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Abstract. In this paper, a mathematical model of a blocky-layered medium is studied. Deformable
elastic blocks and thin elastic and viscoelastic interlayers are considered. Viscoelasticity is taken into
account to describe wave attenuation. The wave fields in a medium described by the proposed simplified
interlayer model are compared to wave fields which were obtained using the equations of the dynamic
elasticity theory for interlayers. The developed computational technology is verified for compatibility
with the experimental data.
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Introduction

The concept of a blocky structure of rock masses was proposed by M. A. Sadovskii [1, 2].
According to this concept, the geological medium can be represented as a hierarchical structure
consisting of blocks of different scales nested inside each other. The characteristic sizes of blocks
may vary from several meters to tens of kilometers. In a medium where the interlayers are
more compliant than the blocks, pendulum waves can be observed. Pendulum waves in blocky
media is well studied in both theoretical and experimental aspects. When the deformations arise
mainly in the interlayers, due to their high compliance, the blocks can be considered as rigid
bodies. Discrete periodic models with rigid blocks connected to each other by elastic springs
were represented in [3–5]. A similar but more complicated mathematical model that takes into
account the elasticity of blocks was considered in [6]. The equations of this model are written
relative to the central points of the blocks, and the accelerations of these points depend on the
elastic moduli of both the blocks and the interlayers. Wave attenuation in blocky media may
occur due to the viscoelasticity of the interlayer material. The behavior of a discrete-periodic
medium with elastic blocks and viscoelastic interlayers is quite consistent with the experimental
data [6].

A more complicated approach involves dynamic elasticity equations to describe deformations
of blocks. Blocky-layered media with sufficiently large number of blocks can be represented as
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Cosserat continuum. The analysis of wave fields propagating in blocky-layered media and the
Cosserat continuum was carried out in [7, 8].

In this paper, we study two-dimensional blocky-layered media with elastic blocks and thin
elastic and viscoelastic interlayers. A system of ordinary differential equations is used to describe
dynamics of interlayers, while the equations of the dynamic elasticity theory in partial derivatives
are used for blocks. A more consistent approach supposes to apply equations of elasticity theory
for both blocks and interlayers. However, this method computationally seems to be more difficult,
in particular due to different restrictions on the time step in blocks and interlayers. The proposed
simplified model of a blocky-layered medium retains thermodynamical compatibility inherent in
equations of elasticity theory.

We compare the numerical solutions obtained by the interlayer model described by the equa-
tions of elasticity theory and the proposed simplified model. It turns out that in a medium
with interlayers and blocks of the same material, non-physical reflections of waves occur near
the boundaries of the blocks, which indicates defectiveness of the simplified model. The nu-
merical results for a blocky medium with thin viscoelastic interlayers are in agreement with the
experimental data published in the work [6].

1. Mathematical model of a blocky-layered medium

A two-dimensional problem of the dynamics of a blocky-layered medium consisting of rect-
angular blocks is considered. Motion of each block complies with the system of equations of a
homogeneous isotropic elastic medium:
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The equations of longitudinal and transverse motions in the elastic interlayer between adjacent
blocks in the x1 direction are written as follows:
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similarly, along the x2 axis:
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(3)

Here v1, v2 are components of the displacement velocity vector, σ11, σ22, σ12 are components
of the stress tensor, λ = ρ(c2p − 2c2s), µ = ρc2s are Lame parameters, ρ is density, cp, cs are the
velocities of longitudinal and transverse elastic waves, respectively, strokes indicate constants for
interlayers. The interlayer thickness in both directions assumed to be the same δ = δ1 = δ2.
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Signs «+» and «–» are represent the values on the right and left boundaries of the interlayer,
respectively.

The system (1)–(3) is thermodynamically compatible. The law of conservation of energy can
be written down as the sum of the kinetic and potential energies of all blocks and interlayers,
equal to the integral of flux of the Umov–Poynting vector by time and across the boundary of
the block array consisting of n1× n2 blocks [7]:
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Here, v⃗ = (v1, v2) is the velocity vector, p1 = σ11v1+σ12v2, p2 = σ22v2+σ12v1 are the projections
of the power flux vector, W is the elastic potential:

W =
(σ11 + σ22)

2

8(λ+ µ)
+

(σ11 − σ22)
2 + 4σ12

8µ
. (5)

Thermodynamic compatibility guarantees the well-posedness of the initial-boundary value prob-
lem with the dissipative boundary conditions, under which the right-hand side of (4) is non-
negative.

