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A new approach to determination of the equilibrium magnetization in discrete model of a ferromagnetic is
presented. Solving this problem is reduced to a system of linear inhomogeneous equations with Lagrange
multipliers. The possibility of finding the numerical solutions of such systems is shown by applying of
a modified power method. The efficiency of this approach is proved by examples of modelling magnetic

microstructure and magnetization reversal process in a nanostructured thin magnetic film.
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Introduction

Determination of the equilibrium configuration of magnetic moments is the base of micro-
magnetic modeling, and plays a key role in studying magnetic microstructures [1, 2], processes of
magnetization reversal [3, 4], in calculation of magnetic normal modes [5] and absorption spectra
[6] in nanostructures. There exist different methods to find the equilibrium configuration [7].

The commonly used approach based on performing a Runge-Kutta integration of the Landau-
Lifshitz equation with a damping term is very popular due to its physical transparency, guaran-
teed convergence and large experience accumulated in numerical analysis for solving systems of
ordinary differential equations. But this method has numerous disadvantages. The major ones
are interrelated problems — the magnetization length preserving and the long calculation time
8]

The Monte-Carlo approach is the most efficient method for the global energy minimization.
However this approach becomes very slow for more than a few dipoles.

The third approach is the total-energy minimization method. Its algorithm is based on some
standard numerical methods for the minimization of multivariable functions. The constraint of
the dipole’s length makes this problem nonlinear and very difficult for estimating convergence.
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The most successful method involves organization of an iteration procedure based on the fact
that in the equilibrium state the magnetization should be aligned parallel to the corresponding
effective field. In this method one can occasionally get trapped by repetitively jumping between
two unstable configurations [9]. But for most situations it proved to be the fastest and the most
reliable method.

Here we present a new efficient approach to find the equilibrium configuration which is,
inherently, a development of ideas of the last one.

1. Discrete Dipole Approximation Model

Our approach is based on the model involving N discrete dipoles f; (i=1,2,...,N), often
called the discrete dipole approximation. In this model a sample is divided into equal cells,
the magnetization is assumed to be uniform in each cell, and that each dipole precesses about
its equilibrium direction under the influence of the external and magnetic anisotropy fields, the
dipolar and exchange forces. Taking into account the following notations: cell’s volume V, the
saturation magnetization M, and dipole’s direction m; (i.e., ji; = M,Vm;), the free energy
density can be written as a sum of Zeeman, exchange, magnetic anisotropy and dipolar energies

N Ni
E(m;,mo,... =-M HZmZJrJZZ —m;m;) +
=1 j=1
N N
M2V m;m; 3(m,r;;)(m;r;;)
D DED DI et 5 ZKmnl, (1)
i=1j=1,j%#i ) ij

where H is external field, J is the exchange constant, and the second sum extends over the
nearest neighbors Ni of cell 4, r;; is the radius-vector between the ith and the jth cells, K; is
the anisotropy constant, and n; is the unit vector of the easy magnetic axes direction of the
cell 7. The inclusion of other energy terms (like surface anisotropy or magnetoelastic energy) is
possible, but we are not going to consider them here.

The equilibrium condition for this system is a stationarity of the energy E, i.e.,

SE(mj,mgy,...,my) = 0 under the constraint of the dipole magnitude (m?, + mw +m?2, =1,
it =1,...,N). The solution of this variational problem by Lagrange multiplier method is reduced
to the system
Hsz(mhmg,...,mN)—z/kmk:0, (2)
eff 1 0F . . T
where H ~ 3 om, is an effective local magnetic field, v; are the Lagrange multipliers.

From the physical point of view, these equations show that in the ground state each dipole is
parallel to the corresponding effective field. And Lagrange multipliers ensure the dipole length
constant.

The influenced on dipole k effective local magnetic field Hzf 7 is a linear function all magnetic
dipoles m; (i =1,2,...,N):

Hsz(mhmg,... m

)

3ri;(m,rg;) m;
+ M,V Z [JH_SJ
j=1,j#k

Tk?j Tk:j
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Therefore the system (2) can be rewritten in the matrix form:

Ax — Dx = b, (4)
T ..
where x = (Miy, M1y, M1z, Mag, Moy, ..., Mn;) , T denotes transposition,
D = diag(yla vy, V1,V2,V2,V2,V3,... 7VN)

is the diagonal matrix, the column vector b and symmetrical matrix A are characterized by
system properties (3).

