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Let A denote the class of functions f(z) of the form:
oo
f(z):z—FZakzk (ar 20, ne N={1,2,3,---}), (1)
k=n

which are analytic and univalent in the open unit disk given by
U={z:2€C and [z <1}

The Koebe one-quarter theorem [5] ensures that the image of U under every univalent function

1
f € & contains a disk of radius 1 Hence every function f € S has an inverse f~!, which is
defined by
f7Hf(2) == (2€)

and )
) = o (jul<m@in() > 1),
where
fHw) = w — agw?® + (243 — az)w® — (5a3 — bagaz + az)w* + -

A function f(z) € A is said to be bi-univalent in U if both f and f~! are univalent in U.
We denote by ¥ the class of all functions f which are bi-univalent in U and are given by the
Taylor-Maclaurin series expansion (1). The behavior of the coefficients is unpredictable when
the biunivalency condition is imposed on the function f € A. A systematic study of the class
% of bi-univalent function in U, which is introduced in 1967 by Lewin [12]. For a brief history
and interesting examples of functions which are in (or which are not in) the class 3, together
with various other properties of the bi-univalent function class ¥, one can refer to the work of
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Srivastava et al. [21] and references therein. Ever since then, several authors investigated various
subclasses of the class ¥ of bi-univalent functions. For some more recent works see [22-27]. The
class of bi-starlike functions is introduce by Brannan and Taha [2] (see also [14]). For 0 < o < 1,
a function f € A is in the class S (a) of bi-starlike function of order « if both f and f~1 are
starlike in U and obtained estimates on the initial coefficients conjectured that |as| < V2. Tt
may be noted that for a =0, ¢ — 17, S;(a) = 5%, the familiar subclass of starlike functions
in U.

For the univalent function in the class A, it is well known that the n'” coefficient a,, is bounded
by n. The bounds for the coefficients gives information about the geometric properties of these
functions. For example growth and distortion properties of normalized univalent function are
obtained by using the bounds of its second coefficient as. In 1966, Pommerenke [15] define the
Hankel determinant of f for g > 1 and n > 1 as

(07%% Ap4+1 - An4q+1
Ap41 Ap+2 ... Qn+4q
Hy(n)=| . , A (2)
Un+qg—1 GOp+q --- OGp42q—2

A good amount of literature is available about the importance of Hankel determinant. It plays
an important role in the study of singularities as well as in the study of power series with integral
coefficients ([3,4]). In 1916, Bieberbach proved that if f € S, then |a3 — a3| < 1. In 1933, Fekete
and Szegd [5] proved that

4p—3 if u>1,
|as — pa3| = § 14 2exp[—2u/(1 - p)] if 0<p<1, (3)
3—4p if p<O0.
The Hankel functional Hy(1) = |ag — a3| and H(2) = |agas — a3| is also known as Fekete—

Szeg6 functional and second Hankel determinant respectively. The Hankel functional has many
applications in functional theory. For example |az — a3| is equal to Sy(z)/6, where S¢(z) is
the schwarzian derivative of the locally univalent function defined S¢(z) = (f"(2)/f'(2)) —
1/2(f"(2)/f(2))? (See [19]). In 1969, Keough and Merkers [11] solved Fekete-Szegd problem
for the classes of starlike and convex functions. Lee et al. [13] established the sharp bounds to
|H2(2)| by generalizing several classes defined by subordination. Janteng et al. [9] (see also [1,18])
provided a brief survey on Hankel determinants and obtained bounds for |Hz(2)| for the classes
of starlike and convex functions.

The theory of g-calculus in recent years has attracted the attention of researchers. The
g-analogy of the ordinary derivative was initiated at the beginning of century by Jackson [§].
Ismail et al. [7] first introduce and explore class of generalized complex functions via g-calculus on
the open unit disk U. Recently many newsworthy results related to subclass of analytic functions
and g-operators are meticulously studied by various authors (see [10,17,20]). For 0 < ¢ < 1, the
g-derivative of a function f given by (1) is defined as

flaz) = f(z) ¢
D,f(z)={ (qg—1)z for= 70, (4)
1(0) for z =0.
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We note that 111{1 D,f(z) = f'(z). From (4), we deduce that
g1~

oo
Dof(z) =1+ [Flgar """, ()
k=2
where as ¢ — 1~
1—¢ k
[k]q=1_q=1+q+~~+q — k. (6)

In this connection, our aim is to study upper bounds for functional |agay — a3| for functions
belonging to the class f € S;(«a), which is defined as follows.

Definition 0.1. A function f(z) given by (1) is said to be in the class f € S;(a), 0 < q <1,
0 < a < 1 if the following conditions are satisfied:

fex, Z(l;q(igz))>6 (0<p8<1;z€el)
and W>ﬁ (0K B <1;2z€), (7)

where the function g is the extension of f~' to U.

In order to derive our main results, we have to recall here the following lemma.

