EDN: GIMRFC УДК 517.55

Integral Operator of Potential Type for Infinitely Differentiable Functions

Simona G. Myslivets*

Siberian Federal University Krasnoyarsk, Russian Federation

Received 11.01.2024, received in revised form 29.03.2024, accepted 04.05.2024

Abstract. In this paper, we prove the infinite differentiability of an integral operator of the potential type for an infinitely differentiable function defined on the boundary of a bounded domain with the boundary of the class \mathcal{C}^{∞} up to the boundary of the domain on both sides.

Keywords: the differentiability of an integral operator of the potential type.

Citation: S.G.Myslivets, Integral Operator of Potential Type for Infinitely Differentiable Functions, J. Sib. Fed. Univ. Math. Phys., 2024, 17(4), 464–469. EDN: GIMRFC.

We consider n-dimensional complex space \mathbb{C}^n , n>1 with variables $z=(z_1,\ldots,z_n)$. Let's introduce the vector module $|z|=\sqrt{z_1^2+\ldots+z_n^2}$ and the differential forms $dz=dz_1\wedge\ldots\wedge dz_n$ and $d\bar{z}=d\bar{z}_1\wedge\ldots\wedge d\bar{z}_n$ and also $dz[k]=dz_1\wedge\ldots\wedge dz_{k-1}\wedge dz_{k+1}\wedge\ldots\wedge dz_n$. A bounded domain $D\subset\mathbb{C}^n$ has boundary of class $\partial D\in\mathcal{C}^\infty$ if $D=\{z\in\mathbb{C}^n:\ \rho(z)<0\}$,

A bounded domain $D \subset \mathbb{C}^n$ has boundary of class $\partial D \in \mathcal{C}^{\infty}$ if $D = \{z \in \mathbb{C}^n : \rho(z) < 0\}$, where ρ is real-valued function of class \mathcal{C}^{∞} on some neighborhood of the closure of domain D, and the differential $d\rho \neq 0$ on ∂D . Let's denote the "complex" guiding cosines

$$\rho_k = \frac{1}{|\operatorname{grad} \rho|} \frac{\partial \rho}{\partial z_k}, \qquad \rho_{\bar{k}} = \frac{1}{|\operatorname{grad} \rho|} \frac{\partial \rho}{\partial \bar{z}_k}.$$

We will also consider infinitely differentiable functions $f \in \mathcal{C}^{\infty}(\partial D)$ on the boundary of the domain D.

Consider the Bochner–Martinelli kernel, which is an exterior differential form $U(\zeta, z)$ of type (n, n-1) (see, for example, [1, Ch. 1]), given by

$$U(\zeta,z) = \frac{(n-1)!}{(2\pi i)^n} \sum_{k=1}^n (-1)^{k-1} \frac{\bar{\zeta}_k - \bar{z}_k}{|\zeta - z|^{2n}} \, d\bar{\zeta}[k] \wedge d\zeta.$$

This kernel plays an important role in multidimensional complex analysis (see, for example, [1,2]). Let $g(\zeta, z)$ be the fundamental solution to the Laplace equation:

$$g(\zeta,z) = -\frac{(n-2)!}{(2\pi i)^n} \frac{1}{|\zeta - z|^{2n-2}}, \quad n > 1,$$

then

$$U(\zeta, z) = \sum_{k=1}^{n} (-1)^{k-1} \frac{\partial g}{\partial \zeta_k} d\bar{\zeta}[k] \wedge d\zeta.$$

For the function $f \in \mathcal{C}^{\infty}(\partial D)$, we introduce the Bochner–Martinelli integral (integral operator)

$$M(f) = \int_{\partial D} f(\zeta)U(\zeta, z), \quad z \notin \partial D,$$

^{*}asmyslivets@sfu-kras.ru

[©] Siberian Federal University. All rights reserved

and also the single-layer potential (integral operator)

$$\Phi(f) = i^n 2^{n-1} \int_{\partial D} f(\zeta) g(\zeta, z) \, d\sigma(\zeta), \quad z \notin \partial D,$$

where $d\sigma$ is the Lebesgue surface measure on ∂D .

We formulate theorems on the derivatives of integrals M(f) and $\Phi(f)$, proved in [1, Ch. 1]. These statements are derived from the classical formulas of the potential theory [3].