We consider a boundary value problem for a blocky-layered massif with fixed boundaries
(v1 = v2 = 0 along the boundaries). The numerical solution is calculated in the region
Ω = [0, L1]× [0, L1] with a uniform grid of N1 × N2 nodes. At the boundary x1 = 0, at point
x2 = ximp the pressure pulse is σ11(t, ximp) = p(t).

The numerical algorithm for solving equations in blocks is based on the two-cyclic splitting
method with the respect to spatial coordinates. This method allows to achieve the second order
of convergence when splitted one-dimensional problems are solved by finite-difference schemes of
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at least second order [9]. Godunov scheme with limiting reconstruction of Riemann invariants is
used to solve one dimensional problems [10]. The reconstruction procedure provides second-order
approximation in monotonic sections of the solution.

Equations in the interlayers are solved using Ivanov dissipation-free scheme [11]. To eliminate
artificial scheme dissipation, it is necessary to require that the sum of the values at the upper
(indicated by the "hat" symbol) and lower time steps be equal to the sum of the values at the
left and right boundaries of the grid cell:

v+ + v− = v̂ + v, σ+ + σ− = σ̂ + σ.

Based on this requirement, at the "predictor" stage of the scheme we obtain the system [13]:
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δ
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(6)

Here I+ and I− are Riemann invariants, calculated on the boundaries of neighboring blocks
separated by an interlayer, τ is the time step and h is the space step. On the "corrector" stage
we have a system:
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δ
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This scheme can be written for independent subsystems for longitudinal and transverse waves
propagating with velocities c = cp and c = cs, respectively. It is necessary to allocate
one-dimensional arrays in each direction for interlayers. That is, when solving splitted one-
dimensional problems, stresses and strain rates in each interlayer are calculated in only one grid
cell.

To account mechanical energy dissipation, we consider viscoelastic interlayers. Viscoelastic
interlayers are described by the Poynting–Thomson model, also known as the standard linear
solid (SLS) model. The rheological scheme of the model consists of elastic element b0 connected
in series with a parallel connection of a viscous element η and an elastic one b (Fig. 1). An array
of SLS-mechanisms connected in parallel is called a generalized standard linear solid (GSLS).
This rheological model is widely used in geophysics due to its ability to describe media with
a nearly constant quality factor over a certain frequency range. The more mechanisms in the
model, the more precisely constant quality factor can be approximated. Denoting s as the stress
on elastic element b we can write down the system of equations for the viscoelastic interlayer in
the following form:
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(8)

For longitudinal waves, the coefficient b is equal to λ + 2µ and for transverse waves is equal to
µ, and similarly, b0 is equal to λ0 + 2µ0 or µ0.

This model can be rewritten in terms of the relaxation modulus and relaxation times of
stress and strain. Relaxation times can be determined from the known quality factor using the
τ -method [12]. Then we can recalculate the elastic moduli and viscosity coefficient.
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Fig. 1. Rheological scheme of the Poynting–Thomson model

Finite-difference scheme is constructed analogously to (6)–(7), but leads to a more cumber-
some form:
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2. Results of computations

The computations below were performed on a multiprocessor system with cluster architec-
ture. The software package was developed using the MPI library. Each MPI-process performs
computations on each block, which consists of smaller blocks. One can specify different interlayer
thicknesses for larger and smaller blocks, so that it is possible to simulate wave propagation in
hierarchical blocky media.

Simplification of the interlayer model leads to certain inaccuracies. Let us evaluate the
behavior of the wave field when propagating near the boundaries of blocks. We consider a
medium consisting of four identical rectangular blocks with sides of 12 and 24 m, separated by
interlayers with varying thickness. The first case considered concerns a medium with the blocks
and interlayers of the same material with properties ρ = ρ′ = 2400 kg/m3, cp = c′p = 4500 m/s,
cs = c′s = 2700 m/s. The load pressure at the upper boundary of the first block at point
ximp=21 m is p(t) = p0H(t), where H(t) is Heaviside function. The Fig. 2 shows snapshots of
velocity fields obtained using interlayer model (2)–(3) calculated on uniform grid of N1 ×N2 =

480 × 960 nodes (with h = 0.5 m). In the medium, where interlayers are modeled by the same
equations as blocks, waves propagate like in a homogenous medium. As the thickness of the
interlayers increases, partial reflections of waves from the vertical layer become more and more
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Fig. 2. Snapshots of the velocity v1 in medium with blocks and interlayers made of the same
material obtained using simplified intarlayer model (2)–(3), interlayer thicknesses are δ= 0.025 m
(upper left), 0.05 m (upper right), 0.1 m (bottom left), 0.2 m (bottom right)

sufficient. There are almost no reflections from the horizontal interlayer, since the wave passes
through it almost perpendicularly.

