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1. Introduction and preliminaries

The purpose of the paper is to study the boundedness of maximal operators defined by

Mf(y) = sup | Acf(y) |, (1)
where
Af(y) = / fly — ta)d(x)dS(x) )
S

is so called averaging operator, S C R™*! is a hyper-surface, ) > 0 is a fixed smooth function
with compact support, i.e., ¥ € C°(R"*!) and f € C°(R™T1).

Maximal operator (1) is bounded in LP := LP(R™*!) if there exists a number C' > 0 such
that for any function f € C§°(R™*!) the LP inequality | M f|z» < C||f||,» holds.

For a hyper-surface S and for a fixed function 0 < ¢ € C§°(R"*1) a critical exponent of
maximal operator (1) is defined by

p(S) := inf{p : operator (1) is boundedin LP}.

Firstly, it was showed that when S is the unit (n —1)-dimensional sphere centred at the origin

then maximal operator (1) is bounded in LP(R™) for p > r 7n > 3 and it is not bounded
n—

in LP(R™) whenever p < Ll [1]. The two dimensional case of this result was proved by
n—

J. Bourgain [2].
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It was proved that maximal operator (1) is bounded in LP(R"*!) forn > 2 and p > (n+1)/n
when hyper-surface has everywhere non-vanishing Gaussian curvature [3]. Moreover, it was
showed that if hyper-surface has at least k(k > 2) non-vanishing principal curvatures then the
maximal operator is bounded in LP(R"*!) (n > 2) for all p > (k + 1)/k. A similar result for
more difficult case k = 1 was obtained by C.D. Sogge [4].

Also, maximal operators (1) were considered in [5-11]. Maximal operators associated with
smooth hyper-surfaces in R"*1 were studied and critical exponent of these operators in LP(R"*1)
was defined [12]. The boundedness of the maximal operators related to singular surfaces in 3-
dimensional Euclidean space was investigated [13] and [14].

2. Problem statement

Let us consider a family of singular surfaces in R? defined by the following parametric equa-

tions -
z1(u1,uz) =11 +uitug’gr(ur, uz), @2(ur, u2) = ro +uytuy’ ga(ur, uz), 3
3
w3(u1,u2) = 13 +uitug’ gs(u1, uz),

where r1,79,73 are any real numbers, ai,as,bi,bs, c1,co are non-negative rational numbers,
uy = 0, ug > 0and {gx(u, UQ)}%:I are fractional power series. For the definition of the fractional
power series see [13] and [15].

Let us introduce the following designations

a1 b b1 a ¢

B = , B3 =

) B2:’

az by by ¢ as C2

Remark 1. If at least one of the numbers By, Ba, Bs is nonzero then the points of surface (3)
that lie in a sufficiently small neighborhood of the singular point (r1,r2,73) outside the coordinate
planes of a coordinate system which has its origin at the point (r1,r2,73) are non-singular. Points
of surface (3) that lie on the coordinate planes of this coordinate system are singular points (see

definition 2 in [13]).
Let us define the averaging operator in (2) associated with surfaces (3) in the form

Af fy) = /f(y1 —t(r1 + ul uggr (ur, us)), yo — t(re + ul ub? go(ur, us)),
R% (4)

ys — t(rs + uf'ustgs(ua, U2)))¢1 (w1, uz)uf ug?o(ur, ug)duy dus,
where p(u7,uz) is fractional power series such that ¢(0,0) # 0,
Uy (ur,u2) = ¥ (r1 +uf us?gr (ur, u2), r2 + u§ ul? go(ur, ug), 3 + uf ug? gs(ur, ug))

is non-negative fractional power series with a sufficiently small support, di,ds are real numbers
and f € C§°(R3). The purpose is to prove L inequality for the maximal operator defined by

MPf(y) = sup AL f(y)], y€R®.

Here this maximal operator is investigated in a small neighbourhood of singular point
(r1,72,73) of surfaces (3) in the case when p > 2.
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3. The boundedness of the maximal operator M¥ f

Let us denote the critical exponent of maximal operator M? f by p’(S) and

a1 a2 b1 by C1 C2 }

/S: {
PIS) =max G T T G U r 1 dy 1

The extension of Theorem 1 in [13] and the main result of this paper is

Theorem 3.1. Let o(u1,us), {gr(u1,u2)}3_, be fractional power series which defined in a small
neighbourhood of the origin of coordinate system of R? and it satisfy the following conditions:
©(0,0) # 0, gx(0,0) # 0. Suppose di > —1, do > —1 and at least one of the following conditions
is hold:

