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Abstract. The statement of boundary value problems for the flow around real wing-shaped profiles of 
supercavitation mechanisms near the separation boundary is stated. The problem under consideration 
is extremely important for the numerical study of the processes occurring in heating equipment, 
supercavitation devices, and heat and mass transfer technologies. The discussed algorithms have been 
implemented as computational programs for algebraic (ALFA) and integral (OMEGA) equations, ordinary 
(SIMP) and improper (SECOB) integrals, including the Cauchy integral (DSECOB) as well as summation 
programs for sequences and series (SHENKS, AYTKEN), including divergent ones (EULER).

Keywords: two-phase compressible flow, wing-shaped profiles of supercavitation mechanisms, 
supercavitation mechanisms, mass transfer technologies.

Acknowledgment. The reported study was funded by RFBR and the government of Krasnoyarsk region 
according to the research projects №№ 18–48–242001 «Thermophysical and hydrodynamic features 
of the kinetics of mixture formation upon immobilization of radioactive waste in cement matrix using 
the effects of cavitation», № 18–41–242004 «Theoretical Foundations of potable water conditioning on 
the basis of the effects of hydrodynamic cavitation».

Citation: Kulagina, L. V. Shtym K. A. Flow past various types of vane mechanisms by a two-phase compressible flow. J. Sib. 
Fed. Univ. Eng. & Technol., 2022, 15(4), 505–520. DOI: 10.17516/1999–494X‑0409

	 © Siberian Federal University. All rights reserved 
This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0).

*	 Corresponding author E-mail address: klvation@gmail.com



– 506 –

Journal of  Siberian Federal University.  Engineering & Technologies 2022 15(4): 505–520

Обтекание различных типов лопастных механизмов  
двухфазным сжимаемым потоком
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Аннотация. Сформулирована постановка краевых задач для обтекания реальных крылообразных 
профилей механизмов суперкавитации вблизи границы отрыва. Рассматриваемая задача 
чрезвычайно важна для численного исследования процессов, происходящих в нагревательной 
технике, суперкавитационных устройствах и технологиях тепломассообмена. Обсуждаемые 
алгоритмы реализованы в виде вычислительных программ для алгебраических (ALFA) 
и интегральных (OMEGA) уравнений, обыкновенных (SIMP) и несобственных (SECOB) интегралов, 
в том числе интеграла Коши (DSECOB), а также программ суммирования последовательностей 
и рядов (SHENKS)., АЙТКЕН), в том числе и расходящиеся (ЭЙЛЕР).

Ключевые слова: двухфазный сжимаемый поток, обтекание крылообразных профилей, 
суперкавитационные устройства, технологии тепломассообмена.
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1. Introduction
A whole series of production challenges have been resolved due to successful application of cavitation 

technologies. There is a great variety of supercavitation-based technical devices such as mixers, blenders, 
and reactors, to mention just a few. Studies on the flow in the vicinity of separation boundaries (solid 
walls and free surfaces) show that in a confined flow liquid turns into a bubble mixture of liquid and 
gas. This complicates the flow analysis and introduces additional losses resulting in impaired energy 
performance of the concerned mechanisms. In a general case the problem of a two-phase compressible 
flow around various types of vane mechanisms is substantially nonlinear (even under no-vortex flow 
assumption). The knowledge of hydrodynamic characteristics of a pterygoid profile as an element of 
hydrofoil cascade with certain geometric parameters (the angle of stagger, the pitch, etc.) is crucial for 
designing vane mechanisms. Quite often the challenge is of a methodological nature as to the adequate 
formulation of boundary-value problems for a flow around actual pterygoid profiles of supercavitating 
mechanisms near separation boundary.

2. Keywords: flow around actual shaped profiles wing, supercavitating mechanisms near separation 
boundary, potential theory, numerical method solution.
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3. Efficient sequences summation methods

Discussed in the article the problem is extremely important for the numerical investigation of the 
processes occurring in thermaltechnological equipment, supercavitation vehicles and heat and mass 
transfer technologies [1–9].

