the equilibrium configuration which is,

inherently, a development of ideas of the last one.

1. Discrete Dipole Approximation Model

Our approach is based on the model involving N discrete dipoles ~µi (i=1,2,. . . ,N), often

called the discrete dipole approximation. In this model a sample is divided into equal cells,

the magnetization is assumed to be uniform in each cell, and that each dipole precesses about

its equilibrium direction under the influence of the external and magnetic anisotropy fields, the

dipolar and exchange forces. Taking into account the following notations: cell’s volume V , the

saturation magnetization Ms and dipole’s direction mi (i.e., ~µi = MsV mi), the free energy

density can be written as a sum of Zeeman, exchange, magnetic anisotropy and dipolar energies

E(m1,m2, . . . ,mN ) = −MsH
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where H is external field, J is the exchange constant, and the second sum extends over the

nearest neighbors Ni of cell i, rij is the radius-vector between the ith and the jth cells, Ki is

the anisotropy constant, and ni is the unit vector of the easy magnetic axes direction of the

cell i. The inclusion of other energy terms (like surface anisotropy or magnetoelastic energy) is

possible, but we are not going to consider them here.

The equilibrium condition for this system is a stationarity of the energy E, i.e.,

δE(m1,m2, . . . ,mN ) = 0 under the constraint of the dipole magnitude (m2
ix + m2

iy + m2
iz = 1,

i = 1, . . . , N). The solution of this variational problem by Lagrange multiplier method is reduced

to the system

H
eff
k (m1,m2, . . . ,mN ) − νkmk = 0, (2)

where H
eff
k = −

1

Ms

δE

δmk

is an effective local magnetic field, νi are the Lagrange multipliers.

From the physical point of view, these equations show that in the ground state each dipole is

parallel to the corresponding effective field. And Lagrange multipliers ensure the dipole length

constant.

The influenced on dipole k effective local magnetic field H
eff
k is a linear function all magnetic

dipoles mi (i = 1, 2, . . . , N):

H
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Therefore the system (2) can be rewritten in the matrix form:

Ax − Dx = b, (4)

where x = (m1x,m1y,m1z,m2x,m2y, . . . ,mNz)
T
, T denotes transposition,

D = diag(ν1, ν1, ν1, ν2, ν2, ν2, ν3, . . . , νN )

is the diagonal matrix, the column vector b and symmetrical matrix A are characterized by

system properties (3).

Solving the equilibrium configuration problem in the form (4) has a number of advantages.

It enables one to use comprehensive facilities of numerical algorithms of the linear algebra, to

take advantages of sparse matrices and parallel computing.

In this work we used the simplest power-like iterative scheme

yi+1 = Axi − b, (5)

xi+1 = D−1

i+1
yi+1 . (6)

At the first step we find effective local magnetic fields, and at the second we normalize the vector

x in the special form: |mi| =1, i = 1, 2, . . . , N .

It was significant to note that the convergence condition of the process is the positive defi-

niteness of matrix A. This can always be done by solving the equivalent problem A′x−D′x = b,

where the positive-definite matrix A′ = A + ξE, D′ = D + ξE, E is unity matrix, and ξ > 0.

2. Numerical Simulation

For demonstration of an efficiency of this approach we have modeled magnetic microstructures

and magnetization reversal on the model of thin magnetic film considered in [2]. According to

this paper, the film is a system of closely packed 2.5 nm ferromagnetic grains with a random

distribution of uniaxial anisotropy axes. Exchange interaction between grains is described by an

effective exchange constant Jeff . The behavior of the system is governed by the single parameter

γ = Jeff/K (where K is magnetic anisotropy constant) i.e., the ratio between the exchange and

anisotropy energies.

The simulation based on eq.(4) was performed on a desktop PC for one layer of 50×50

nanoparticles in size in the absence of the external magnetic field. In order to exclude the influence

of the boundary conditions, the presented patterns (Fig.1) correspond to the configurations of

the internal region 20×20 in size. We used the following parameters of the model: a random

distribution of uniaxial anisotropy axes in the plane film, the magnetic anisotropy constant

K = 8 · 105erg/cm3 and the saturation magnetization Ms = 495G. Fig. 1a,b,c were obtained

without dipole-dipole interaction for γ=0,1,2 respectively (CPU time ∼ 2 sec) and figure 1d —

with dipole-dipole interaction for γ=1.25 (CPU time ∼ 1.5 min). Comparing the results on Fig. 1

with the similar ones from [2], it can be seen a good agreement.

Fig. 2 presents the results of the analogous calculation for equilibrium configurations of

magnetic dipoles in the film with a space random distribution of uniaxial anisotropy. It should

be taken into account that the dipole-dipole interaction leads to the preferred orientation of

magnetic dipoles in the film plane. Also, we perform the calculation of magnetic-hysteresis loops

for the thin films with previous model parameters and γ=0.75, 1.25. The results are shown on

Fig. 3.
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(a) (b)

(c) (d)

Fig.1. The equilibrium configuration of magnetic dipoles in the film with a plane random distri-

bution of uniaxial anisotropy. a,b,c — without dipole-dipole interaction for γ=0,1,2 respectively,

d — with dipole-dipole interaction for γ=1.25

(a) (b)

(c) (d)

Fig.2. The equilibrium configuration of magnetic dipoles in the film with a space random distri-

bution of uniaxial anisotropy. a,b,c — without dipole-dipole interaction for γ=0,1,2 respectively,

d — with dipole-dipole interaction for γ=1

3. Conclusion

We have offered a new approach for determination of the equilibrium magnetization in discrete

model of a ferromagnetic. The problem definition in the matrix form (4) gives us new opportu-

nities. In particular, it enables us to use the comprehensive facilities of numerical algorithms of

the linear algebra.

We have demonstrated the efficiency of this approach on a model of nanostructured thin

magnetic film with a random distribution of uniaxial magnetic anisotropy axes by calculating

magnetic microstructures and magnetization reversal of the film. The calculation results are in

good agreement with the results obtained by other authors.
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Fig.3. Calculated magnetic-hysteresis loops for the thin films with γ=0.75, 1.25 and magnetic

microstructures for two different points of the loop
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Новый подход к определению равновесного состояния
намагниченности в магнитных наноструктурах

Андрей В. Изотов

Борис А. Беляев

Андрей А. Лексиков

Представлен новый подход к определению равновесного состояния намагниченности в дискретной

модели ферромагнетика. Для решения этой проблемы мы сводим ее к системе линейных неод-

нородных уравнений с множителями Лагранжа. Возможность нахождения численных решений

таких систем показана применением модифицированного степенного метода. Эффективность

данного подхода подтверждается примерами моделирования магнитной микроструктуры и про-

цессов перемагничивания в наноструктурированной тонкой магнитной пленке.

Ключевые слова: микромагнетизм, численный анализ, магнитный гистерезис, магнитные доме-

ны, наноструктуры.
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