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Abstract. In this paper, we introduce an estimator of the least squares regression function, for Y right
censored by R and min(Y, R) left censored by L. It is based on ideas derived from the context of wavelet
estimates and is constructed by rigid thresholding of the coefficient estimates of a series development of
the regression function. We establish convergence in norm La. We give enough criteria for the consistency
of this estimator. The result shows that our estimator is able to adapt to the local regularity of the
related regression function and distribution.
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Regression is defined as being the set of statistical methods widely used to analyse the rela-
tionship between a variable and one or more others. For a long time, the regression of a random
variable Y on a vector X of random variables designated the conditional mean of Y given X.
Nowadays, the term regression designates any element of the conditional distribution of Y given
X, as a function of X. We can for example be interested in the conditional mean, the conditional
median, or the conditional variance. In presence of functional data, which are doubly infinite
dimensional problems, the appeal to non parametric estimation is unavoidable. The starting
point in this regards is a prediction problem that leads to the regression function due to the
minimization of the mean squared error i.e., Lo risk. In this setting, one can usually consider
the model Y = m(X) + & where ¢ is centred and is independent of X with the explained variable
fully observed. In the case of complete observation of (X, V'), an abundant literature in this field
can be found for instance in Gyorfi and al (2002) and references there in. However, in several
situations the variable of interest X may be subject to randomly right and left censoring in the
same sample. The lifetime Y is right censored by a variable R (which itself represents a survival
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time) and the minimum between Y and R is censored by a censorship variable on the left. A
symbolical example of this model is the one given in Morales and al. (1991) that investigates the
cause of death of trees on a farm. This kind of censoring model is exactly the Model one studied
in Patilea and Rolin, for which local averaging estimates of m(x) = E(Y|X = z) has been in-
troduced by Messaci (2010). In Kebabi and Messaci (2012), least squares estimator of m(z) has
been proposed and its Lo—norm convergence has been established. In this paper, we are mainly
interested in least squares estimation approaches of the regression function for the Model I of
Patilea and Rolin. Particularly, we investigate a least squares method based on wavelets. The use
of a wavelets based approach is motivated by the possibility to achieve optimal convergence rates
despite the high dimensionality of the problem. Moreover, wavelets are excellent approximators
for signals with rapid local changes such as cusps, discontinuities, sharp spikes, etc. On the
other hand, accurate wavelet decomposition, using only a few wavelet coefficient, can represent
signals allowing dimensionality reduction and sparsity. So explicitly, the purpose of this paper is
the construction of non-linear orthogonal series estimates by rigid transformation (thresholding)
of the coefficients estimates of a regression function series development. The first part of our
study is devoted to the introduction of the least squares estimators of the regression function
for censored data and to some convergence properties. An important idea is introduced which
consists in the estimation of orthogonal series of the regression function. Then, we present the
estimation of the coefficients of these series, based on a wavelet system, is presented. In the
second part, we list the proofs.

1. Model and recalls

Let (X,Y) be a random vector with values in R? x R with E(Y)? < oo and the dependence
of Y on the value of X is of interest. Let R and L be censoring positive random variables.
More specifically, the objective is to find a function f : R? — R such that f(X) is a "good
approximation" of Y.

1.1. Model

We introduce orthogonal series estimates of m(x) = E(Y|X = xz) with respect to sample
of iid D, = {X;, Z; = max(min(Y;, R;), L;), A;} from the same distribution as (X, Z, A) or
Z = max(min(Y, R), L) and

0 if L<Y<R,
A=< 1 if L<RKY,
2 if min(Y,R) < L.

Indeed, let f : R? — R be an arbitrary (measurable) function and denote X distribution par u
then

EIf(X) - Y = BIf(X) = m(X) + m(X) - Y|? =
— EIf(X) - m(X)? + Elm(X) - Y| =
—Blm(X) = Y+ [ 17(2) = m(a) Putde).

In the sequel we will denote by Fy the distribution function of the random variable V' and by
Sy =1 — Fy its survival function and Ty = sup{t: Fy(t) < 1} and Iy = inf{¢: Fy (t) # 0} the
end points of the support of the variable V. Assume that the variables X, Y, R et L satisfies the
following hypotheses

Hy Y, R and L are independent.
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H,: (L, R) is independent of (X,Y).

Hs: 3T <Tgand I > I such that,Vn e NVi(1<i<n): 4, =0=>1<Z; <T as.
Hy: F, is continuous on ]0, oof.

Hs : Tr <Ty <Tp <ooand Iy < I < Ig.