Most of the problems in potential theory [10] can generally be reduced to solving integral or 
integral differential equations or sets of such equations [11–14].

In an operator form,

AU = f,	 (1)

where А is the integral or integral differential operator, U is the vector of desired solutions, and f is the 
vector on the right-hand side.

When the perturbation method is used solution to Eq. (1) is sought in the form of a functional 
sequence {Un}). Operator A can also be subjected to perturbation. So the original problem reduces to 
solving the equation

AnUn = fn,	 (2)

where An and fn are expressed through the values obtained in the earlier approximations.
Since convergence of series and convergence of sequences are equivalent concepts, i.e. convergence 

of the  series to sum S is, by definition, convergence of the partial sums sequence  to 

limit S and vice versa, it suffices to consider transformation of sequences [15].
In general terms, the problem of acceleration of sequence convergence involves using the source 

sequence {Sn}(n = 1, 2, …; Sn → S) to construct a new one

σk, n = Ak(S 1, S 2,… Sn)(k = 1,2,…),	 (3)

to satisfy the following requirements:
1)	 the new sequence converges to the same limit as {Sn} does;
2)	 σk, n exhibits, in a sense, better convergence to S than {Sn}. The comparison criterion must be 

specified.
If Ak is a linear operator, then the linear methods of acceleration are governed by Eqs. (3). A
Consider a general approach to convergence acceleration [11]. Let X be a metric space with metric 

d, {Sn} ∈ X is convergent: , its limit being S ∈ X.

Suppose .
We ask А to be:
1)	 absolutely regular, i.e. if , then ;
2)	 А method of acceleration conversion if А is regular and ;
3)	 a) А – ​a linear method if A(α{Sn}+β{tn}) = αA{Sn}+β{tn},
	 b) – ​А – ​nonlinear method if А satisfies the quasilinear conditions

A(α{Sn}) = α∙A{Sn}, A(α+{Sn}) = α+A{Sn};	
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4)	 А – ​numerically stable algorithm free from big accumulated calculation errors.
Transform (3) is chosen such that it accelerates convergence of any sequence {Sn} ∈ X. Consider 

a set of sequences {Sn} (numerical or functional), including convergent and divergent as well as 
monotonic and oscillating ones. These sequences, if presented graphically with the number n plotted 
on abscissa and Sn on ordinate and a smooth curve drawn through a discrete set of points, will yield 
graphs similar to those of transient processes in dynamic systems.

Taking S to be dependent on t, we have

,	 (4)

where αk is an arbitrary complex number.
Nonlinear transformations being equally applicable to convergent and divergent sequences, 

the mentioned similarity between the type of a transient process (steady or unsteady, harmonic or 
aperiodic) and the type of summation process becomes apparent.

Let all Re(αk) < 0 in (4). Under this assumption, we deal with a steady transient process. However, 
if there is at least one Re(αk) > 0, the transient process is unsteady. Obviously, this interpretation 
enables us to apply harmonic analysis.

Replacing  by qk (|qk|) < 1 in (4) yields

	 (5)

The S(t) quantity may or may not oscillate and it may be stable or unstable depending on the value 
of ν and coefficients αk and qk. In other words, in a general case it possesses the desired properties as 
specified above.

Within this approach, it is justified to represent certain sequences {Sn} as «mathematical transient 
processes», i.e. as n-type functions:

.	 (6)

By analyzing such a process we should be able to find both the order of magnitude of υ and the 
range of parameters а and q. If the sequence {Sn} satisfies (6) and if |qk| < 1, then .

If {Sn} is a transient process and one or more |qk| ≥ 1, then {Sn} fails to converge; however, 
one can say that {Sn} diverges from . Therefore the  parameter is called an antilimit [13] of the 
sequence {Sn}.

