EDN: NEZVFN

УДК 536.63

Heat Capacity and Thermodynamic Properties of LiInGeO₄ Germanate

Georgiy V. Vasil'ev^a, Lyubov T. Denisova^{*a}, Natalia V. Belousova^a, Valeriy V. Ryabov^b and Victor M. Denisov^a ^aSiberian Federal University Krasnoyarsk, Russian Federation ^bInstitute of Metallurgy, Ural Division of the Russian Academy of Sciences Yekaterinburg, Russian Federation

Received 09.04.2024, received in revised form 14.02.2025, accepted 25.02.2025

Abstract. The temperature dependence (320–1050 K) of the heat capacity of indium – lithium germanate LiInGeO₄ has been determined by differential scanning calorimetry. The experimental Cp = f(T) data have been used to evaluate the thermodynamic functions (changes of enthalpy, entropy and Gibbs energy).

Keywords: oxide compounds, indium-lithium germanate, high-temperature heat capacity, thermodynamic properties.

Citation: Vasil'ev G. V., Denisova L. T., Belousova N. V., Ryabov V. V., Denisov V. M. Heat Capacity and Thermodynamic Properties of LiInGeO4 Germanate. J. Sib. Fed. Univ. Chem., 2025, 18(1), 105–111. EDN: NEZVFN

© Siberian Federal University. All rights reserved

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

Corresponding author E-mail address: antluba@mail.ru

Теплоемкость и термодинамические свойства германата LiInGeO₄

Г.В. Васильев^а, Л.Т. Денисова^а, Н.В. Белоусова^а, В.В. Рябов⁶, В.М. Денисов^а ^аСибирский федеральный университет Российская Федерация, Красноярск ⁶Институт металлургии УрО РАН Российская Федерация, Екатеринбург

Аннотация. Методом дифференциальной сканирующей калориметрии исследована температурная зависимость теплоемкости германата индий-лития LiInGeO₄ в области 320–1050 К. По экспериментальным данным Cp = f(T) рассчитаны термодинамические функции (изменения энтальпии, энтропии и энергии Гиббса).

Ключевые слова: оксидные соединения, германат индий-лития, высокотемпературная теплоемкость, термодинамические свойства.

Цитирование: Васильев Г.В., Денисова Л.Т., Белоусова Н.В., Рябов В.В., Денисов В.М.. Теплоемкость и термодинамические свойства германата LiInGeO₄. Журн. Сиб. федер. ун-та. Химия, 2025, 18(1). С. 105–111. EDN: NEZVFN

Введение

В последнее время наблюдается устойчивый интерес к германатам LiMGeO₄ (M = Al, Ga, In, Y, Sc) со структурой типа оливина [1–10]. Связано это с возможностями их практического применения в качестве материалов для лазеров, люминофоров и диэлектрической керамики. Поэтому исследования свойств этих соединений связаны в основном с изучением их кристаллической структуры и оптических характеристик. Несмотря на такое внимание к подобным германатам, их теплофизические свойства к настоящему времени не изучены. В то же время теплоемкость является важной величиной для нахождения температурных зависимостей термодинамических функций твердых тел [11]. Такие сведения для германатов LiMGeO₄ в литературе отсутствуют. К подобным соединениям относится и LiInGeO₄. Учитывая это, представлялось необходимым провести экспериментальное измерение высокотемпературной теплоемкости LiInGeO₄ и по этим данным рассчитать его термодинамические свойства (изменения энтальпии, энтропии и энергии Гиббса).

Экспериментальная часть

Предварительно прокаленные исходные компоненты Li_2CO_3 (х.ч.), In_2O_3 и GeO₂ (ос.ч.) при 773 К гомогенизировали в агатовой ступке. Полученную смесь помещали в полиэтиленовые контейнеры, которые вакуумировали и запаивали. Затем заготовку прессовали на изостатическом прессе YLJ-CIP-20B (P = 200 МПа, $\tau = 5$ мин). Полученный образец обжигали на воздухе при температуре 1373 К в течение 20 ч.