Lemma 0.1 ([16]). If h € H, then |Bk| < 2, for each k > 1 and the inequality is sharp for the

function

Lemma 0.2 ([6]). If p € P, p(z) = 1 +c12 + 222 + 323 + ... then 2c5 = ¢} + z(4 — &3),
deg = A3 +2(4 = A)err — c1(4 — D)a? +2(4 — 3)(1 — |z]?)z, for some z, z with |z| < 1 and
|| < 1.

Another result that will required is the maximum value of a quadratic expression. Stranded
computation shows

(4PR — Q?)/4P if Q >0, P < —Q/8,
(Orilta<x4)(Pt2 +Qt+R)=<R if Q<0,P<—-Q/4, (8)
o 6P +4Q+R if Q>0,P>-Q/8 or Q<0,P>—-Q/4

1. Main results

In this section, we investigate second Hankel determinant |H3(2)| for functions belonging to
the class S () using g-differential operator. For convenience, in the sequel we use the abbrevi-
ation q2 = [2](] — 1, q3 = [3],1 — 1, q4 = [4}(1 —1.

Theorem 1.1. Let 0 < a < 1,0 < ¢ < 1. If function f € A given by (1) belongs to the class
S, (a) then
i. For @ >0, P < —Q/8

a2a4a§}§T(Rg>. 9)
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ii. For Q <0, P < —Q/4
lazay — a§| < TR. (10)
iti. For@Q >0, P> —-Q/4
lazas — a3| < T (16P +4Q + R), (11)
where
P=4B*L+BM + N, Q=U —4pV,

R=064¢5q1, L= (q1—q3)q5, M = q5qs + 8¢5 — 8q3qu,

N = 4(q1 — g3) — 634504 + 4giqs, U = 4g3q3q1 + 126343 — 32g3qs, V = g3gzqs and  (12)
_a-pp
4‘13(13(14
Proof. If f € Sy() and g € f~'. Then
2(Dy f(2))
R R (e
o (1 - 6)p(2)
and
w(Dyg(w))
—— = =0+ (1 - Ba(w). 13
o (1~ Ba(w) (13)
We obtain
z2(D,f(z
(fq(fzg)) =1+ gzazz + [q?yag - QQag] 2+ [Q4a4 — (g2 + g3)asaz + qgag] P (14)
Also
w(D,g(w
(gzi())) =1—goasz + [q3 (243 — a3) — gea3] W+
+ [(g2 + g3)a2 (2@% —a3) —q (5a§’ — basas + as) — QQ(L%] w4 (15)
From (13), (14) and (15), it is easily seen that
1_
ay = ﬂ’ (16)
q2
(1=B)°c  (1—B)(c2—da)
az = + 17
’ % 2q3 a7
and
1-B)3c3  5(1—B)> —d 1- —d
a4:%( 35) G (1-pB)%ci(e2 2)+( B)(cs —ds) (18)
4594 49243 2q4
Upon simplification, we easily establish
—a)(1-p)" 4 (1-5)°
asay — a2l = (g5 — a4) ( A+ 2 (cqg —do)+
24 — aj| v ' e 1 (c2 —do)
(1-p5)? (1-p5)? 2
ci(cs —d3) — ———(ca — d . 19
s 1(c3 —d3) i (ca —d2) (19)
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According to Lemmas 1 and 2, we write

2
02—d2:4 Cl(a:—y) (20)
and
3 4 — 2 4 — 2
403—4d3:%1+62( . Cl)(w—ky)—w(lﬂ-&-y%—i—
4—c?
+ (721) ((1 - |x\2) z— (1 — |y|2) w) , (21)

for some z,y,z and w with |z] < 1, |y| < 1, |2|] < 1 and |w| < 1. Substituting values of
¢2,C3,dy and d3 from (20), (21) on the right side of (19), we have

lacas — a3| <My + Ma(o1 + 02) + Ms(o] + 03) + Ma(o1 + 02) == F(o1, 02), (22)
where
(g2 —g3) (1= 5)* 4 (1-5) 4 (1-p)? 2
M; = ci + ]+ c(4—cf), 23
' 4304 Yodga N 200 1 -a) (23)
1-5)° , oy, 1=58)% , 2]
My=|—5—¢cj(4d—c])+ ——cij(4—c x| + , 24
2 [ 82qs 1( 1) 4q20s 1( 1) (lz[ + |y) (24)
(1-5)% , 2 (1-5)° 2 } 2 2
Mg=|——tci(d—c])——Lci(d—c z|* + , 25
o= | SR - @) - U (1 ) of 4 o) )
(1-p)? .
My = 5= (4 - )T () + 1yl (26)
43
Applying Lemma 1, without loss of generality assume ¢; = ¢ € [0,2] for g; = |z| < 1 and
02 = |y| <1 and using triangle inequality, we have
M—wm —g3)(1-B)? -2 +8c+g3]ct >0 27
L= (g4 —q3) (1 - B) ¢ +8c+q5| ¢t >0, (27)
4244
M_(1_5)2[1_ 2 _2
2= o [(1 = B)as + 2qaq3] * (4 — %) > 0, (28)
8454344
(1-p5)° 2
Mg=-—"—(4—c")c(c—2) <0, 29
’ 8g2q4 ( )l ) (29)
1— 2
o= B8 225 (30)
4q3