The calculus for finding  can be classified as a method of summation of {Sn} sequence or a 
technique to extract the main term thereof. There are few sequences appearing in applications that are 
essentially mathematically transient processes of some finite order ν. The rest are of an infinite order, 
i.e. ν → ∞ in (6).

All others also have a continuous spectrum [16]

.	 (7)

The function S(n) in (7) depends on the 2ν + 1 parameters of . The first 
one, as noted above, is of importance. Dropping the parameters αk, qk [17], we get the Shanks-Schmidt 
transformation at ν = k:
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,	 (8)

where  and  is derived from Dk, n by replacing the 

first row with unity. Aitken’s approximation is a special case of this transformation.
For k = 1

.	 (9)

For k = 2

.	

Validity conditions for the transformation: .
To ensure computation stability, it is advantageous to use the apparatus of branched continued 

fractions (BCF) [18] capable of providing an efficient algorithm for machine computation:
a)	 In the case of Aitken’s transformation we get an algorithm in the form of a branched continued 

fraction with two branches:

.	 (10)

Formula (10) is also valid for analytical calculus as the approximation |σ1, n – ​Sn| = 0(∆Sn) can be 
easily evaluated straightforward. Furthermore, with (5) and (8) it is possible to get a numerical estimate 
for the approximation |σk, n – ​S| = α|Sn+k – ​S|, where 0 < α ≤1.

For the Shanks-Schmidt transformation (8) (k = 1, 2, …), the effective condition for convergence 
acceleration is to be verified

(–1) k∆kSn > 0	 (11)

where  is the operator of central difference of order k,  are the binominal 

coefficients:
For k = 1, from (11) we have Sn+1 – ​Sn < 0 i.e. Sn+1 < Sn.
The sign on the right-hand side of (11) reverses if {Sn} is divergent. In that case upper partial sums 

must be chosen.
a)	 Recursive algorithms (BCF) for calculating the Shanks-Schmidt transformation.
Numerical simulation of transformation (8) is implemented by means of the Wynn algorithm [7], 

which is insensitive to rounding and accumulated errors:

εk+1(Sn) = εk‑1(Sn+1) + 1 / [εk(Sn+1) – ​εk(Sn)],	 (12)

where k = 0, 1, 2 …; n = 2k; ε‑1(Sn) = 0; ε0(Sn) = Sn; ε2k(Sn) = σk, n; ε2k+1(Sn) = 1 / σk, n(∆Sn).
This method gives the highest-order convergence . If the denominator in 

(12) turns to zero, this indicates that exactness has been achieved at the previous stage and no further 
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improvement is possible with this particular method. It should be noted that the ε-algorithm is closely 
connected with Thiele’s interpolation formula for Sn as a rational function of n [18]:

	

where . For k = 1, successive decomposition of recursive formula (12) 
yields

	

and so on. One can see that the ε-algorithm is a branched continued fraction with two branches. For 
k = 2 we have:

	

b)	 Brezinski’s Θ‑algorithm can essentially accelerate linear convergence of the sequence {Sn} as 
well [16].

Suppose there is a sequence such that {Sn}: . We seek to construct a new sequence  
that would converge to S faster than {Sn}. The new sequence is calculated using a recursive algorithm 
defined as:

 – the initial conditions;

;

,

for which . Furthermore, even the Wynn algorithm is accelerated by this 
recursive algorithm.

c)	 Levin’s nonlinear recursive algorithm. If  is explicitly dependent on 

n, where r = n, n + 1, n + k, γi denotes arbitrary real numbers, and Ar is a function of Sr, then acceleration 
is best achieved by means of Levin’s transformations [17] having the form

Tk, n = ∆kBn / ∆kCn,	 (13)

where  is the difference operator.

Depending on the form of (13), An = ∆Sn, An = n∆Sn, An = ∆Sn ∆Sn+1 / ∆2Sn are referred to as 
t-, w-, and v-transformations, respectively. For k = 1, the t-transformation coincides with Aitken’s 
transformation. Numerical implementation of this algorithm is based on the formulas

	 (14)

where	
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This algorithm is fairly simple, computable and capable of convergence acceleration 
.