Solving the equilibrium configuration problem in the form (4) has a number of advantages.
It enables one to use comprehensive facilities of numerical algorithms of the linear algebra, to
take advantages of sparse matrices and parallel computing.

In this work we used the simplest power-like iterative scheme

Viq1 = Ax; — b, (5)
Xiy1 = Dyt (6)

At the first step we find effective local magnetic fields, and at the second we normalize the vector
x in the special form: |m;| =1,¢=1,2,..., N.

It was significant to note that the convergence condition of the process is the positive defi-
niteness of matrix A. This can always be done by solving the equivalent problem A’x — D'x = b,
where the positive-definite matrix A’ = A+ &F, D' = D + £F, E is unity matrix, and £ > 0.

2. Numerical Simulation

For demonstration of an efficiency of this approach we have modeled magnetic microstructures
and magnetization reversal on the model of thin magnetic film considered in [2]. According to
this paper, the film is a system of closely packed 2.5 nm ferromagnetic grains with a random
distribution of uniaxial anisotropy axes. Exchange interaction between grains is described by an
effective exchange constant J.ys. The behavior of the system is governed by the single parameter
v = Jeps/K (where K is magnetic anisotropy constant) i.e., the ratio between the exchange and
anisotropy energies.

The simulation based on eq.(4) was performed on a desktop PC for one layer of 50x50
nanoparticles in size in the absence of the external magnetic field. In order to exclude the influence
of the boundary conditions, the presented patterns (Fig.1) correspond to the configurations of
the internal region 20x20 in size. We used the following parameters of the model: a random
distribution of uniaxial anisotropy axes in the plane film, the magnetic anisotropy constant
K = 8-10%rg/cm?® and the saturation magnetization M, = 495G. Fig. 1la,b,c were obtained
without dipole-dipole interaction for v=0,1,2 respectively (CPU time ~ 2 sec) and figure 1d —
with dipole-dipole interaction for y=1.25 (CPU time ~ 1.5 min). Comparing the results on Fig. 1
with the similar ones from [2], it can be seen a good agreement.

Fig. 2 presents the results of the analogous calculation for equilibrium configurations of
magnetic dipoles in the film with a space random distribution of uniaxial anisotropy. It should
be taken into account that the dipole-dipole interaction leads to the preferred orientation of
magnetic dipoles in the film plane. Also, we perform the calculation of magnetic-hysteresis loops
for the thin films with previous model parameters and v=0.75, 1.25. The results are shown on
Fig. 3.
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Fig.1. The equilibrium configuration of magnetic dipoles in the film with a plane random distri-
bution of uniaxial anisotropy. a,b,c — without dipole-dipole interaction for v=0,1,2 respectively,
d — with dipole-dipole interaction for v=1.25
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Fig.2. The equilibrium configuration of magnetic dipoles in the film with a space random distri-
bution of uniaxial anisotropy. a,b,c — without dipole-dipole interaction for y=0,1,2 respectively,
d — with dipole-dipole interaction for y=1

3. Conclusion

We have offered a new approach for determination of the equilibrium magnetization in discrete
model of a ferromagnetic. The problem definition in the matrix form (4) gives us new opportu-
nities. In particular, it enables us to use the comprehensive facilities of numerical algorithms of
the linear algebra.

We have demonstrated the efficiency of this approach on a model of nanostructured thin
magnetic film with a random distribution of uniaxial magnetic anisotropy axes by calculating
magnetic microstructures and magnetization reversal of the film. The calculation results are in
good agreement with the results obtained by other authors.

This work has been supported by Russian Federal Program "Scientific and pedagogical cadres
of innovative Russia for 2009-2013", by the grant 3818.2008.3 from the President of RF, by
the integration project Ne5 SB RAS, by the project Ne27.1 of presidium RAS, by the government
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— 67 —



Andrey V.Izotov, Boris A. Belyaev, Andrey A.Leksikov A New Approach to Determination of Equilibrium...