1. T3 7& O,Bl 7é 0 and either Bng # 0, or B2(B2 + Bl) # 0, or Bg(Bg - Bl) 7é 0;

2. r9 #0,Bs # 0 and either BoBy # 0, or Bo(Bs — Bs) #0, or B1(B1 — B3) # 0;

3. T1 7& O,BQ 7é 0 and either BlBg # 0, or Bg(Bg - BQ) # 0, or Bl(Bl + BQ) 75 0.

Then there exists a small neighbourhood U of the singular point (r1,r2,73) such that for any
function 11 € C§°(U) the mazimal operator M? f is bounded in LP(R3) for p > max{p’(9),2}.
Moreover, if 11(0,0) = ¥(r1,r2,73) > 0 and p’(S) > 2, then the mazimal operator M? f is not
bounded in LP(R3) whenever 2 < p < p'(S).

Proof. Suppose that condition 1 is satisfied and at least one of the numbers 71,75 is not equal
to zero. Let us consider the boundedness of the maximal operator M¥ f at non-singular points
of surface (3) (see Remark 1).

&)

Let us consider the partition of the unity . xx(s) = 1 on the interval 0 < s < 1,
k=0

where xi(s) == x(2Fs), x € C§°(R) supported on the interval [0.5; 2] and X, j,(u1,u2) =

Xj, (u1)xj, (u2), j1,j2 € N. Then averaging operator Af f is decomposed as follows

ATV f(y) = /f(y1 —t(r1 + u uggr (ur, us)), yo — t(ra + ul ub?go(ur, u2)),
R2
2

y3 — t(rs + ui us? gs(uq, UQ)))'l/}l(uly U2) X1 ja (U1 up)u ug? o (uy , ug)duy dus.
Next, by applying the change of variables u; = 2771wy, uy = 27720y, one can obtain
APTT2 f(y) = 9= (r+i) ~(rditizda) /f(zn — (4 2 G e) g2
R%
X g1 (27701, 2792 05)) yp — t(rg 4 27 TPl 02 gy (27T 27020y,
Y3 — t(T3 4 27(.j101+j262)vi1 v§2gg(2*jlv1, 27j21)2))>1/)1(27j1’01, 27]‘21}2))((1}1))((”2) >
x v w2 p(2771 0y, 27920y ) duy dog,

where 0.5 < vy <2, 0.5 < vy <2, j1,42 = Jo, jo is a large number such that implies from the
smallness of the support of .
Let us change the variables as follows

w a . .
{ wy = v7' 052 g1 (27, 27720,)

b b . .
wy = v a2 g2 (27 vy, 2720),
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and assume that g;(0,0) = g2(0,0) = 1. Then in the first quadrant R? the system

wy = vyt vgy?
by by

wa = v7' vy
yields
b2 —ag
v =wy twy
ey (6)
B, Br
Vo =Wy " Wy
In particular, relations (6) are valid in the set {(wj,ws) € RZ : 27(mFa2) < 4 <

ga1taz 92— (b1+b2) < we < 2b1+b2}_
Consequently, the change of variables

by —ag
_ ,,B1,, B1 -
V1 = U}l ’U_)2 g 7
—b1 a1 ’ ( )
1 By ~
V2 = Wy Wy = g2

is introduced, where g1, o are new variables and it is supposed that §; ~ 1, go ~ 1. As a result
system (5) implies

b2 —ag oz @
(91)" (92)" 01 (2_J1w131 wy"t G, 2772w, 7wyt 92) =1,
bo —ag —by aj (8)

(91)7(92)*2 g2 (27j1w1371w231 g1, 272w, w??ﬁ) =1

According to the implicit function theorem, system (8) has a unique smooth solutions with
respect to g1, g2 in a sufficiently small neighbourhood of the point (0,0,1,1)

gl (27j1 ) 27j2 , W1, w2) =1+ 27j1 }Nll (27j1 ) 27j2 , W1, w2) + 27j2 B2(27j1 ) 27j23 w1, U}Z)a

Go(2771,2792 wp wg) = 14279151 (27912792 g we) + 2772 5o (2771, 2792 Ly, wy).