Порошковые дифрактограммы сняты при комнатной температуре на дифрактометре Bruker D 8 с линейным детектором VANTEC – 1 на CuK_α-излучении. Все рефлексы на рентгенограмме проиндицированы орторомбической ячейкой *Pbnm* с параметрами, схожими с LiInSiO₄ [12]. Поэтому эта структура была взята в качестве исходной модели для уточнения методом Ритвельда в программе TOPAS 3. Были учтены эффекты преимущественной ориентации, шероховатости поверхности образца, асимметрии пиков. Полученные результаты показаны на рис. 1.

Рис. 1. Разностная рентгенограмма уточнения Ритвельда LiInGeO₄: экспериментальный (*1*), расчетный (*2*) и разностный (*3*) профили рентгенограмм; штрихи указывают расчетные положения рефлексов

Fig. 1. Difference Rietveld plot of LiInGeO₄: experimental, (2) calculated, and (3) difference profiles, marks show the calculated reflection positions

Теплоемкость LiInGeO4 измеряли на приборе STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов аналогична описанной ранее [13]. Полученные данные обрабатывали с помощью пакета NETZSCH Proteus Thermal Analysis. Ошибка определения теплоемкости не превышала 2 %.

Результаты и обсуждение

Полученные нами параметры элементарной ячейки LiInGeO₄ в сравнении с данными других авторов приведены в табл. 1. Из нее следует, что имеется удовлетворительное согласие их между собой.

Координаты атомов и тепловые параметры полученного германата приведены в табл. 2, а основные длины связей и углов – в табл. 3.

Зависимость молярной теплоемкости LiInGeO₄ от температуры показана на рис. 2. Из него видно, что в области температур 320–1050 К значения C_p закономерно увеличиваются, а на графике зависимости $C_p = f(T)$ нет различного рода экстремумов. Последнее позволяет считать, что у LiInGeO₄ в этом интервале температур нет полиморфных превращений. Это согласуется с дифференциально-термическим анализом [10, 16].

Таблица	1. Параметры	элементарной	ячейки LiInGeO ₄

Параметр	Настоящая работа	[14]	[15]*
Пр. гр.	Pbnm	Pnma	Pbnm
<i>a</i> , Å	4.99952(5)	6.088(2)	5.065
<i>b</i> . Å	10.73459(10)	10.754(5)	10.897
<i>c</i> , Å	6.07883(6)	5.007(2)	6.188
V, Å ³	326.24(1)	328(1)	340.6

Table 1. Unit-cell parameters of LiInGeO₄

*Примечание. Расчет (теория функционала плотности)

Таблица 2. Координаты атомов и изотропные тепловые параметры структуры LiInGeO4

Table 2. Fraction atomic coordinates and isotropic displacement parameters of LiInGeO4-structure

Атом	x	У	Z	B _{iso}
Li	0	0	0	0.2(5)
In	0.9916(2)	0.27210(9)	0.25	0.42(14)
Ge	0.4410(3)	0.08797(16)	0.25	0.46(14)
O1	0.7847(16)	0.0988(9)	0.25	0.2(3)
O2	0.2936(18)	0.9411(8)	0.25	0.2(3)
O3	0.2789(11)	0.1669(7)	0.0292(12)	0.2(3)