Theorem 1. If $\partial D \in \mathcal{C}^2$ and $f \in \mathcal{C}^2(\partial D)$, then the integral M(f) extends to \overline{D} and $\mathbb{C}^n \setminus D$ as a function of class $\mathcal{C}^{1+\alpha}$ for $0 < \alpha < 1$. At the same time, the formulas are valid

$$\begin{split} \frac{\partial M(f)}{\partial z_m} &= \int\limits_{\partial D} \left(\frac{\partial f}{\partial \zeta_m} - \rho_m \sum_{k=1}^n \rho_k \frac{\partial f}{\partial \bar{\zeta}_k} \right) U(\zeta, z) + \\ &+ i^n 2^{n-1} \int\limits_{\partial D} \sum_{s,k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_s} \left(\rho_m \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) - \rho_m \frac{\partial}{\partial \zeta_k} \left(\rho_m \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) \right] g(\zeta, z) d\sigma(\zeta) \end{split}$$

and

$$\begin{split} \frac{\partial M(f)}{\partial \bar{z}_m} &= \int\limits_{\partial D} \left(\frac{\partial f}{\partial \bar{\zeta}_m} - \rho_{\bar{m}} \sum_{k=1}^n \rho_k \frac{\partial f}{\partial \bar{\zeta}_k} \right) U(\zeta, z) + \\ &+ i^n 2^{n-1} \int\limits_{\partial D} \sum_{s, k=1}^n \left[\rho_k \frac{\partial}{\partial \bar{\zeta}_s} \left(\rho_{\bar{m}} \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) - \rho_{\bar{m}} \frac{\partial}{\partial \zeta_k} \left(\rho_{\bar{m}} \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) \right] g(\zeta, z) d\sigma(\zeta). \end{split}$$

Theorem 2. If $\partial D \in \mathcal{C}^2$ and $f \in \mathcal{C}^2(\partial D)$, then for the integral $\Phi(f)$ the formulas are valid

$$\frac{\partial \Phi(f)}{\partial z_m} = -\int\limits_{\partial D} f \rho_m U(\zeta, z) + i^n 2^{n-1} \int\limits_{\partial D} \sum_{k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_m} (f \rho_{\bar{k}}) - \rho_m \frac{\partial}{\partial \zeta_k} (f \rho_{\bar{k}}) \right] g(\zeta, z) d\sigma(\zeta)$$

and

$$\frac{\partial \Phi(f)}{\partial \bar{z}_m} = -\int\limits_{\partial D} f \rho_{\bar{m}} U(\zeta, z) + + i^n 2^{n-1} \int\limits_{\partial D} \sum_{k=1}^n \left[\rho_k \frac{\partial}{\partial \bar{\zeta}_m} (f \rho_{\bar{k}}) - \rho_{\bar{m}} \frac{\partial}{\partial \zeta_k} (f \rho_{\bar{k}}) \right] g(\zeta, z) d\sigma(\zeta).$$

It follows from the theorems 1 and 2 that the partial derivatives of the integrals M(f) and $\Phi(f)$ are the application of the integral operators M and Φ to some differential operators of the function f.

Thus, if we denote the integral operator

$$I(f^1,f^2)=M(f^1)+\Phi(f^2),\quad z\notin\partial D,$$

for some functions $f^1(z)$, $f^2(z)$ of class \mathcal{C}^{∞} on the boundary of the domain D, then the statement is true

Corollary 1. These equalities are valid

$$\frac{\partial I(f^1, f^2)}{\partial z_m} = I(L_m(f^1, f^2), K_m(f^1, f^2)) = M(L_m(f^1, f^2)) + \Phi(K_m(f^1, f^2)),$$

where

$$L_m(f^1, f^2) = \frac{\partial f^1}{\partial \zeta_m} - \rho_m \sum_{k=1}^n \rho_k \frac{\partial f^1}{\partial \bar{\zeta}_k} - f^2 \rho_m,$$

$$K_m(f^1, f^2) = \sum_{s,k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_s} \left(\rho_m \rho_{\bar{k}} \frac{\partial f^1}{\partial \bar{\zeta}_s} \right) - \rho_m \frac{\partial}{\partial \zeta_k} \left(\rho_m \rho_{\bar{k}} \frac{\partial f^1}{\partial \bar{\zeta}_s} \right) \right] +$$