4.  The problem of flow around  
a foil near separation boundary

In the case of small perturbations, the solution to the problem comes down to solving the integral 
equation [12, 13]

	 (15)

where χ and Fcр are functions of the hydrofoil shape and kernels D 1 and G2 are given by  

 . The foil shape is defined as F = Fн ± Fc, where Fн is the centerline 
equation and Fc is the thickness distribution. In the first approximation of the no-penetration boundary 
condition we obtain:

a)	 , if ;

b)	  if , where w = 1 for a sharp leading 

edge and  for a rounded one.
Equation (15) is an integral Fredholm equation of the first kind with a singularity in its kernel

.	 (16)

The solution γ of Eq. (16) is known [16] to be unstable even at small errors in f(ξ) data and 
sensitive to errors in the kernel k(ξ, s) and it is virtually independent of the solving technique.

The problem itself, (15), is essentially ill-defined and requires proper regularization techniques to 
enable its solution [20]. What makes it ill-posed when  is that integral equation (15) degenerates 
to a differential equation that is linear with respect to the higher derivative. By means of unsophisticated 
mathematics [12, 13] integral equation (15) of the flow boundary-value problem is rewritten as

,	 (17)

where	 ,

	

	

	 ;
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From Eq. (17) it follows that when , problem (15) reduces to a boundary-layer-type 
problem, which sheds light on why the problem is ill-posed. The physical conditions impose 
limitation on N.

This problem can be solved employing a hybrid approach. First, solutions to the exterior, (15), and 
interior, (17), problems are found [11, 12] and then these are mutually adjusted.

There is yet another way to tackle the problem. It starts with constructing a perturbed exterior 
solution and then this solution, which is ill-suited for , is transformed so that it is able to reveal 
the nature of singularity. The resultant solution thus becomes uniformly valid everywhere and provides 
good approximation to the true solution. The solution can be further improved quantitatively via 
higher-order approximations and, finally, nonlinear methods can be applied to accelerate convergence 
of the functional sequence [12, 13].

If the sequence is divergent, which depends on the class of the function f(ξ) in (15), then the linear 
transformations and algorithms discussed above allow the main term of the sequence to be extracted. 
Write the solution of integral equation (15) as γ = γ1 + γ2. The first term is associated with the influence 
of the centerline shape on circulation, while the second one is attributed to the dynamic curvature 
resulting from the flow around a profile near the separation boundary.

5. The functional parameter method

Represent γ1 solution in the form of a  series obtained by mapping  to 
τ∈[1,0]:

	 (18)

There is an expansion for the kernel with respect to parameter τ such that:

,	 (19)

with k1m defined in [12].
Series (19) is convergent. Moreover, it is convergent over the entire actual range of variation 

of the parameter r. Convergence of series (18) remains questionable because it is not possible to 
construct a general term. It is however possible to evaluate a convergence domain for specific foil 
shapes. Substituting (18) and (19) into (15) and resolving the solution into two terms (terms of the 
same τ power are taken equal) yields a system of singular integral equations with a Cauchy-type 
kernel:

	 (20)

Converting this equation into  class functions we have

.	 (21)
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The function  is found from the boundary conditions via the solutions 
. Let us now write the solutions for N = 13 and n = 1 for a plate when .

