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Oo0Texanue Pa3JIUYHbIX THIIOB JIONMACTHBIX MEXAaHU3MOB

ABYX(a3HBIM C)KMMAEMBIM IOTOKOM

JI.B. Kyanaruna?, K. A. IlIteim®

“Cubupckutl ghedepanvHvlll YHUSepCUmem
Poccuiickaa ®eodepayus, Kpacnospck
[lanbreeocmounviii (hedepanvubiil yHusepcumen
Poccuiickas ®@eoepayus, Braousocmok

Annotanus. ChopMymupoBaHa MOCTAHOBKA KPAeBhIX 3a1a4 AT 00TEKaHHS pealbHBIX KPBLIOOOPa3HBIX
npoduiieil MEXaHN3MOB CyTepKaBUTalMu BOJIN3HU IpaHUIBI OTPhIBAa. PaccMarpuBaeMas 3amgada
YpPEe3BbIYAHO Ba)KHA JJI YUCIEHHOT'O MCCIIE0BAHMS ITPOLIECCOB, IIPOUCXOAIINX B HATPEBATEIBHON
TEXHUKE, CYNEPKaBUTAIIHOHHBIX YyCTPOUCTBAX M TEXHOIOTHX TernomMaccooOmena. O6cyxaaeMbie
AITOPUTMBI PEaTN30BAHBI B BU/I€ BEIUYUCIUTEIBHBIX IIporpaMm 1iis aidrebpamdeckux (ALFA)
u uaTerpansHeix (OMEGA) ypaBaenuit, 00sikHOBeHHBIX (SIMP) 1 Heco6cTBennbIx (SECOB) naTETpasnios,
B ToM gncie uaTerpana Komm (DSECOB), a Taxke mporpaMm cyMMHUPOBaHUS TOCIEIOBATEIBHOCTEH
u psinoB (SHENKS)., AMTKEH), B ToM umciie u pacxoasmuecs (OVUJIEP).

KoaroueBble cjioBa: 1ByX(a3HbIil CKUMaeMBbIi ITOTOK, 00TEKaHHE KPbIIOOOpa3HbIX mpoduiiei,
CyNepKaBUTAMOHHBIE YCTPOUCTBA, TEXHOJIOTUHU TEIJIOMAacCOOOMEHa.

Baarogapuocts. VccnenoBanue BEITIOTHEHO NpH (prHAHCOBOIH monaepxke PODU u [IpaBuTenscTBa
Kpacrosipckoro kpas. mo pesyisratam HUP Ne 18—-48-242001 «Termodpusndeckue U THAPOAHHAMAICCKIIC
CBOICTBa KHHETHKH cMece00pa30BaHUs IIPH UMMOOMIIN3ANHN PAJHOAKTHBHBIX OTXOA0B B IEMEHTHOH
MaTpHLE C UCIOIB30BaHUEM BO3aecTBUS kKaBuTauuu, Ne 18—41-242004 «TeopeTnueckre OCHOBBI
KOHAMIIMOHNPOBAHUS BOJ MUTHEBOTO Ha3HaUeHNUs Ha 0aze 3P (HeKToB ruapoanHAMUYECKON KaBUTAIII.

Iutuposanue: Kynaruna, JI. B. O6Texanue pa3indHbIX THIIOB JIOMACTHBIX MEXaHU3MOB ABYX(Da3HBIM CKUMAEMBIM IIOTOKOM /
JI.B. Kynaruna, K. A. Illteim / XKypu.Cuo. dpenep. yu-ta. Texuuka u texsonoruu, 2022, 15(4). C. 505-520. DOI: 10.17516/1999—
494X-0409

1. Introduction

A whole series of production challenges have been resolved due to successful application of cavitation
technologies. There is a great variety of supercavitation-based technical devices such as mixers, blenders,
and reactors, to mention just a few. Studies on the flow in the vicinity of separation boundaries (solid
walls and free surfaces) show that in a confined flow liquid turns into a bubble mixture of liquid and
gas. This complicates the flow analysis and introduces additional losses resulting in impaired energy
performance of the concerned mechanisms. In a general case the problem of a two-phase compressible
flow around various types of vane mechanisms is substantially nonlinear (even under no-vortex flow
assumption). The knowledge of hydrodynamic characteristics of a pterygoid profile as an element of
hydrofoil cascade with certain geometric parameters (the angle of stagger, the pitch, etc.) is crucial for
designing vane mechanisms. Quite often the challenge is of a methodological nature as to the adequate
formulation of boundary-value problems for a flow around actual pterygoid profiles of supercavitating

mechanisms near separation boundary.

2. Keywords: flow around actual shaped profiles wing, supercavitating mechanisms near separation

boundary, potential theory, numerical method solution.
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3. Efficient sequences summation methods

Discussed in the article the problem is extremely important for the numerical investigation of the
processes occurring in thermaltechnological equipment, supercavitation vehicles and heat and mass
transfer technologies [1-9].