$$+ i^n 2^{n-1} \sum_{k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_m} (f^2 \rho_{\bar{k}}) - \rho_m \frac{\partial}{\partial \zeta_k} (f^2 \rho_{\bar{k}}) \right].$$

correspondingly

$$\frac{\partial I(f^1, f^2)}{\partial \bar{z}_m} = I(L_{\bar{m}}(f^1, f^2), K_{\bar{m}}(f^1, f^2)) = M(L_{\bar{m}}(f^1, f^2)) + \Phi(K_{\bar{m}}(f^1, f^2)),$$

where

$$L_{\bar{m}}(f^1, f^2) = \frac{\partial f^1}{\partial \bar{\zeta}_m} - \rho_{\bar{m}} \sum_{k=1}^n \rho_k \frac{\partial f^1}{\partial \bar{\zeta}_k} - f^2 \rho_{\bar{m}},$$

$$K_{\bar{m}}(f^1, f^2) = \sum_{s,k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_s} \left(\rho_{\bar{m}} \rho_{\bar{k}} \frac{\partial f^1}{\partial \bar{\zeta}_s} \right) - \rho_{\bar{m}} \frac{\partial}{\partial \zeta_k} \left(\rho_{\bar{m}} \rho_{\bar{k}} \frac{\partial f^1}{\partial \bar{\zeta}_s} \right) \right] +$$

$$+ i^n 2^{n-1} \sum_{k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_{\bar{m}}} (f^2 \rho_{\bar{k}}) - \rho_{\bar{m}} \frac{\partial}{\partial \zeta_k} (f^2 \rho_{\bar{k}}) \right].$$

Thus, the derivatives of the operator $I(f^1, f^2)$ are again the operator I from some derivatives of the functions f^1 , f^2 .

From corollary 1 we get the statement

Theorem 3. If $\partial D \in \mathcal{C}^{\infty}$ and $f^1, f^2 \in \mathcal{C}^{\infty}(\partial D)$, then both integrals $I(f^1, f^2)$ $(z \in D, z \in \mathbb{C}^n \setminus \overline{D})$ continue by \overline{D} and on $\mathbb{C}^n \setminus D$ as infinitely differentiable functions.

Proof. Let's first find the second derivatives of this integral using the corollary

$$\frac{\partial^{2} I(f^{1}, f^{2})}{\partial z_{l} \partial z_{m}} = \frac{\partial}{\partial z_{l}} I(L_{m}(f^{1}, f^{2}), K_{m}(f^{1}, f^{2})) =
= I(L_{l}(L_{m}(f^{1}, f^{2}), K_{m}(f^{1}, f^{2})), K_{l}(L_{m}(f^{1}, f^{2}), K_{m}(f^{1}, f^{2}))) =
= M(L_{l}(L_{m}(f^{1}, f^{2}), K_{m}(f^{1}, f^{2}))) + \Phi(K_{l}(L_{m}(f^{1}, f^{2}), K_{m}(f^{1}, f^{2}))).$$
(1)

Derivatives are also written out

$$\frac{\partial^2 I(f^1,f^2)}{\partial \bar{z}_l \partial z_m}, \frac{\partial^2 I(f^1,f^2)}{\partial z_l \partial \bar{z}_m}, \frac{\partial^2 I(f^1,f^2)}{\partial \bar{z}_l \partial \bar{z}_m}$$

Denote by $\alpha = (\alpha_1, \dots, \alpha_t)$, $t = 1, 2, \dots$ a set of indexes of size t that take any values from the set of indexes $1, \dots, n$ and $\bar{1}, \dots, \bar{n}$. Therefore, we have

$$\frac{\partial^t I(f^1, f^2)}{\partial z_{\alpha}} = \frac{\partial^t I(f^1, f^2)}{\partial z_{\alpha_1} \cdots \partial z_{\alpha_t}}$$

where
$$\frac{\partial}{\partial z_{\alpha_j}} = \frac{\partial}{\partial z_m}$$
, if $\alpha_j = m$ if $\frac{\partial}{\partial z_{\alpha_j}} = \frac{\partial}{\partial \bar{z}_m}$, if $\alpha_j = \bar{m}$.

Then we get that

$$\frac{\partial^t I(f^1,f^2)}{\partial z_\alpha}$$

there is a sum of the Bochner–Martinelli integral of an infinitely differentiable function and the single-layer potential of an infinitely differentiable function. From here and from the properties of the Bochner–Martinelli integral (see, for example, [1,2]) and the single-layer potential (see, for example, [3]), it follows that the integral $I(f^1, f^2)$ is an infinitely differentiable function up to the boundary.