	 (22)

Substituting (22) into (21) gives

.	 (23)

where m = 1, 2, …, 13;
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If we do not go beyond linearized formulation of the problem, then with (18) and (23) we can find 
the resultant aerodynamic characteristics – ​the lift force and pitching momentum coefficients – ​using 
the following formulas

.	 (24)

In the first boundary conditions approximation, at n = 1 we get the functions of influence of the 
distance parameter  on  and  in the form of τ-series:

	

	 (25)

where .
Under formal application of the discussed method, the solution γ given by (18)–(23) is unstable 

[20]. It is considered that a coarse solution can be obtained taking just a few terms of the series; a 
further increase in the number of terms will only enhance the instability and the resultant multi-term 
series will have nothing to do with the true solution of Eq. (15). If however this instability is treated as 
a transient process, then it can be asserted that increasing the number of approximation terms provides 
additional information on the behavior of the true solution.
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Let ψ(ε) be an analytical function, then expression (25) can be treated as a Taylor-series expansion. 
The asymptotic behavior of coefficients of this expansion ψ = Σanεn is determined by the type of the 
function singularity. So it is natural to look for a way to deduce singularity parameters from a limited 
sequence {an}of coefficients of the series [17].

The radius of convergence of the Taylor series is determined by the singularity of the function 
ψ(ε) that is closest to the point around which expansion is performed. Farther away singularities may 
appear to influence the behavior of the series coefficients as well. If this is the case, one should find the 
spectrum of singularities.

The algorithms considered above offer a solution to the problem of ψ(ε) synthesis.
a)	 Numerical solution of Eq. (15).
Integral equation (15) can be solved by reducing it to a set of algebraic equations (discrete 

singularities method, collocation method and others). The mentioned methods are strongly unstable 
[20] as they use conventional quadrature formulas. Attempts to improve the result by increasing the 
number of nodes when ε → 0 only aggravate the situation.

Solution of singularity equation (18) relies on regularization techniques, hence a proper choice of 
regularizator can essentially enhance stability of the computation scheme.

The structure of the solution , where ν(ξ) is a non-zero regular function 
for ξ = ±1, is determined by a specific behavior of the edge flow. After substitution of this solution into 
(15) and some simple manipulations we have

,	

where ψ(ξ, s) = 1/∆ and Ф(ξ) is the right-hand side of Eq. (15).
With the nodes, reference points and quadrature coefficients chosen by the formulas

we get the following set of algebraic equations

 (i, j = 1, 2, …, N is the number of nodes),	 (26)

Where:

.

Aerodynamic characteristics of a foil are derived from formulas (24). Switching to the quadrature 
formulas gives

.	 (27)

The BCF algorithm is a powerful tool to handle integrals and resolve sets of algebraic equations 
due to the quadrature and cubature formulas:

	 (28)
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Where:   – ​weights,   – ​nodes, R  – ​remainder and the Nedashkovsky-Skorobogatko BCF 
method [16] acting as regularizators in the process. The advantage of this technique [16, 18] is that 
it is inherently self-regularized because of mutual cancellation of computational errors and as such it 
is little sensitive to adverse changes in the coefficient matrix conditioning. A good result is obtained 
when the BCF method is employed to accelerate convergence or find an antilimit of sequences. To that 
end, a set of equations is constructed with matrixes of Toeplitz type [21]. So, for finding the Shanks-
Schmidt transformation σk, n we have

.	 (29)

Once (29) has been solved, transformation follows the formula

σk, n = 1/(z1 + z2 + … + zk+1).	 (30)

The Тk, n transformation is implemented using the following system

,	 (31)

where An = ∆Sn, An = n∆Sn, An = ∆Sn ∆Sn+1 / ∆2Sn for Levin’s t-, w-, and v-transformations, respectively. 
Actually, we can limit ourselves to finding only the first two components of solutions, z1 and γ1, as the 
rest k components are required for analysis of the transformation spectrum.

6.  Transformation of divergent sequences and series

If solution of Eq. (15) has been obtained in the form of a series, the sequence γ1(2m) (m = 0, 
1, 2, …), as a rule, is divergent. Summation of such series and sequences is done using nonlinear 
transformations. Since representation (4) holds for {Sn}, then by analogy with the Fourier-series, the 
Fire summation is applied:

.	 (32)

For the series

.	 (33)

Sometimes we know the location of the singularity [10], giving rise to divergence of the series, on 
the axis or in the domain of variation of the parameter ε. A divergent series can be converted into an 
absolutely or conditionally convergent one by introducing some other comparison function. The Euler 
transformation [12]  applied to the series in (25) yields new series

,	
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where ; ∆k is the operator of finite 

differences of order k, and  are the binomial coefficients. Reiterating the procedure  it is 
feasible to eventually obtain a uniform approximation for the solution at the extremes of the specified 

interval . The source series is to be represented in the form .