H, is an inherent hypothesis of Patilea’s et al . H3 seems to be acceptable because I < Z; < T
when A; = 0. Hj5 guarantees in particular that the model is identifiable.
Let h a mapping on R? x R — R, we introduce as unbiased estimator of E(h(X,Y’)) the amount

Z =0 S R(Z)FL(Zy) X)“Z() Zi) o

Indeed, under hypothesis H1, Hy and Hy. The problem is that functions Si and Fy, are generally
unknown, we will replace them respectively with their estimators. Let (Z})1<j<am, (M < n) be
the distinct values of Z; listed in ascending order.

1.2. Estimation and proprieties

Set . .
Dij = YW zi=z; A=k}, and Nj = > 1(z.< 21y,
=1 =1

thus, [22] suggest estimating Sk by

Say=[I {1UJ_1D_“N_} and U; .y =n [] {1D”}, (2)

izt i1 J<ISM

and by inverting time in the Kaplan et al estimator, we can deduce the estimator E, from Fy,
(left censoring case) witch is

B =TI {1_1““"’}} (3)

) J
JlZi>t

Recall that under hypothesis H; and Hj, [22] have proven that

tselﬁg Sn(t) — Sgr(t) . 0 a.s. (4)
And .
tsetjgi E,(t) — Fr(¢) . 0 a.s. (5)
Note that hypothesis Hs implies that
Sr(T) > 0 and Fr(I) > 0. (6)

In view of equations (4) — (6), we deduce that for n sufficiently large
S.(T) >0 and E,(I) > 0 a.s.

If Y is uncensored , the regression function estimator of the least squares , obtained by minimizing

the empirical risk Lo, is arg min— Z|f( ;) — Yi|?, where F,, is a class of functions that is

n i=
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depending on the sample size n. Thus, in our context, according to the relation h and after
having estimated Sg and Fp, the least squares estimator of m(z) is given by

~ 1o £(X) — Zi) (0 )
m, =argmin— » lig_an—"-—F——|[=-:=0]. 7
fer. n; O S (Z0)Bu(2:) \0 ™

F,, is a certain family of functions which will be clarified in the theorem. We see that S, (Z;)
does not vanish in the expression of m, if A; = 0. It is easy to check that Fn(ZZ) does not
vanish either if A; = 0 but since Y is bounded, we are going to make some assumptions on our
estimator. For that reintroduce the notation of the next use of truncation.

For 0 <t < oo and z € R, define

t ifx>t,
T[O,t] (.T) = xz if 0 § €T § t,
0 ifz<0,

and for f : R? — R, define (Tjg 4 f)(x) = T (f(z)). We can also use again the fact that this
mapping verifies the following relation.

Vb >a, |Tpp(x)— Tp,uq@)| < (b-a) (8)
Y being limited and due to M,, = max(Zy, ..., Z,) with M, j T}, a.s, we finally propose
n—-+oo
as an estimator of m(x)
mn(a:) = T[O,Mn](mn(m))- (9)

1.3. Wavelet bases

Let F,, be the set of all piecewise polynomials of degree M (or less) with respect to some
partition of [0, 1] consisting of 4n'~ intervals (or less). Let G be set of polynomials of degree
M (or less), let P, be an equidistant partition of [0, 1] in [log(n)] intervals. Denote G o P, the
set of all piecewise polynomials of degree M (or less) with respect to P,. We will also need the
following notations

L3 = Tiogn(Fn).

Frr={Vf€GrpoP,|fllc <log(n)}.

Now adapting the proofs given in Kohler et al [17], We get the following result concerning the
convergence of the introduced estimators. We refer, for example to Gyorfi et al [7] for some
definitions and results of the Vapnik et al [23] theory, used in this work.

We introduce orthogonal series estimates in the context of regression estimation with fixed,
equidistant design, which is the field where they have been applied most successfully. Let
(x1,Y1),...,(2,,Y,) be data according to the model Y; = m(x;) + €; where z; are fixed (non-
random) equidistant points in [0,1] , &; are i.i.d. random variables with ; = 0 and E(¢;) < oo
and m is a regression function f :[0,1] — R.

