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Abstract. In this paper, we prove the infinite differentiability of an integral operator of the potential
type for an infinitely differentiable function defined on the boundary of a bounded domain with the
boundary of the class C* up to the boundary of the domain on both sides.
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We consider n-dimensional complex space C", n > 1 with variables z = (21,...,2,). Let’s
introduce the vector module |z| = \/z? + ... + 22 and the differential forms dz = dz; A ... Adz,
and dz =dzZ; A ... ANdZ, and also dz[k] =dzy A ... Adzg—1 ANdzgp1 A ... Adzy,.

A bounded domain D C C™ has boundary of class 0D € C* if D = {z € C" : p(z) < 0},
where p is real-valued function of class C*° on some neighborhood of the closure of domain D,
and the differential dp # 0 on dD. Let’s denote the "complex" guiding cosines

1 dp 1 dp

Pk

" Jeradp| 0z PF T [gradp| 0z

We will also consider infinitely differentiable functions f € C*°(9D) on the boundary of the
domain D.

Consider the Bochner—-Martinelli kernel, which is an exterior differential form U((, z) of type
(n,n — 1) (see, for example, [1, Ch. 1]), given by

n

Uc )= MoV gy ST g e

@iy 2= [C— 2P

This kernel plays an important role in multidimensional complex analysis (see, for example, [1,2]).
Let g(¢, z) be the fundamental solution to the Laplace equation:

(n—2)! 1

then
n ) B
U(G,2) = (=) gl A de.
k=1 k

For the function f € C*°(9D), we introduce the Bochner—-Martinelli integral (integral opera-
tor)

M(f) = / fQOUC %), =¢ oD,
oD
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and also the single-layer potential (integral operator)
n=2t [ 1Qa(¢.2)do(0). = ¢ oD,
oD

where do is the Lebesgue surface measure on 9D.
We formulate theorems on the derivatives of integrals M (f) and ®(f), proved in [1, Ch. 1].
These statements are derived from the classical formulas of the potential theory [3].

Theorem 1. If 9D € C? and f € C?(0D), then the integral M(f) extends to D and C™\ D as
a function of class C'T for 0 < a < 1. At the same time, the formulas are valid

é%? /Q% %Z%m> R

oD
) ) )
+im2n 1/ Z [pk8< (pmpkag) pm%(pmpkag)]g(c,@da(o

Dsk 1

OM(f) _ [(9f ~ of
R Gl LS
oD

d d o
+i"2"" 1/ _{ e (pmpkag> p-m(pmpkai)}g(é,@da(()-

oD =

Theorem 2. If D € C? and f € C%2(dD), then for the integral ®(f) the formulas are valid

a non—1 - a _
azm /fpm (¢, 2) +1i"2 8/};{pkag (frr) ~ e (fpk)}g(C,Z)dG(C)
and
OD(f - 9
forU(C, 2) + +im2n ! [ (fer) pm(fp)]g(C,Z)dU(C)-
8 / D/ICZ_:l aCm k aCk k

It follows from the theorems 1 and 2 that the partial derivatives of the integrals M (f) and
®(f) are the application of the integral operators M and ® to some differential operators of the
function f.

Thus, if we denote the integral operator

I(flva):M(fl)+(I)(f2)7 Z%&D,

for some functions f1(z), f2(2) of class C* on the boundary of the domain D, then the statement
is true

Corollary 1. These equalities are valid

% = I<Lm(f17f2)7Km(fla fZ)) = M(Lm(f17f2)) + ¢<Km(fl7f2))7
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where
(fl f2 ac pmzpki 7f2pm7
n afl ) 78f1
87;1 [pk T (pmpk 7 > ~ e <pmpkags)] +
.nnfln 127_ 82:|
+3"2 kz_llipkacm (f pk) pmaCk (f /)k) .
correspondingly
1 r2
% = I(La(fY, 12), K (FY, £2)) = ML (F1, 1)) + ®(Ka(f1, f2)),
where
N 2 aft

oft 0 oft
(pmpk ac. > pmagk (pmpz;acs)]Jr

‘naon—1 - 8 2 a 2
+i"2 ;{Pkacm(f Pk)*ﬂmai(:k(f Pk)}

%;1 [Pk ¢,

37

Thus, the derivatives of the operator I(f!, f?) are again the operator I from some derivatives
of the functions f!, f2.
From corollary 1 we get the statement

Theorem 3. If0D € C* and f*, 2 € C*°(dD), then both integrals I(f*, f?) (z € D, z € C"\D)
continue by D and on C™\ D as infinitely differentiable functions.