Most of the problems in potential theory [10] can generally be reduced to solving integral or
integral differential equations or sets of such equations [11-14].

In an operator form,

AU=f, ()

where 4 is the integral or integral differential operator, U is the vector of desired solutions, and f'is the
vector on the right-hand side.

When the perturbation method is used solution to Eq. (1) is sought in the form of a functional
sequence {U,}). Operator 4 can also be subjected to perturbation. So the original problem reduces to

solving the equation

AUy = fo (@)

where A4, and f, are expressed through the values obtained in the earlier approximations.

Since convergence of series and convergence of sequences are equivalent concepts, i.e. convergence
N n

of the Z U series to sum S is, by definition, convergence of the partial sums sequence | S, = ZU « |[to
1 1

limit S and vice versa, it suffices to consider transformation of sequences [15].
In general terms, the problem of acceleration of sequence convergence involves using the source

sequence {S,}(n=1,2, ...; S, — S) to construct a new one
Gk,n:Ak(Sls S23--- Sn)(kz 1’2"'-)9 (3)

to satisfy the following requirements:

1) the new sequence converges to the same limit as {S,} does;

2) oy, , exhibits, in a sense, better convergence to S than {S,}. The comparison criterion must be
specified.

If 4y is a linear operator, then the linear methods of acceleration are governed by Egs. (3). 4

Consider a general approach to convergence acceleration [11]. Let X be a metric space with metric
d, {S,} € Xis convergent: Liigd(Sn, §)=0, its limit being S € X.

Suppose 4:{S,} — {gn}, S eX.

We ask 4 to be:

1) absolutely regular, i.e. if imS, = S € X, then limS, = S € X;

2) A method of accelerationnggnversion if A is regﬁar and lggd (5,,,S ) /d(S,,8)=0;
3) a) A —alinear method if A(a{S,}+P{t.}) = ad{S,}+B{t.},

b) — A — nonlinear method if 4 satisfies the quasilinear conditions
A(G{Sn}) = aA{Sn}: A(OH_{Sn}) = U-+A{Sn};
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4) A —numerically stable algorithm free from big accumulated calculation errors.

Transform (3) is chosen such that it accelerates convergence of any sequence {S,} € X. Consider
a set of sequences {S,} (numerical or functional), including convergent and divergent as well as
monotonic and oscillating ones. These sequences, if presented graphically with the number » plotted
on abscissa and S, on ordinate and a smooth curve drawn through a discrete set of points, will yield
graphs similar to those of transient processes in dynamic systems.

Taking S to be dependent on #, we have
S(t)=S+X>ae", @
k=1

where o, is an arbitrary complex number.

Nonlinear transformations being equally applicable to convergent and divergent sequences,
the mentioned similarity between the type of a transient process (steady or unsteady, harmonic or
aperiodic) and the type of summation process becomes apparent.

Let all Re(ay) <0 in (4). Under this assumption, we deal with a steady transient process. However,
if there is at least one Re(ay) > 0, the transient process is unsteady. Obviously, this interpretation
enables us to apply harmonic analysis.

Replacing ™ by g (|g:]) < 1 in (4) yields

S(t)=§+léakq}((qke(0,l)) 5)

The S(¢) quantity may or may not oscillate and it may be stable or unstable depending on the value
of v and coefficients o, and g;. In other words, in a general case it possesses the desired properties as
specified above.

Within this approach, it is justified to represent certain sequences {S,} as «mathematical transient

processesy, i.e. as n-type functions:

S(n):§+éakq,'j(qk e(0,1)). (6)

By analyzing such a process we should be able to find both the order of magnitude of v and the
range of parameters a and ¢. If the sequence {S,} satisfies (6) and if |¢;| < 1, then S = lﬂlg S,

If {S,} is a transient process and one or more |g; > 1, then {S,} fails to converge; however,
one can say that {S,} diverges from S. Therefore the S parameter is called an antilimit [13] of the
sequence {S,}.

The calculus for finding § can be classified as a method of summation of {S,} sequence or a
technique to extract the main term thereof. There are few sequences appearing in applications that are
essentially mathematically transient processes of some finite order v. The rest are of an infinite order,
i.e. v— o in (6).

All others also have a continuous spectrum [16]

=

S(n)=S+[a(q)q"dq. ()

q
The function S(z) in (7) depends on the 2v + 1 parameters of S, a, q..(k=1, 2, ..., v). The first

one, as noted above, is of importance. Dropping the parameters oy, g, [17], we get the Shanks-Schmidt

transformation at v = k:
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Orn = S= Dk,n (S;;)/DI:,n’ (8)
Snfk >N n—k+1>°°> Sn
where D, (S,)= A8, A8, 11> AS, , AS =S, — S, and D, is derived from D, , by replacing the
Mﬂ—l’ ASn >"'ASn+k—1

first row with unity. Aitken’s approximation is a special case of this transformation.
Fork=1

= Sn—lSnH _Snz
GLH N Sﬂ—l _2Sn +Sn+l ’ (9)
For k=2
AS, |, AS AS, ,, AS AS
S”72 n-1> n|__ - n-2> n +S" n-2> n-1
o _as,, a8, as, A8, AS, L AS
20

AS, NS, (NS, )

Validity conditions for the transformation: Dj, =0.