Corollary 2. If $\partial D \in \mathcal{C}^{\infty}$ and $f \in \mathcal{C}^{\infty}(\partial D)$, then the Bochner-Martinelli integral M(f) continues on \overline{D} and on $\mathbb{C}^n \setminus D$ as an infinitely differentiable function.

Consider the case when $f^1 = f$ and $f^2 = 0$. Then

$$L_m(f,0) = L_m(f) = \frac{\partial f}{\partial \zeta_m} - \rho_m \sum_{k=1}^n \rho_k \frac{\partial f}{\partial \bar{\zeta}_k},$$

$$K_m(f,0) = K_m(f) = i^n 2^{n-1} \sum_{s,k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_s} \left(\rho_m \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) - \rho_m \frac{\partial}{\partial \zeta_k} \left(\rho_m \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) \right],$$

correspondingly,

$$L_{\bar{m}}(f,0) = L_{\bar{m}}(f) = \frac{\partial f}{\partial \bar{\zeta}_m} - \rho_{\bar{m}} \sum_{k=1}^n \rho_k \frac{\partial f}{\partial \bar{\zeta}_k},$$

$$K_{\bar{m}}(f,0) = K_{\bar{m}}(f) = i^n 2^{n-1} \sum_{s,k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_s} \left(\rho_{\bar{m}} \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) - \rho_{\bar{m}} \frac{\partial}{\partial \zeta_k} \left(\rho_{\bar{m}} \rho_{\bar{k}} \frac{\partial f}{\partial \bar{\zeta}_s} \right) \right].$$

Then, according to the corollary 1, we get

$$\frac{\partial I(f,0)}{\partial z_m} = \frac{\partial M(f)}{\partial z_m} = I(L_m(f,0), K_m(f,0)) = M(L_m(f)) + \Phi(K_m(f)),$$

$$\frac{\partial I(f,0)}{\partial \bar{z}_m} = \frac{\partial M(f)}{\partial \bar{z}_m} = I(L_{\bar{m}}(f,0), K_{\bar{m}}(f,0)) = M(L_{\bar{m}}(f)) + \Phi(K_{\bar{m}}(f)),$$

 $\partial \bar{z}_m$ $\partial \bar{z}_m$ $\partial \bar{z}_m$ Now let's consider the case when $f^1 = 0$ and $f^2 = f$. Then

$$L_m(0,f) = \tilde{L}_m(f) = -f\rho_m,$$

$$K_m(0,f) = \tilde{K}_m(f) = +i^n 2^{n-1} \sum_{k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_m} (f\rho_{\bar{k}}) - \rho_m \frac{\partial}{\partial \zeta_k} (f\rho_{\bar{k}}) \right],$$

correspondingly,

$$L_{\bar{m}}(0,f) = \tilde{L}_{\bar{m}}(f) = -f\rho_{\bar{m}},$$

$$K_{\bar{m}}(0,f) = \tilde{K}_{\bar{m}}(f) = i^n 2^{n-1} \sum_{k=1}^n \left[\rho_k \frac{\partial}{\partial \zeta_{\bar{m}}} (f\rho_{\bar{k}}) - \rho_{\bar{m}} \frac{\partial}{\partial \zeta_k} (f\rho_{\bar{k}}) \right].$$

Then, according to the corollary 1, we get

$$\begin{split} \frac{\partial I(0,f)}{\partial z_m} &= \frac{\partial \Phi(f)}{\partial z_m} = I \Big(L_m(0,f), K_m(0,f) \Big) = M \Big(\tilde{L}_m(f) \Big) + \Phi \Big(\tilde{K}_m(f) \Big), \\ \frac{\partial I(0,f)}{\partial \bar{z}_m} &= \frac{\partial \Phi(f)}{\partial \bar{z}_m} = I \Big(L_{\bar{m}}(0,f), K_{\bar{m}}(0,f) \Big) = M \Big(\tilde{L}_{\bar{m}}(f) \Big) + \Phi \Big(\tilde{K}_{\bar{m}}(f) \Big), \end{split}$$