Proof. Let’s first find the second derivatives of this integral using the corollary

O2I(fL, f? 0
) T H s 1) Ko 5) =

= [(Ll(Lm(f17f2)7Km(f17f2))7Kl(Lm(f17f2)7Km(f1’ f2))) =
= M(Ll(Lm(flv fQ)va(fla fQ))) + (I)(KZ(Lm(flv fZ)v Km(flv fQ))) (1)
Derivatives are also written out

PI(f', f2) *I(f', f*) *1(f*, f?)
0%,0zy, = 0210Z, = 0%0Z,

Denote by a = (a,...,04), t = 1,2,... a set of indexes of size ¢ that take any values from the
set of indexes 1,...,n and 1,...,n. Therefore, we have
II(f 1) 9 )
0z o 0zq, -+ 024,
0 0 0
where yifoj=mu = if aj =m.

aza]‘ - % aZOL]‘ B ﬁ’
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Then we get that
OI(f', f)
024

there is a sum of the Bochner—Martinelli integral of an infinitely differentiable function and the
single-layer potential of an infinitely differentiable function. From here and from the properties
of the Bochner—-Martinelli integral (see, for example, [1,2]) and the single-layer potential (see,

for example, [3]), it follows that the integral I(f!, f2) is an infinitely differentiable function up
to the boundary. O

Corollary 2. If0D € C* and f € C*(0D), then the Bochner-Martinelli integral M(f) contin-
ues on D and on C™* \ D as an infinitely differentiable function.

Consider the case when f! = f and f2 = 0. Then

Lm(f, 0) = Lm(f (9< szpk

= o 0 0
Konl£.0) = Kon($) =2 3 it (gl ) = o <pmpka§)],

s,k=1

correspondingly,

_ropo0f N~ Of
Ly (f,0) = Lan(f) = agtm ngpkag )

. _nnln i_,ﬁ__i_fﬂ
Kn(f,0) = Kn(f) =i"2 7,€_1{pk8<s (pmpka@) Pmae, (pmpka<8>]~

Then, according to the corollary 1, we get

oI(f,0) _ OM(f) _ (L

m(£.0), K (f,0)) = M(Lin(f)) + @(Km(f)),

O0zm 0Zm
ONL0) - O] 1 (Ln(£,0) Kin(£,0)) = M (L () + (K ().

Now let’s consider the case when f! =0 and f? = f. Then

Lm(07f) = z/m(f) = —fpm,

% “non— = 9
K (0, f) = Ko (f) = +i"2 lé{pk%(fpk) ~pmge (fpk)]

correspondingly,

Ly (0,f) = La(f) = = fpm,
Km0, f) = & ="2"" 1Z|: fpk pmaack(fpk)]'
k=1

Then, according to the corollary 1, we get

10.f) _ 0%(f) _

0zm 0zm
ONOS) _ O] _ (10,11, K0, 1)) = M (L)) + B(Ron(1).
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We got that
Ogifnf) = M(Lp(f)) + @(Kn(f) = I(Lin(f), Kin(f))
ag)zg) = M(Lin(f)) + (K (f)) = (Lo (f), K (f))-

Consider the second derivative of the Bochner-Martinelli integral

OPM(f) _ OM(Lw(f)) | 02(Ku(f)) _

02m 02 0z 0z
=I(Lio L (f), K10 Li(f)) + I(Li 0 K (f), K1 0 K (f)).

It follows that

aaiMa(J;) _ 8I(Lm(Jac)Z’le(f)) = [(Ly 0 Ly (£), K1 0 L () + (L1 0 Ko (£), K1 0 Kn(f)).

Therefore, the derivative of the integral operator I is the sum of two integral operators I, in
which the arguments of the first operator I will be the operators L and K applied to the first
argument of this operator, and the arguments of the second operator I will be the operators L
and K applied to the second argument of this operator.

It follows that, for example, the following third-order derivative will be equal to

M - -
WZ(ZJ;)% =I(LyoLioLn(f),KioLioLny(f))+I(LioKioLy(f),KioK;oLn(f))+

+[(Lt olo K. (f), Ko Lo Km(f)) + [(it oK, o Km(f),f(k o Ko Km(f))

The derivatives with a different set of variables are calculated in the same way.
We denote, as in the Theorem 3, by a = (a1,...,a¢), t = 1,2,... a set of indices of size ¢
that take any values from the set of indices 1,...,7n and 1,...,7n. Therefore, we have
O'M(f) _ O0'M(f)

0zq 0zay -+ 024,

0 7] 0

Where @ = %, lfOé] =mmnu azaj = ﬁ’ lfOéJ =m.
o OTM(f) o .
Corollary 3. The derivative . of order t from the Bochner-Martinelli integral is the sum
Za

of 2171 integral operators I applied to various compositions of operators L, K, L, K from the
function f.
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NuTerpasbHbIil onepaTop TUMNa IIOTEHINAJA A9 0€CKOHEeIHO
anddepeHIUPpyeMbIX OyHKITIIA
Cumona I'. MbiciuBer;

Cubupckuii deiepajbHbIl yHUBEPCUTET
Kpacnosipck, Poccuiickas @eeparimst

Amwnnoranusi. B a10it crarhe moka3ana Geckoneunast qudHepeHITpyeMOCTh HHTETPAIBHOTO OIEPATOpa
THUIA IOTEHINAJIA /I OECKOHEYHO nuddepeHnnpyeMbiXx DYHKIMH, OMPeIeTeHHbIX Ha TPDAHUIE OIPAHI-
YeHHOW 00JIaCTU BIJIOTH JIO IPAHUIIBI 06JIACTH ¢ 06EUX CTOPOH.

KuroueBrbie cioBa: auddepeHnmpyeMoCcTh HHTEMPATLHOTO ONEepaTopa THIa IMOTEHINAJIa, BIJIOTH 10

T'DaHUIBL.
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