Here hi, ho, p1, po are smooth functions. It is assumed that §; (0,0,1,1) =1, g2(0,0,1,1) = 1.
Then taking into account (7), one can obtain

b2 —ap . .
v = wlB1 wQBl g1(2791,2792 wy, we)
—by ay ° (9)

o oa
vy =wy t wy ' §2(2771,2792 wy, wa)

Applying relations (5) and (9) to the last integral, we obtain

Af’jl’jzf(y) — 9= (1+i2)—(Jrdi+j2d2) /f<y1 _ t(?"l + 2—(j1a1+j2a2)w1)’
R
Y2 — t(re + 27(3‘161“2172)102), ys — t(rs + 27(j101+j262)04(w17w2)))5(w17w2)dw1dw2,

—By Bz
where a(wy, ws) = w; " wyt g(wy, wa),

g(w17 w2) = (.gl (Q_jl ) 2_j2 , W1, ’lUQ))Cl (gQ(Q_jl ) 2_j27 wy, w2))02 X
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by —ap —b1 oy
—J By By ~ -3 —7 —7 B By ~ —j —j
XgS(Q Jl’w]_1U)2 ! gl(2 J172 ]2,’[U1,’U}2),2 J2w1 ! w2192(2 ]172 J2aw17w2)>7

Blwr, wa) = 11 (w1, w2) X1 (w1, w2) Yo (wr, w2) (@1 (w1, wa)) ™ (@2 (w1, w2)) ™ G(wr, w) J (wi, wa),

- . b2 zap . . . zhh oag . .
(w1, wa) = Y1 (27j1w131 wyt g1 (277, 2772wy, we), 272w, wy 92(27j1,27j27w17w2)>,

. b2 zag ) .
X1(wr,we) = X(T”wl Lw, 91(2_]172_”,1111,“12))7

b a4
By

X2 (w1, wa2) :X(27j2w1 w;ﬁ%(?*ﬁﬂ*h,wl,wﬂ)a

by —ag ) ) —b1 a1 . .
1(wr, wa) = wyt wy”t G1(2771, 2772wy, wa), pa(wr, wa) = wy Tt wyt G2 (2771, 2772wy, wo),

o

by —ag —bh a
N —ii By By =~ (o—j1 o0—j —J2,, B Bi s (9=J1 9—J
w(wlva) = 90(2 jlwl ! Wy ! 91(2 J172 j27w17w2)5 2 ]2,w1 ! Woy ! 92(2 j172 J2aw17w2))

are fractional power series, J(wp,ws) is the Jacobian of the change of variables (9).
ok kR Rk Rk kR Rk kR KRRk Rk Rk R R R R X The  dilation

operators

T ) =2

ji1aitijoag+j1by+igbatiicitisce . . . . . o
> f(2]1a1+]2a2y1, 2]1b1+]2b2y27 2]1C1+]262y3)

are isometric in LP(R?) and they transform the averaging operators A?7*72 f into new ones

jiagtioag+iiby+isbotiicrtisco
P

Afvjlvalelan f(y) — 2*(j1+j2)*(j1d1+j2d2)+ ~

> / f(2j101+j2a2 (yl —try—t- 2*(j1a1+j2a2)w1),2j1b1+jzbz (y2 —try —t- 2*(j1b1+j2b2)w2),
&

20tz (yg — trg —t - 9~ Unertizea) g (yy, w2)))5(w1, wy)dw dw;.

Also, the dilation operators

_Jrai+tisastiibitiobotijcitisca
P

Ty f(y) =2 f(Qijlal*ijyl, 2 b1 2be g, 27j1617j262y3>

are isometric in space LP(R?) and they turn operators A{7"/2T72 f into new operators

T2_j1’_jQAf’jl’jQlel’jzf(y) — 2—(j1+j2)—(j1d1+j2d2) / %
2
Xf(yl —t(s1+w1), y2 — t(s2 +wa),ys — t(s3 + a(wl,wg))),ﬁ(wl, wa)dw; dws,

where s; = 2J101+]2azrl752 — 2]151+]2b27:27 Sg = 2]161+]2C2r3.

Suppose that max{|si|, |sz2|, |s3|} = |s3| and define the following rotation operator
ROf(y) := flenn®1 + e1ams + €1373, €121 + €002 + €23T3, 3171 + €327 + €3373)

which is isometric in space LP(R?). Rotation orthogonal matrix (e;;)?,—, is

cos 61 cos Oy — sinfy sinf cosfl3  — cos B sin Oy — sin 01 cos Oy cos 3 sin G sin O3
sin #1 cos 0 + cos By sinfy cos 3 — sin B4 sin 6y + cos 01 cos Oy cos 3  — cos B sin O3 ,
sin 65 sin 03 — sin 63 cos 05 cos 03
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where 01, 65,03 are Euler angles, 63 is the angle between vectors (0,0,d) and (s1, $2,83), d =

/8% + 53+ 53 (see [16], pp. 288-289).
The rotation operator R? f and its inverse R=%f turn operators Ty, 7' 772 A7172 /192 f into
the following new operators

R79T2*J'1,*jzAle,joljlyﬁRef(y) _ 27(j1+j2)7(j1d1+j2d2) %

X /f(y1 — ton (w1, w2), Y2 — tag(wi,wa), ys — t(d + Oés(whwz)))ﬁ(whwz)dmdwz, (10)

2
RL

where
aq (w1, w2) = er1wr + erawa + erza(wi, wa),
ag (w1, ws) = ea1wr + exowy + eaza(wi, wa),

az(wi,wa) = ez1wi + ezows + egza(wy, wa).