¥=0.75

AN

‘—2000 -1000 0 1000 H, Oe b

Fig.3. Calculated magnetic-hysteresis loops for the thin films with v=0.75, 1.25 and magnetic
microstructures for two different points of the loop

References

[1] M. Kisielewski, A.Maziewski, V.Zablotskii, W.Stefanowicz, Micromagnetic simulations
and analytical description of magnetic configurations in nanosized magnets, Physica B,
372(2006), 316.

[2] D.S.II’'yushchenkov, V.I. Kozub, I.N. Yassievich, Domain formation in films of magnetic
nanoparticles with a random distribution of anisotropy axes, Physics of the Solid State,
49(2007), no. 10, 1944.

[3] K.M. Lebecki, O. Kazakova, M.W. Gutowski, Micromagnetic simulations of hysteresis in an
array of cobalt nanotubes, Physica B, 403(2008), 360.

[4] W.Scholz, D. Suess, T. Schrefl, J. Fidler, Micromagnetic simulation of magnetization rever-
sal in small particles with surface anisotropy, J.Appl. Phys, 95(2004), no. 11, 6807.

[5] M. Grimsditch, L.Giovannini, F. Monotcello, F. Nizzoli, G.K.Leaf, H.G. Kaper, Magnetic
normal modes in ferromagnetic nanoparticles: A dynamical matrix approach, Phys. Rev. B,
70(2004), 054409.

[6] K.Rivkin, J.B. Ketterson, Micromagnetic simulations of absoption spectra, J. Magn. Magn.
Mater., 306(2006), 204.

[7] D.V.Berkov, N.L. Gorn, Numerical Simulationof Quasistatic and Dynamic Remagnetization
Processes with Special Applications to Thin Films and Nanoparticles, Handbook of Advanced
Magnetic Materials, Springer, 2(2006), 421.

[8] I. Cimrak, A survey on the numerics and computations for the Landau-Lifshitz equation of
micromagunetism, Arch. Comput. Methods Eng., 15(2008), 277.

[9] K.Rivkin, A.Heifetz, P.R. Sievert, J.B. Ketterson, Resonant modes of dipole-coupled lat-
tices, Phys. Rev. B, 70(2004), 184410.

— 68 —



Andrey V.Izotov, Boris A. Belyaev, Andrey A.Leksikov A New Approach to Determination of Equilibrium...

Hosplit moaxoa K onpeejieHnI0 PaBHOBECHOTO COCTOSHUS
HaMarHu4YeHHOCTU B MAarHUTHBIX HAHOCTPYKTYypax

Anppeii B. IzoToB
Bopuc A. BensieB
Anppeii A. JlekcukoB

IIpedcmasaen 106wl NOOT00 K ONPEIEAEHUIO PABHOBECHO20 COCTNOAHUA HAMAZHUYEHHOCTIU 8 QUCKDETHOU
modesu peppomaznemura. as pewernus amot npobaemvl Movi C800UM €€ K CUCTEME AUHETHBIT Heoo-
HOPOOHBIT YPABHEHUT ¢ MHOHCUMeramy Jlaepanotca. Boazmootcnocms HATOHCOEHUA YUCAEHHDIT PEWEHUT]
MAKUT CUCTEM NOKA3AHA NPUMEHEHUEM MOOUPUUUPOBAHH020 cmenennozo memoda. Dfdexmusrocmov
darH020 N00T0da NOIMEEPHCIAEMCA NPUMEPAMU MOOEAUPOSAHUA MAZHUMHOT MUKPOCTPYKIMYPDL U NPO-

Ueccos NepemazHuMuUSaHUA 8 HAHOCMPYKMYPUPOSAHHOT, MOHKOT, MALHUMHOT NAEHKE.

Kmouesvie crosa: MUKPOMASHEMU3M, YUCAEHHBLTL anaau3, Ma2HUMHBL 2UCMEPE3UC, MASHUIMHDBLE dome-

HDL, HAHOCTPYKMYPD.
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