We got that

$$\frac{\partial M(f)}{\partial z_m} = M(L_m(f)) + \Phi(K_m(f)) = I(L_m(f), K_m(f))$$
$$\frac{\partial \Phi(f)}{\partial z_m} = M(\tilde{L}_m(f)) + \Phi(\tilde{K}_m(f)) = I(\tilde{L}_m(f), \tilde{K}_m(f)).$$

Consider the second derivative of the Bochner-Martinelli integral

$$\begin{split} \frac{\partial^2 M(f)}{\partial z_m \partial z_l} &= \frac{\partial M(L_m(f))}{\partial z_l} + \frac{\partial \Phi(K_m(f))}{\partial z_l} = \\ &= I(L_l \circ L_m(f), K_l \circ L_m(f)) + I(\tilde{L}_l \circ K_m(f), \tilde{K}_l \circ K_m(f)). \end{split}$$

It follows that

$$\frac{\partial^2 M(f)}{\partial z_m \partial z_l} = \frac{\partial I(L_m(f), K_m(f))}{\partial z_l} = I(L_l \circ L_m(f), K_l \circ L_m(f)) + I(\tilde{L}_l \circ K_m(f), \tilde{K}_l \circ K_m(f)).$$

Therefore, the derivative of the integral operator I is the sum of two integral operators I, in which the arguments of the first operator I will be the operators L and K applied to the first argument of this operator, and the arguments of the second operator I will be the operators \tilde{L} and \tilde{K} applied to the second argument of this operator.

It follows that, for example, the following third-order derivative will be equal to

$$\frac{\partial^{3} M(f)}{\partial z_{m} \partial z_{l} \partial z_{t}} = I\left(L_{t} \circ L_{l} \circ L_{m}(f), K_{t} \circ L_{l} \circ L_{m}(f)\right) + I\left(\tilde{L}_{t} \circ K_{l} \circ L_{m}(f), \tilde{K}_{t} \circ K_{l} \circ L_{m}(f)\right) + I\left(L_{t} \circ \tilde{L}_{l} \circ K_{m}(f), K_{t} \circ \tilde{L}_{l} \circ K_{m}(f)\right) + I\left(\tilde{L}_{t} \circ \tilde{K}_{l} \circ K_{m}(f), \tilde{K}_{k} \circ \tilde{K}_{l} \circ K_{m}(f)\right).$$

The derivatives with a different set of variables are calculated in the same way.

We denote, as in the Theorem 3, by $\alpha = (\alpha_1, \dots, \alpha_t)$, $t = 1, 2, \dots$ a set of indices of size t that take any values from the set of indices $1, \dots, n$ and $\bar{1}, \dots, \bar{n}$. Therefore, we have

$$\frac{\partial^t M(f)}{\partial z_{\alpha}} = \frac{\partial^t M(f)}{\partial z_{\alpha_1} \cdots \partial z_{\alpha_k}},$$

where
$$\frac{\partial}{\partial z_{\alpha_j}}=\frac{\partial}{\partial z_m},$$
 if $\alpha_j=m$ u $\frac{\partial}{\partial z_{\alpha_j}}=\frac{\partial}{\partial \bar{z}_m},$ if $\alpha_j=\bar{m}.$

Corollary 3. The derivative $\frac{\partial^t M(f)}{\partial z_{\alpha}}$ of order t from the Bochner-Martinelli integral is the sum of 2^{t-1} integral operators I applied to various compositions of operators L, K, \tilde{L} , \tilde{K} from the function f.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-02-2024-1429).

References

- [1] A.M.Kytmanov, The Bochner-Martinelli integral and its applications, Basel, Boston, Berlin: Birkhäuser, 1995.
- [2] A.M.Kytmanov, S.G.Myslives, Multidimensional Integral Representations. Problems of Analytic Continuation, Springer Verlag, Basel, Boston, 2015.

[3] N.M.Günter, Potential theory and dits applications to basic problems of mathematical physics, Ungar, New York, 1967.

Интегральный оператор типа потенциала для бесконечно дифференцируемых функций

Симона Г. Мысливец

Сибирский федеральный университет Красноярск, Российская Федерация

Аннотация. В этой статье доказана бесконечная дифференцируемость интегрального оператора типа потенциала для бесконечно дифференцируемых функций, определенных на границе ограниченной области вплоть до границы области с обеих сторон.

Ключевые слова: дифференцируемость интегрального оператора типа потенциала вплоть до границы.