It is well-known that the second fundamental form of the surface given by parametric equations

T(wy, we) = 7(041(101,?1)2), ao(wr, ws), Oég(’U.)l,QUQ)) (11)
has the following form

L= Llldw% + 2L12dw1dw2 + LQde%,

where
L1 = (11,n), Liz = (F12,7), Loa = (T22,7), (12)
_ o*r o*r 0%
T = —F T - r —
11 Bw?’ 12w, 2 Duwd’
n = N -|N|~! is the unit normal vector. A normal vector N in any point of surface (11) defined
by
i j k
8051 8042 8043

barN = 5'7101 3711)1 3711)1
% Oag  Oas

8’[1}2 8w2 (9’LU2
Coefficients Ly, Lag, L13 in (12) are

P*a -gi-2 dg(wy,ws) 2 2829(w1,w2)
Lll:[“)iw% = Cwl 1 Wy 1 (Bg(Bg—FBl)g(wl,wg)—B2Blw187w1—|—Blw1 87’10%>’

oL —B2 B3 9 Og(w1,w A% g(wy,w
LQQZTU}% = C’wl 51 ’LU2B1 (B3(B3—Bl)g(w1,w2)+B3Blw2W+B%w§W),

9%a _B2 1 Bz 4 8g(w1 'UJQ)
Lig=———=—Cw, ™ 51 (BB — B3 Bjw, 24—~~~
12 Dw,0w, w, Woy 9 Bsg(wy,ws) 3b1w1 owr +
0 0?
+ BzB1w279(wl’w2) - Bfwlwzig(whwﬂ)
Ows Owywa
N1

where C' = | B%

It follows from condition 1 of the Theorem that at least one of the numbers By (Bs + B1),
B3(B3 — B1), B2Bs is not equal to zero. Therefore, at least one of the coefficients Ly, L12, Lo
is not equal to zero for sufficiently large jo.
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Hence, surface (11) satisfies the assumptions of Proposition 4.5 in [9]. Applying this propo-
sition to integral (10) for p > 2, we obtain

p(]1d1+7242)+p(71+12>

1
—J2 1,J2 1,J2 d E
” sup|R 9T J1,—J ASDJ \J TJ 2J R9f| HLpg D (|e |) 9= || f ||LP;

where max{|s1|, |s2|, |ss|} = |s3|. Taking into account this inequality and isometry of operators
TR T2 RO fRT9f and considering condition max{|sy], |s2|,|s3|} = |s3], we obtain

Jicitisca—p(i1dy+iada)—p(i1+i2)

| sup A7 1 |1 < D2 p £ oo

Consequently, we have

s Jicitizco—p(i1di+isda)—p(i1+i2)
S IMAIEE <D, > 2 v I F Il -

J1,J22Jo J1,922Jo

The series on the right side of the last inequality converges for all p satisfying the condition

p>max{ “a s @
di+1 dy+1

}. Therefore, for such p the following inequalities

IMEF < D I METRL 00 Cy || f o

J1,32230

hold true, where C), is some positive number.

Analogously, one can show that if max{|s1|,|sz|,|s3|} = |s1| or max{|s1]|,|s2|,|s3|} = |s2]
then the maximal operator M¥ f is bounded in LP(R3?) for p > max{ ! , a2 or for
di+1ds+1
> { b bz } tivel
max respectively.
p di+1 dy+1 P Y
Thus, the proof of the positive result of Theorem is completed.
Let us prove now the negative result. For this reason suppose that max { 671, 672} > 2
di+1dy+1

Then following [1] consider the function

m(zwi, 902)772(»”63)

f((El,LU27£C3)
EEI N

where 71,72 are smooth functions satisfying the following condition

K
2
K

1,
771(931,562)772(563) = { 0

]
|

VoA

|

Here k > 0 is some sufficiently small number. Taking into account relations (2) and (3) the
averaging operator corresponding to function f(x1,x2,x3) is represented as follows

m(y1 — twy(ug, u2),y2 — tx2(u17u2) 2 (ys — tag(ui, usz)
azto) = | ( Jn (o, w2))
B lys — tas(ur, uz)|» [ In]ys — tos(u, us)||”
2

x b1 (uq, ug)uflugzgo(ul, ug)duy dus.
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Let us assume that 1(0,0) > 0, ¢t = Y35 0. Since & is sufficiently small number consider
T3
(y1,y2) that lies in a small neighbourhood of the point (7“1937 r2y3) Then one can obtain
3 3