Таблица 3. Основные длины связей (Å) и углов (°) в структуре LiInGeO₄

Table 3. Main bond lengths (Å) and angles (°) in LiInGeO₄ structure

Li–O1 ⁱ	2.143(6)	In–O3 ^v	2.267(7)
Li–O2 ⁱⁱ	2.206(7)	In–O3 ^{vi}	2.107(7)
Li–O3	2.278(7)	Ge–O1 ⁱⁱⁱ	1.722(8)
In–O1 ⁱⁱⁱ	2.128(9)	Ge–O2 ^{vii}	1.741(9)
In-O2 ^{iv}	2.108(9)	GeO3 ⁱⁱⁱ	1.783(7)
	Уг	ЛЫ	
O1 ⁱ –Li–O2 ⁱⁱ	89.3(2)	O3v–In–O3ix	72.6(3)
O1 ⁱ -Li-O3 ^{viii}	97.9(3)	O3 ^v –In–O3 ^x	89.9(3)
O2 ⁱⁱ –Li–O3 ^{viii}	103.6(3)	O3 ^{vi} –In–O3 ^x	107.3(3)
O1 ⁱⁱⁱ –In–)3 ^v	82.7(3)	O1 ⁱⁱⁱ –Ge–O2 ^{vii}	118.9(6)
O1 ⁱⁱⁱ –In–O3 ^{vi}	92.0(2)	O1 ⁱⁱⁱ –Ge–O3 ⁱⁱⁱ	114.9(4)
O2 ^{iv} –In–O3 ^v	96.1(3)	O2vii–Ge–O3iii	103.8(4)
O2 ^{iv} –In–O3 ^{vi}	89.4(3)	O3 ⁱⁱⁱ –Ge–O3	98(3)

Примечание. Элементы симметрии: (i) -*x*+1, -*y*, -*z*; (ii) -*x*. -*y*+1, -*z*; (iii) *x*, -*z*+1/2; (iv) -*x*+3/2, *y*-1/2, -*z*+1/2; (v) *x*+1, *y*, -*z*+1/2; (vi) *x*+1/2, -*y*+1/2, -*z*; (vii) *x*, *y*-1, -*z*+1/2; (viii) -*x*, -*y*, -*z*; (ix) *x*+1, *y*, *z*; (x) *x*+1, -*y*+1/2, *z*+1/2; (xi) -*x*+1/2, *y*-1/2, -*z*+1/2

Установлено, что полученные нами экспериментальные данные по теплоемкости хорошо описываются классическим уравнением Майера – Келли

$$C_p = a + bT - cT^{-2}, \tag{1}$$

Рис. 2. Влияние температуры на теплоемкость LiInGeO₄: 1 – эксперимент, 2 – расчет методом HK₂, 3 – расчет методом HK₁

Fig. 2. Effect of temperature on the heat capacity of LiInGeO₄: 1 - experiment, 2 - calculation by the NK₂ method, 3 - calculation by the NK₁ method

которое для LiInGeO₄ имеет следующий вид:

$$C_p = (157.7 \pm 0.5) + (19.98 \pm 0.50) \cdot 10^{-3}T - (29.01 \pm 0.50) \cdot 10^{5}T \cdot 10^{-2}.$$
 (2)

Коэффициент корреляции для уравнения (2) равен 0.9984, а максимальное отклонение экспериментальных точек от сглаживающей кривой – 0.6 %.

Из-за отсутствия других данных по теплоемкости LiInGeO₄ сравнение наших результатов будем проводить с рассчитанными значениями методом Неймана – Коппа [17] по уравнениям:

$$C_p(\text{LiInGeO}_4) = \frac{1}{2}C_p(\text{Li}_2\text{O}) + \frac{1}{2}C_p(\text{In}_2\text{O}_3) + C_p(\text{GeO}_2),$$
(3)

$$C_p(\text{LiInGeO}_4) = \frac{1}{2}C_p(\text{Li}_2\text{O}) + \frac{1}{2}C_p(\text{In}_2\text{Ge}_2\text{O}_7).$$
(4)

Для уравнения (3) значения температурной зависимости теплоемкости исходных оксидов взяты из литературы: Li₂O – [18], In₂O₃ – [19], GeO₂ – [20] (метод HK₁). Для соотношения (4) зависимости $C_p = f(T)$ для Li₂O взяты из [18], а In₂Ge₂O₇ – [21] (метод HK₂). Полученные результаты показаны на рис. 2. Можно видеть, что рассчитанная зависимость $C_p = f(T)$ методом HK₂ дает хорошее согласие с экспериментальными данными, в то время как методом HK₁ при T > 450 K получены завышенные значения теплоемкости. Причем повышение температуры приводит к заметному отставанию величины экспериментальной теплоемкости от расчетных значений, и такие отличия достигают 3–5 % (при 1000 K). Согласно [11, 17], суммирование свойств (теплоемкости) более крупных «псевдокомпонентов» дает лучшее согласие с экспериментом. Это наблюдается и в нашем случае.