Let us consider a medium of the same configuration but with a more compliant interlayer
material: ρ′ = 2100 kg/m3, c′p = 2900 m/s, c′s = 1700 m/s. In this case no visual differences
between the snapshots obtained by different interlayer models are observed (Fig. 3). To es-

Fig. 3. Snapshots of the velocity v1 in medium with compliant interlayers δ = 0.05 m (left) and
0.2 m (right) thick for simplified interlayer model (2)–(3) (upper) and for interlayers described
by elasticity theory equations (bottom)
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timate the error of the numerical solution U obtained with the use of a simplified interlayer
model (2)–(3), we compare it to a reference solution Ue calculated for interlayers described by
elasticity theory equations. The relative error err2 = ||U − Ue||/||Ue|| of the numerical solution
U = (v1, v2, σ11, σ22, σ12) was calculated using a discrete equivalent of the norm of the space
L∞(0, T ; L2(Ω)):

||U || = sup
0<t<T

√√√√∫∫
Ω

(
ρ
v21 + v22

2
+W

)
dx1 dx2,

where T is the time required for the longitudinal wave to reach the boundary of the computational
domain Ω, W is the elastic potential (5). Also we use the norm

||U || = sup
0<t<T

max
Ω

|U |

to calculate relative error errC .
Tab. 1 shows the relative errors depending on grid step h for a fixed interlayer thickness. The

material of the blocks for all cases has parameters ρ= 2400 kg/m3, cp= 4500 m/s, cs= 2700 m/s,
the material of the interlayers varies. Tab. 2 shows the relative errors depending on interlayer

Table 1. The relative error depending on grid step at fixed interlayer thickness δ = 0.1 m
Interlayer ρ′ = ρ, ρ′ = 2100 kg/m3, ρ′ = 1100 kg/m3,
material c′p = cp, c′p = 2900 m/s, c′p = 1500 m/s,

parameters c′s = cs c′s = 1700 m/s c′s = 800 m/s
h, м δ/h err2 errC err2 errC err2 errC
0.1 1 0.0352 0.272 0.0303 0.123 0.0231 0.0715
0.05 2 0.0483 0.321 0.0286 0.144 0.0258 0.0839
0.025 4 0.0621 0.348 0.0357 0.146 0.0309 0.115
0.0125 8 0.0802 0.350 0.0503 0.153 0.0475 0.131

thickness with a fixed grid. With an increase in the ratio of the interlayer thickness to the grid

Table 2. The relative error depending on interlayer thickness at fixed grid N1×N2 = 960× 1920

(h = 0.025 m)

Interlayer ρ′ = ρ, ρ′ = 2100 kg/m3, ρ′ = 1100 kg/m3,
material c′p = cp, c′p = 2900 m/s, c′p = 1500 m/s,

parameters c′s = cs c′s = 1700 m/s c′s = 800 m/s
δ, м δ/h err2 errC err2 errC err2 errC
0.025 1 0.0195 0.154 0.0177 0.0756 0.0117 0.0597
0.05 2 0.0362 0.250 0.0211 0.108 0.0197 0.0704
0.1 4 0.0621 0.348 0.0357 0.146 0.0309 0.115
0.2 8 0.1035 0.414 0.0719 0.161 0.0689 0.237

step δ/h, an increase in error is observed in all cases. It is noticeable that in media with more
compliant interlayers the error is slightly lower. Therefore, the model with simplified equations for
interlayers can be used to describe blocky media with sufficiently thin and compliant interlayers.