! a7 o
sup A7 )| > O [ — dusdu,
>0 =l i< s | In [ 22wt ug g3 (u1, ua)||7

where C' is some positive number. The last integral diverges for all p satisfying 2 < p <

a e } Hence, the maximal operator M?¥ f is not bounded in LP(R?) for these p.
dy + 1’ da+1

Analogously, one can show that if max{|si|, |sz2], s3]} = |s1] or max{|s1], |s2], |33|} = |52| then

max {

the maximal operator M¥ f is not bounded in LP(R3) whenever 2 < p < max{
by ba

di+1dy+1
Thus, making similar arguments under conditions 2 or 3, the proof of Theorem 3.1 is com-

pleted.
Consider now a number of corollaries in connection with Theorem 3.1.

d1—|—17d2—|—1

or2<p< max{ }, respectively.

Corollary 1. Let p(u1,uz), {gr(u1,us)}s_, be fractional power series defined in a small neigh-
bourhood of the origin of coordinate system of R? such that ©(0,0) # 0, gr(0,0) # 0 and
d1 > —1, dy > —1. Then the following assertions hold true

1. If 1 = 0,79 = 0,75 # 0, B1 # 0 and either BoB3 # 0 or Ba(Ba+ B1) # 0 or B3(Bs—By) #0

then p’(S) :max{dlcj_l,d;il}.

2. If 1 =0,r3 =0,7r92 # 0, B3 # 0 and either BoBy # 0 or Bay(Ba— B3) # 0 or By (B1—B3) #0

b1 bo
then p'(S) = max { : }
enp!(S) =max { =g oy
3. If o =0,r3 =0,7r1 # 0, By # 0 and either ByBs # 0 or B3(B3—B2) # 0 or B1(B1+Bs) #0
ai az
then p'(S) = max { -, 1.
en p’(S) = max il
Corollary 2. Let us assume that @(u1,us), {gr(u1,u2)}s_, are real analytic functions defined
in a small neighbourhood of the origin of coordinate system of R? and they satisfy the following
conditions: ¢(0,0) # 0, gx(0,0) # 0. Then under the assumptions of Theorem 3.1 its assertions
are true.

Corollary 3. If conditions 1-8 of Theorem 3.1 are replaced with the relations
rs #0, BL #£0, AT'e# (1,0), A7'e#(0,1), A7'e#(0,0);

r#0, By #0, Ay'a # (1,0), Ay'a#(0,1), Ay'a # (0,0);
ro #0, B3 #0, A7'b # (1,0), A3'0#(0,1), A3'b # (0,0)

, respectively, and other conditions are satisfied then assertions of Theorem hold true. Here
Ay, Ay, A3 are matrices By, Bo, B3, respectively, and @ = (ay,az), b= (b1,bs), €= (c1,c2).
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O makcuMaJIbHBIX OllepaTopaxX, aCCOIMUPOBAHHBIX
C CEMENCTBOM CHUHIYJIAPHBIX IIOBEPXHOCTEN

Canum 3. YcmaHOB
Camapxranjcknit rocygapcrBenublii yuusepcurer umenn 111, Pamunosa
Camapkans, Y3bekucran

Awnnoranusi. B 9T0if cTaThe paccMaTpUBAeTCS MAKCHMAJBHBIN OMEpaTOp, aCCOIMUPOBAHHBIN C CHHTY-
JIIPHBIMU ITOBEPXHOCTAMHU. J[OKa3bIBaeM OTPAHUYEHHOCTH TOTO OIEePATOpa B IIPOCTPAHCTBE CYyMMUpDYe-
MBIX (DYHKITUI, KOr[a CUHTYJISIPHBIE IOBEPXHOCTH 33IAI0TCSI TApaAMETPUIECKUMU ypaBHEHUsIMUA. A TakzKe
HaliJIeH TTOKa3aTe/Ib OTPAHMYEHHOCTH MAKCHMAJIBHOTO OIEPAaTOPa I TAKUX IMPOCTPAHCTB.

KuroueBrie ciioBa: MakCcUMaJjIbHBIA OIEPATOD, OIIEPATOD YCPEIHEHUs, NTPOOHO-CTENIEHHOM Psijl, CHHIY-
JISTpHAs TTOBEPXHOCTH, [TOKA3aTeIb OrPAHUIEHHOCTH.
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