After grouping the terms with the same power  and dropping the terms of order  we 
finally obtain the following approximating expressions for the foil lift force and pitching momentum 
as an influence function of the  interval at small angles of attack:

	 (34)

While these series are slow to converge for large , they are uniformly valid in a larger 
domain. Therefore when nonlinear methods of convergence acceleration are employed even Aitken’s 
transformation can yield the best approximation, with an accuracy of up to 2–3 significant figures for 

. The accuracy improves for larger .
Let us now write an analytical expression for the sequence σ1, n(n = 0, 1, 2, …, N – ​1) derived from 

the series . Constructing a sequence of partial sums and substituting it into (9) we get

,	 (35)

where b0 = a0an; b1 = a1an – ​a0an+1; bm = aman – ​am‑1an+1.
If in (35) an – ​an+1ε ≡ 0, then the nominator of the fraction should be examined for zeroes. Suppose, 

there is εкр = an/an+1 among the polynomial zeroes; this defect can be readily cured. When εкр is a pole, 
we should set σ1, n = σ1, n‑1. Sometimes appearance of a pole indicates the limits of series convergence. 
Thus for the ψY series from (25) these are εкр = an/an+1, which agrees with the results obtained by other 
techniques [12, 13].

The amount of information that can be derived for a given number of approximations does not 
appear to be enough for a transformation to ensure the best approximation over the entire domain of 
variation of parameter ε. We then have to approach the true solution via various transformations for 
each h value.
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The Shanks-Schmidt-Levin transformations are based on rational approximation of the series 
. They complement each other as their representation error is associated with the Loran-series 

expansion of the function

.	 (36)

The first term in (36) refers to errors under Shanks and second one under Levin transformations. 
In a general case, it is necessary to have available these transformations along with the recursive 
techniques for their evaluation to be able to automatically monitor the situation. If it appears that the 
Shanks transformation fails or is slow to converge for ni → ∞, i.e. , we should then 
switch to the Levin transformation.

If Fire summation (33) is applied to series (25) and (34) followed by summation for each  using 
Shanks-Schmidt and Levin’s algorithms then the result we obtain will agree with that of numerical 
simulation. The best analytic approximations employing transformation of σk, n series (34) are obtained 
with rational fractions σ1, 3; σ1, 6; σ2, 7; σ3, 5; σ3, 8. The figure shows the influence function ψY as evaluated 
by (25). Also shown are the results of Fire summation applied to series (34) followed by summation 
using the Shanks-Schmidt-Levin algorithm. Computational results based on this algorithm are in very 
good agreement with the numerical result for integral equation (15) solved by the collocation technique 
using BCF apparatus as prescribed by the given algorithm. The four-term expansion ψY from (25) is 

Fig. The function of influence of  interval on the lift force: L – ​influence function derived from (34) using 

Levin’s transformation for each ; ο  – ​Numerical simulation results for Eq. (15) obtained by the collocation 
method using the BCF apparatus
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uniformly valid over the interval , the quantitative result, however, being far from 
exact.

Optimal asymptotics contains nine terms, and still it rapidly deviates from the exact solution; 
however an approximation such as σ3, 8 for h < 0,01 already gives a relative error less than 1 %.

The discussed algorithms have been implemented as computational programs for algebraic 
(ALFA) and integral (OMEGA) equations, ordinary (SIMP) and improper (SECOB) integrals, including 
the Cauchy integral (DSECOB) as well as summation programs for sequences and series (SHENKS, 
AYTKEN), including divergent ones (EULER).
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