Assume that m € La(p) where p is Lebesgue measure on [0, 1]; and (f;) jen is an orthonormal
basis in Lo(u), ie

s i = [ B@ntuan ={ § 3 47
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Each function in Lo(u) can be arbitrarily approximated by linear combinations of (f;);en. Then
m can be represented by its Fourier series with respect to (f;);en,

m=> c;f; where ¢; = (m, f;)1,) =/m(ff)fj(ff)/~t(dw)~ (10)
j=1

Orthogonal series estimates use the estimates of coefficients of a series expansion E|f(X)—Y|? =
E/m(X)—=Y|?*+ [|f(z) — m(z)|*pu(dz) to reconstruct the regression function and in the model

Y; = m(x;) +€; , where x4, ..., z, are equidistant in [0, 1]; coefficients ¢; can be estimated by
NN :

The traditional way to deal with these estimated coefficients to construct an estimate

K
1 ~
mon = ijj>
i=1

m is to truncate the series expansion to an index K and to inject the estimated coefficients.
Here, we try to choose K such that the set of functions{f1,..., fz} is the "best" among
all the sub-sets {f1},{f1, fo},{f1, f2,...} of {f;}jen in view of the estimation error (7). This
implicitly assumes that the most important information m is in the first coefficients K of the
series expansion E|f(X) =Y |2 =E/m(X) - Y[|? + [ |f(z) — m(2)|?u(dz).
[5] have proposed a way to overcome this hypothesis. This consists in contaminating the
estimated coefficients, for example, we use all the coefficients whose absolute value is greater

than a threshold d,, (called hard thresholding). This leads to estimates of the form
K
m*, = Z 15, (€)1
j=1

where K is generally much larger than K in (7), 6, > 0 is a threshold, and
N { ¢ if |Gl > dn

o if |G| =6,
in the series expansion, we truncate the estimate at some data-independent height B,,, in other
words, we define

B, if m,,(z) > By,
My (z) = (T, ) () = { mu(x) if — B, < 1y(z) < By, (12)
0 if 71, () < —Bh,

where B,, > 0 and B,, — oo (n — 00).

In this paper, we study the consistency of our estimator of orthogonal series. for simplicity
we will consider the case where X € [0;1] a.s. It is easy to modify the definition of our estimator
so that we obtain a weakly and strongly universally consistent estimator for the univariate X. To
prove the strong consistency of our estimator we need to make somme changes to its definition.
Consider o € (0; ). Let functions f; and coefficients ¢; be as defined in (10) and (11). Write
(Cay fy)s-- - ey fxy)

switching (é1, f1), ..., (ck, fx) and

e1| > [éa = -+ = [ex] (13)
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let’s define the estimator m?,, as

min{Knl1=l}

mio= Y ns.(@)f (14)

J=1

This ensures that m?3,, and a linear combination of no more than n'~* functions f;. And as in
E|f(X)-Y]? =Em(X)-Y]*+ [|f(z) — m(z)[*u(dz) we can show that
m?, =m®, ;- with J* C{1,...... , K} where J* satisfies |J*| < n'™®.

finally we combine the notation of the two estimates to obtain as an estimate of m,, the following
formulas m? and m,, whith Ty, < B,, = log(n) . We will also need the following notations

Ly, =Tr,(Fn). Fr={9:3f € GrroPu,g = Tox,)f}-

2. Results

Theorem 2.1. Under hypotheses Hy — Hs, let M € N be fized, and m,, the m estimator defined
1

by 9, 14 , with Ty, < By, =log(n) and 6, < ———— . Then

(log(n) +1)?
/ Imn(z) — m(a))” p(dz) — 0 a.s.
R n—oo
The following lemma will be used to establish our main result.
Lemma 2.2. We set the quantity m,,(x) = Tjo 7,(Mn(2)) and with equations (2), (3), we have

/ i () — () ? () <
Rd

< 2 sup

+ 15
o (15)

15 115 -z _yp
nzll{AiZO} Sn(Zi)Fn(Zi) Elf(X)-Y]|

1=

+no22(M + 1)7(109(’2 U

3. Proofs

We set the quantity m,(z) = T, 1,)(Mn(x)). We first show that the theorem is proved

/ Imn(z) —m(z)]? p(dz) — 0as. < / [ (z) — m(z))? p(dz) — 0 as.
Rd n—oo Rd n—oo
Indeed, according to equation (8), we have |m,,(x) — m, (z)|?> < |Tt, — M,|, which implies that

M () — M (2)> < (Tp, — M,)? = 0 as..
]Rd

Since by Hs we have lim M, = T}, a.s Kebabi et al [12]. First, we prove the Lemma 2.2, and

n—-+oo
finally, we prove the theorem.
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Proof Lemma 2.2. We start by proving, first we have
[ m(e) = m(a) ) =
Rd
= {B(m,(xX) = YD) - inf BACX) - YT+
fe}‘;;
{fmf E|f(X)-Y|] —E|m(X) - Y|2}.
eF,

In addition, the regression function satisfies

inf EIS(X) =Y = Elm(a) - Y = inf [ (7(@) = m(a) (o).