To maximize the function F'(p1, 02) on the closed region & = {(p1,02) : 0 < 01 < 1,0 < o2 < 1}.
Differentiating F'(p1, 02) partially with respect to o1 and g9, we get
F

0101

'nggz - (Fsz)Q <0. (31)

This shows that the function F(g1,02) cannot have local maximum in the interior of the region
&. Now we investigate the maximum of F(g1, 02) on the boundary of the region &. For p; =0
and 0 < g2 < 1 (similarly po = 0and 0 < g1 < 1), we obtain

F(0,02) = Q02) = (M3 + My) 03 + Mags + M;. (32)
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i. M3+ My > 0 : In this case for 0 < 92 < 1 and any fixed ¢ with 0 < ¢ < 2, it is clear
that Q' (g2) = 2 (M3 + My) 02 + Ms > 0, that is Q(p2) is an increasing function hence for fixed
¢ € 10,2), the maximum of (2) occurs at g2 = 1 and maximum of go = My + Ma + M3 + M.

ii. Mz + My < 0: Since My +2(M3 +My) > 0 for 0 < g2 < 1 and for any fixed ¢ with
0 < ¢ < 2, it is clear that Ma + 2 (M3 + My) < 2(Ms + My) 02 + Ma < My and so ©/(g2) > 0.
Hence for fixed ¢ with 0 < ¢ < 2, the maximum ' (g2) occurs at g2 = 1. Also for ¢ = 2 we obtain

W-BPa—w) [ g, @ ] (33)

F(Ql»QZ =
) q%% (g4 — q3)

For g1 =1 and 0 < g2 < 1 (similarly g2 = 1 and 0 < 91 < 1), we obtain
F(1,00) = U (02) = (Mg + My) 0 + (M + 2My) 05 + My + My + Mg + My, (34)
Thus from above cases of M3 + My we get that
max U (g2) = U (1) = My + 2My + 2M3 + 4M,. (35)

Since (1) < U(1) for ¢ € [0,2], we obtain max F (91, 02) = F(1,1) on the boundary of the
square &. Thus , the maximum of F' occurs at 91 = 1 and g2 = 1 in the closed square &.
Let k : [0,2] — R defined by

k(C) = max(gl, QQ) = F(l, 1) = M1 + 2M2 + 2M3 + 4M4 (36)

Substituting the values of My, My, M3, My in the function k defined by (36), we get

_ 2
k(c) = M <|4 (g2 —q3) (1= B)°a5 — (1 — B)g3q3qa + 4q3qu| *+
4454544

(37)
+ 401 — B)a3a3qs + 126303 — 32g3qu| & + |64Q§Q4|>
which is quadratic in ¢?. Using the standard computation, we get
(4PR—Q?)/4P if Q >0, P < —Q/8,
lagas —a3| K TR if Q<0,P<-Q/4, (38)
16P+4Q+R i Q>0,P>-Q/8o0rQ —-Q/4
where P, Q, R and T are given by (12).
This completes the proof. O
Theorem 1.2. Let 0<q¢<1, 0<a<1and f € S;(a). Then for complex p
)1 -8
Na2| # (39)
Q2
Proof. Letting ¢ := ¢; > 0. Then for complex p, using (16) and (17), we have
1—5202 1—75)(ca —do 1—B)3c?
o = LB Q=P dy) | (=9
q5 qs3 q5 (40)
@=L —B)*as + (1 - B)(ca — d2)
24543
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By (16), we obtain

22— p)(1 - B)%c*qs + (1 — B)(4 — *)(z — )

as — Mag = 4(]5(]3 ) (41)
where x and y satisfying |z| < 1, Jy| < 1
(2 = p)(1 - B)%c?
g — ] <« B2 PTE (42)
2
using ¢ < 2, we get
2 —w)(1—pB)?2
o0 — | < E=G I (43)
2
This completes the proof. O

I am grateful to the reviewer(s) of this article who gave valuable suggestions in order to

improve and revise the paper in present form.
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BTOpOﬁ ornpeaeJimTeJIb l'ankens HJI5L GI/IYHI/IBa.TIeHTHLIX

dbyHKIOMiI, acCCOMMUPOBAHHBIX C ¢-AudHepeHITNATHLHBIM
ornepaTopoM

Mannukapaxys I'. Illpuran
TexHosoruvyeckuit 1 UCCIeI0BaTeILCKMIT HHCTUTYT BxuBapaban CaBanTa
IIyna, mrar Maxapamrpa, Unmgua

Anvoranus. llesbio naHHON cTaTbU sBJISETCS IIOJIyYE€HHUE BEPXHEH OIEHKHM BTODPOrO OIIPEJIesin-
Tenst lanmkensi, obosmauaemoro H(2), ama kmacca S;(o) OMyHUBAJEHTHBIX (QYHKIWH HCIOIL3YsI
q-ddepeHImaabHbIi 0IIepaTop.
KuroueBsbie ciroBa: onpesenureb [aHKe s, 6UOHONUCTHBIE DYHKINH, ¢-TuddepeHInaIbHbII onepa-
Top, dyukimonan Pekere-Cerad.
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