С использованием уравнения (2) рассчитаны термодинамические свойства LiInGeO₄. Эти данные приведены в табл. 4. Из нее следует, что экспериментальные значения C_p до 1000 К не превышают классический предел Дюлонга – Пти 3Rs (R – универсальная газовая постоянная, s – число атомов в формульной единице соединения).

ТК	C_p ,	$H^{\circ}(T)-H^{\circ}(320 \text{ K}),$	$S^{\circ}(T) - S^{\circ}(320 \text{ K}),$	$-\Delta G/T^*$,
1, K	Дж/(моль К)	кДж/моль	Дж/(моль К)	Дж/(моль К)
320	135.8	_	_	_
350	141.0	4.16	12.41	0.54
400	147.6	11.38	31.70	3.24
450	152.4	18.88	49.37	7.40
500	156.1	26.60	65.63	12.42
550	159.1	34.49	80.65	17.95
600	161.7	42.51	94.61	23.76
650	163.8	50.65	107.6	29.72
700	165.8	58.89	119.9	35.73
750	167.6	67.22	131.4	41.72
800	169.2	75.64	142.2	47.67
850	170.7	84.14	152.5	53.54
900	172.1	92.71	162.3	59.31
950	173.5	101.3	171.7	64.98
1000	174.8	110.1	180.6	70.54
1050	176.1	118.8	189.2	75.99

Таблица 4. Термодинамические свойства LiInGeO₄

Table 4. Thermodynan	nic properties of LiInG	eO ₄	

Примечание. $-\Delta G/T^* = [H^{\circ}(T) - H^{\circ}(320 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(320 \text{ K})]$

Заключение

По стандартной керамической технологии синтезирован германат LiInGeO₄. Методом дифференциальной сканирующей калориметрии измерена температурная зависимость теплоемкости в области 320–1050 К. Установлено, что экспериментальные результаты хорошо описываются уравнением Майера – Келли. По полученным данным $C_p = f(T)$ рассчитаны основные термодинамические свойства (изменения энтальпии, энтропии и энергии Гиббса).

Список литературы / References

[1] Ou G., Song H., Gong X. et al. Synthesis and photoluminescence properties of a novel greenemitting LiYGeO₄: Tb³⁺ long afterglow phosphor. *Lumin*. 2022. 37. 2018–2027. https://doi.org/10.1002/ bio.4386

[2] Dai T., Ju G., Lv Y. et al. Luminescence properties of novel dual emission (UV/red) long afterglow phosphor LiYGeO₄: Eu³⁺. *J. Lumin.* 2021. 237.118193. https://doi.org/10.1016/j.jlumin.2021.118193

[3] Cheng K., Li C., Xiang H. et al. LiYGeO₄: Novel low-permittivity microwave dielectrics with intrinsic low sintering temperature. *Meter. Lett.* 2018. 228. 96–99. https://doi.org/10.1016/j. materlet.2018.05.124

[4] Xiao R., Li H., Chen L. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. *J. Materiomics*. 2015. 1. 325–332. https://doi.org/10.1016/j.jmat.2015.08.001

[5] Mukai K., Nunotani N. Ctystal structure and Li-ion conductivity $LiGa_{1-x}Al_xGeO_4$ phenacity compounds with $0 \le x \le 1$. J. Electrochem. Soc. 2016. 163. A2371-A2376.