feF: fEF: ) pa
furthermore
B (jma(X) =Y [Pa) — inf B|f(X) Y] =
= sup { B (jma(X) - V]’ |Dn)— E(If(X) - Y[ |D) } =
feFy
= su E(|m (X)=Y)*|D ) _lzn:1 [0 (X) — Zif” +
fers " ) e A E(Z)
1 (X)) — Zi)? 1 1 (X3) — Zi|?
n; {4,=0} Sn(Zi)Fn(Zi> n; {A,;=0} Sn(Zi>Fn<Zi)
IR (X)) - Zi 1 |f(X:) — Zi
+— 1{Ai:0} = = - 1{Ai:0}f
; n(Zi)Fn(Zv) ?:lz: Sn (Zv)Fn(Zz)
1¢ /(X)) - Zi) -
+=> lia=0y 5 om o — Elf(X Qn.is
"; Sn(Zi)Fo(Z;) ;

where the @, ; are explained below for all 7, 1 < i < 4.
e Since m € F,, ,m, € F,; and F;; C L}, it is obvious that

X)—Zi|2
Z;

= su m —Y)? - —
Qn1 = P{E<| n(X) =Y |Dn> Zl{m_o} Ve (Z)

fery

CI)> S\

n

< s Z X)L pisx) - v
S ek |n “‘“S( Z:)Fn(Z:) ’
and
B F(X) =z 2
Qn,4 = fseuj%{ Z {A; _o} (Zl)F (Z) E\f(X) Y| }<

Z - _0}% BI(X) - Y]

N

sup
fecs
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e Since m,(X;) <Tp and Z; <Tp a.s., we obtain 1y, —o} [ (Xs) = Zi| = 11 a,—0y [ (X3) = Zi,

which implies

e As F,, C F;* because of T, < log(n) and fix f € Gy o P,. In view of P, definition,
Lemma 18.1 in Gy®rfi et al [7] exist J C {1,...,n} and f € F,, j, such that f(X;) = f(X;)

and |J| < 2(M + 1)(log(n) + 1)? which implies that

|mn Xz ) —7Z; |2
n {4i=0} & A -\ {A; _0} =
Z (Zl)Fn Z ( ) E(Z)
|mn Xi) — f X)) —Z; |
- {A=0} "3 oA o {(A=0} G m o S
Z (Zl)Fn Z Su(Zi)Fo(Z:)
< m;fLQ(M + 1)M.
n
From m definition, it is obvious that
BN [ (X0) = Zi)* 1¢ f(X:) — 2
n = Ssu — 1 — = = — — 1 N B <
e T {nz RRCATRPANNT < S NVAT AV

< no22(m 4+ 1)legm) £
n

Inequality (15) is therefore proven.

Proof Theorem 2.1. It remains to be proven that the three terms of Lemma 2.2 tend to zero
almost surely when n — oo. To do this, we will proceed in three steps. In the first step, we show

that
nl;rréofs;lg Z (A, _O}g(();))F(ZZ) E|f(X)=Y]*| =0 as.

To do this, we use the following inequalities
e R - -
SR *Z {A=0)g );)Z:n éﬁ Z {4:=0} lf(?)p (Z|)
o Z {40 'f();)w Z {A_O}S);))FL() +
+ sup *Z (A, —O}SRX)> L(ZZ» - BIf(X gQ e

Since f € L implies that 0 < f(x) < Tr, we get — in view of — formulas (4)—(6)

Q1 = sup Z (A 70}X7 Z {A‘O}))(ZZLQ) <

fecLs Z;)F,
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2
<= L - sup |S,(t) — Sgr(t)] — 0, as.
Sn(T)Sr(T)F,(I) ter+ n—o0
and
) Z|2 1< |f(X ) i
su e — Bl S AL I

T2
FL(D)Sa(T)Ea(D) ekt

Let’s introduce the following notations V=(X, Z,14), Vi=(X1,Z1,14,),-.-,Va=(Xn, Zn,14,)
n i.i.d random vectors with the same distribution as V.