Fig. 4 shows the distribution of the error |v1−v1e|/|v1e| in blocky media for layers of different
thicknesses on a uniform grid N1 ×N2 = 960× 1920 (h = 0.025 m).
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Fig. 4. The relative error in a blocky-layered medium with interlayers δ = 0.025 m (left) and
δ = 0.2 m (right) thick, interlayer material with ρ′ = ρ, c′p = cp, c′s = cs (upper), a more
compliant interlayer material ρ′ = 2100 kg/m3, c′p = 2900 m/s, c′s = 1700 m/s (bottom)

Verification of the mathematical model and computational technology was carried out ac-
cording to experimental data published in paper [6]. In the experiments on a biaxial stand, a
blocky-layered medium was simulated by an assembly of 36 blocks measuring 89×125×250 mm,
each made of plexiglass (ρ = 2040 kg/m3, cp = 2670 m/s). Blocks were separated by 5 mm
thick rubber interlayers with shear moduli in directions x1 and x2 equal to 107/1.3 Pa and
1.35 · 107/1.3 Pa, respectively.

It was assumed that the shear moduli of the interlayers correspond to the state of long-term
deformation, when both elements of the rheological scheme are deformed (Fig. 1). The Poisson’s
ratio for all assembly materials was assumed to be 0.3. Fig. 5 shows the diagram of the numerical
experiment. The rod striker generated elastic waves in contact with the surface of the block.
At point ximp, denoted by the red arrow in Fig. 6, the pulse impact σ11(t, ximp) = p(t) with

Fig. 5. The numerical experiment diagram. Accelerometers a1 and a2 are placed in the central
points of the corresponding blocks
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duration Timp = 0.2 ms has the following form:

p(t) =

{
p0 sin(πt/Timp), 0 < t 6 Timp

0, t > Timp.

Accelerometers a1 and a2 were measuring accelerations wi = ∂vi/∂t for 5 ms in the central points
of the corresponding blocks.

Figures 6–9 show the theoretical and experimental results from paper [6] in comparison with
the numerical solution of (1) and (8). The experimental dependencies of acceleration on time
are denoted by the blue dashed line, the red lines show accelerations calculated using the ap-
proach proposed in [6], the green curves correspond to the numerical solution for a medium with
elastic blocks and viscoelastic interlayers. The parameters of the SLS were obtained using the
τ -method [12] assuming that quality factor Q is nearly constant in the frequency range [100, 5000]
Hz. It was assumed that quality factors of the longitudinal and transverse waves are Qp = 20

and Qs = 10, respectively. The lack of data on the material of the interlayers leaves a certain
amount of arbitrariness in the choice of parameters of the viscoelastic medium.

Fig. 6. Waveforms of acceleration w1, measured in the centre of block a1

Fig. 7. Waveforms of acceleration w1, measured in the centre of block a2

The results of the numerical simulation are in good agreement with experimental data. The
calculated acceleration waveform shown in Fig. 6 is almost identical to the experimental mea-
surement. In Fig. 7 one can see the difference in phase, but the qualitative behaviour of the waves
remains the same. A more observable difference can be noted in Fig. 8–9 where the experimental
high-frequency oscillations with large amplitude were not detected numerically. Most likely, this
is due to the fact that accelerations in the experiment were measured on the side surface of the
block, while the two-dimensional problem supposes measurements "inside" the thickness of the
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Fig. 8. Waveforms of acceleration w2, measured in the centre of block a1

Fig. 9. Waveforms of acceleration w2, measured in the centre of the block a2

block. It would be more accurate to apply a three-dimensional model of a blocky-layered medium
with the same location of accelerometers as in the real experiment.

Conclusions

The considered simplified interlayer model reliably describes wave processes in blocky-layered
media. When blocks and interlayers are made of the same material, non-physical reflections occur
and grow as the interlayers get thicker. The solutions for the simplified interlayers model and
for the interlayers described by elasticity theory equations are compared. It is observed that
the error of the numerical solution obtained by the simplified model increases with increasing
ratio of the interlayer thickness to the grid step. The mathematical model was verified on the
experimental data published in paper [6]. The presented computations show good agreement
with the experimental measurements.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2024-1378).
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Распространение волн в блочно-слоистой среде с тонкими
прослойками

Евгений А.Ефимов
Владимир М. Садовский

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Аннотация. Исследуется математическая модель блочно-слоистой среды с тонкими прослойками.
Рассматриваются деформируемые упругие блоки и упругие прослойки. Для описания затухания
волн учитывается вязкоупругость в прослойках. Проводится численное сравнение упрощённой мо-
дели прослоек с прослойками, описываемыми полными уравнениями теории упругости. Результаты
численного моделирования сравниваются с экспериментальными данными.

Ключевые слова: блочно-слоистая среда, тонкая прослойка, вязкоупругая прослойка.
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