[6] Fleet M. E. Crystal structures of α -LiGaSiO₄, α -LiAlGeO₄ and α -LiGaGeO₄. Z. Kristallogr.-Crystalline Mater. 1987. 180(1–4). 63–76. [7] Harnik A., Misevičius M. Solid-state synthesis and luminescence study of Bi or Eu-doped LiAlGeO₄. *Chemija*. 2022. 34(4). 120–126.

[8] Zhou Z., Xong P., Liu H., Peng M. Ultraviolet-A persistent luminescence of Bi³⁺activated LiScGeO₄ material. *Inorg. Chem.* 2020. 59(7). 12920–12927. https://doi.org/10.1021/acs. inorgchem.0c02007

[9]XiangH., YaoL., ChenJ. etal. Microwave dielectric high-entropy ceramic Li(Gd_{0.2}Ho_{0.2}Er_{0.2}Lu_{0.2}) GeO₄ with stable temperature coefficient for low-temperature cofired ceramic technologies. *J. Mater. Sci. Technol.* 2021. 93. 28–32. https://doi.org/10.1016/j.jmst.2021.03.057

[10] Koseva I., Nikolov V., Petrova N. et al. Thermal behavior of germinates with olivine structure. *Thermochim. Acta.* 2016. 646. 1–7. https://doi.org/1016/j.tca. 2016.11.004

[11] Uspenskaya I.A., Ivanov A.S., Konstantinova N.M., Kutsenok I.B. Ways of estimating the heat capacity of crystalline phases. *Russ. J. Phys. Chem.* A. 2022. 96(9). 1901–1908. https://doi.org/10.1134/s003602442209028x

[12] Redhammer G. J., Roth G. LiInSiO₄: a new monovalent-trivalent olivine. *Acta Cryst.* 2003.
 C 59. i38–40. https://doi.org/10.1107/S 0108270103006346

[13] Denisova L. T., Irtyugo L. A., Kargin Yu.F. et al. High-temperature heat capacity and thermodynamic properties of Tb₂Sn₂O₇. *Inorg. Mater.* 2017. 53(1). 93–95.

[14] Touboul P. M., Toledano P. Structure du germinate d'indium et de lithium. *Acta Cryst.* 1987.43. 2004–2006. https://doi.org/10.1107/S 0108270187089273

[15] Rajkumar T., Nakayama M., Nogami M. *Ab inito* prediction for ionic conduction of lithium in LiInSiO₄ olivine materials. *Solid State Commun.* 2010. 150. 693–696. https://doi.org/10.1016/j. ssc.2010.01.044

[16] Bykov A. B., Petricevic V., Sharonov M. Yu. et al. Flux drowth and optical characterization of Cr-doped LiInGeO₄. J. Cryst. Growth. 2005. 274. 149–155. https://doi.org/10.1016/j.jcrysgro.2004.10.001

[17] Leitner J., Voňka P., Sedmidubský D. et al. Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides. *Thermochim. Acta*. 2010. 497. 7–13. https://doi.org/10.1016/j. tca.2009.08.002

[18] Tanifujl T., Shiozawa K., Nasu S. Heat capacity of lithium oxide from 306 to 1077 K. J. Nucl. Mater. 1978. 78. 422–434.

[19] Tsagareishvili D. Sh., Gvelesiani G.G. Enthalpy and the heat capacity of sesquiquadrate indium oxide at high temperatures. *Thermal Physics of High Temperatures*. 1975. 13(4). 874–875.

[20] Osina E.L. Thermodynamic Functions of Germanium Oxide Molecules in the Gaseous Phase: GeO₂(g), Ge₂O₂(g), and Ge₃O₃(g). *High Temperature*. 2017. 55(2). 216–220. https://doi/org/10.1134/S 0018151X17020122.

[21] Denisova L. T., Kargin Yu.F., Irtyugo L. A. et al. Heat Capacity of In₂Ge₂O₇ and YInGe₂O₇ from 320 to 1000 K. *Inorg. Mater.* 2018. 54(12). 1245–1249. https://doi.org/10.1134/S 0020168518120026