— 0 a.s.

n— oo

Define
", :{h;Rd x [0,T;] x {0,1} = R* : 3f € £* such as,
Ly |f(2) — 2"
h(z,z,14) = —/—~—
(2 14) = =g )P )

V(z,2,14) € RY % [0,T] x {0,1} }

T2
Functions of H,, are positive and bounded by WLF(I)’ and
R L

1alf(X) - 2]
E( Sr(Z)FL(Z) |X’Y>

(X)) - 7

_ LalfX) -2\ _
Eh(V)_E< Sr(Z)FL(Z) ) -

under Hy,H5 et H4. In addition we have

2
= Sup Z {Aﬁo}m— Elf(X)-Y["| =
1 n
= sup |— )Y h(V)—Eh(V)|.
Sup n; (V) (V)

For all hy and ho € H,, let fi and fo be their corresponding functions in £} then

IS (Vi) — B (V)

i=1

IS g ) 2 [f2(X) = Zi)°
ne | SR(Z)FL(Z) M= gz Z)Fi(Z:)|

< g oK) + () 220 (X)) — (X0 <
2T, IR
<W}L(I) ;|f1( i) — f2(Xi)l,

which implies N (g, Hy, V") < N (E%IZL(U, E:‘wX{l), where N (e, F,, Z}') denotes the over-
lapping number. Theorem 9.1 in Gyérfi et al [7] gives, for all § > 0

{fséu?gn Zh > 6} <8FE {N <516TL JLE X ) pexp —128Tf ,
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which is, in view of Theorem 9.4, Theorem 9.5 and Lemma 13.1 in Gyorfi et al [7], we get
sup h(V; (V)| >dp <
{ fEHA Z }

2(M+2)nt—
288¢ T2 e . (_ n52s§(T)Fg(1)> |
()"

< 8Gn) | -
o) ( 5 (Sr(T)Fy 1287}

The formula combined with the Vi, e VG+ of the theorem where Vi, erd stands for the
VC dimension of the set of graphs of functlon in Gy , allows to apply Borel Cantelh lemma, to
get

f(X0) - Zi)? 2
Z a0y g s~ BlIX) ~ Y]

sup

— 0 a.s.
fEL‘* n—oo

In the second step, we get

2
(og(n) +1)° — 0 a.s because 6, < .

2 S —

In the third step, we prove that

. 2
inf x) —m(x dr) — 0 as.
ot [ 1) = me) i)
Since m can be approximated arbitrarily closely by continuously differentiable functions, we
may assume without loss of generality that m is continuously differentiable.For each A € P,

choose some 24 € A and set f* = > m(xa)la.Then f* € Gy o P, and for n such that
A€P,

[m]lee < T <log(n) we get

. 2 2 C
inf z) —m(z dzr) < su (X)—-m@)]" €< ————= — 0.
VFEGN0Pu,|If ]l gTL/Rd () = m(@)" ulde) ;ve[OI,)l] F7(X) = m(@) (log(n))? n—oe
where c is constant as a function of the first derivative of m. O
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Henosmas orienka pyHKITUN perpeccu MeToJIOM
HauMeHbIINX KBaJApPaTOB Ha OCHOBE BeNBJIETOB

Puma lyac
Unbxem Jlapycn
Cymusa Xapdyimnu

Kadenpa maremaruku
Yuusepcurer 6parbeB MeHTYypHu
Koncraarnn, Amxup

Awnnoranus. B 3roil crarbe Mbl BBOAMM OIEHKY (DYHKIIUU PEIPECCUU METOJIOM HAUMEHBIINX KBAJIPATOB
st Y, nensypuposansoro cupasa R, u min(Y, R), nensypuposansoro ciesa L. OH OCHOBaH Ha HJesIX,
MTOJTyYEHHBIX M3 KOHTEKCTA BEHBJIET-OIEHOK, M MOCTPOEH IIyTEM YKECTKOI MOPOroBoit 06paboTKM OIEHOK
KO3 PUITNEHTOB Pa3BUTUA Psifia (PYHKIUU PErPecCUr. YCTAHABIUBAEM CXOIUMOCTH 10 HOpMme Lo. Mbr
JaeM JOCTaATOYHO KPUTEPHUEB ISl HEIPOTUBOPEUYMBOCTH ITOU OIEHKH. Pe3ybraT MOKa3hIBAET, 9TO HAIIA,
OIIEHKA CIIOCOOHA aAIITUPOBATHCH K JIOKAJIBHON PEryJIsipHOCTA COOTBETCTBYIONMIEH (DYHKIIMUA Perpeccun
U pacIpeiesIeHus.

KuaroueBbie cjioBa: HemapamMeTpudecKasi perpeccus, ommubkra Lo, OIMEHKA MeTOJ0M HAWMEHBIITNX KBa/l-
paTOB, OIEHKN OPTOTOHAJIBLHBIMU PsiTAMHU, CXOIUMOCTb B HOpMe Lo, MBaXK bl I€H3y PUPOBAHHbBIE JAHHBIE,

OIIEHKA PErPecCHy, *KECTKUI ITOPOT.
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