To ensure computation stability, it is advantageous to use the apparatus of branched continued
fractions (BCF) [18] capable of providing an efficient algorithm for machine computation:

a) Inthe case of Aitken’s transformation we get an algorithm in the form of a branched continued

fraction with two branches:

0:5+m (10)

Formula (10) is also valid for analytical calculus as the approximation |o; , — S,| = 0(AS,) can be

easily evaluated straightforward. Furthermore, with (5) and (8) it is possible to get a numerical estimate
for the approximation |cy, , — S| = @[S, — S|, where 0 < a <I.

For the Shanks-Schmidt transformation (8) (k= 1, 2, ...), the effective condition for convergence

acceleration is to be verified
(=1)*AkS, >0 (11)

where A= Zk: (—l)j C} is the operator of central difference of order k, C/ are the binominal
j=0

coefficients:

For k=1, from (11) we have S,-; — S, <01i.e. S+ <8S,.

The sign on the right-hand side of (11) reverses if {S,} is divergent. In that case upper partial sums
must be chosen.

a) Recursive algorithms (BCF) for calculating the Shanks-Schmidt transformation.

Numerical simulation of transformation (8) is implemented by means of the Wynn algorithm [7],

which is insensitive to rounding and accumulated errors:

€141(Sn) = €1(Sps1) + 1/ [€4(Sns1) — &(SW)], (12)

where k=0, 1,2 ...; n=2%£,(S,) = 0; €0(S,) = Sy; €24(Sn) = 643 €24:1(Sn) = 1/ 01 o(AS,).
This method gives the highest-order convergence limle,, —S|/|S, —S|=0. If the denominator in

(12) turns to zero, this indicates that exactness has been achieved at the previous stage and no further
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improvement is possible with this particular method. It should be noted that the g-algorithm is closely

connected with Thiele’s interpolation formula for S, as a rational function of n [18]:

£ (5.)=5{p. (m)+5..)

where p,=S,,+2/[1/AS,, —1/AS,

n+r—1

]. For k = 1, successive decomposition of recursive formula (12)

yields

n+l

G, =& (Sn):eo(Sn+1)+l/|:81(Snﬂ)_el(Sn):I:S +1/|:1/ASn+l_I/ASn:|

and so on. One can see that the g-algorithm is a branched continued fraction with two branches. For

k=2 we have:
GZ,n :84 (S"):E3 (Sn+1)+1/|:£4 (Sn+l)_84 (Sn):|;
&,(S,u)=¢, (SM)+1/[.<33 (Sn+1)_83 (S, )},
) (Sn+1) =0y -

b) Brezinski’s @-algorithm can essentially accelerate linear convergence of the sequence {S,} as
well [16].

Suppose there is a sequence such that {S,,}: %glolo S, =S8. We seek to construct a new sequence {G(k")}
that would converge to S faster than {S,}. The new sequence is calculated using a recursive algorithm
defined as:

0" =0, ) =S, — the initial conditions;

ey, =6l +1/A0Y)

2k+1 T T 2k-1 2k>

k=0,1,2, .: n=2%

>

@(”) :®(”+1) _A®(”+1) /A2®(”)

2k+2 2k 2k+1 2k+1°

for which lim @Y/
n—>0

e, —S‘/

Sn—S|=O. Furthermore, even the Wynn algorithm is accelerated by this
recursive algorithm.

-l
¢) Levin’s nonlinear recursive algorithm. If R, =S, —S= Arz% /7' is explicitly dependent on
=0

n, where r=n,n+ 1, n+ k, y; denotes arbitrary real numbers, and 4, is a function of S,, then acceleration

is best achieved by means of Levin’s transformations [17] having the form
Ty, = AFB,/ A*C,, (13)
k . :
where C, =n*"'/A4, B, =n""S,/4,, A = Z(— 1) C} is the difference operator.
j=0
Depending on the form of (13), 4, = AS,, 4, = nAS,, 4, = AS, AS,.; / A%S, are referred to as

t-, w-, and v-transformations, respectively. For k = 1, the t-transformation coincides with Aitken’s

transformation. Numerical implementation of this algorithm is based on the formulas

Ty =M /N k=0,1,2, .5 n=2* (14)

where  M{)=( MM S| MY =5, 4
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n n+k+1

n n n+! 1 l
N,Q:(N,QI—N,LII))/[ = ) =1/ 4,

This algorithm is fairly simple, computable and capable of convergence acceleration

lim
n—»o0 k.

4. The problem of flow around
a foil near separation boundary

In the case of small perturbations, the solution to the problem comes down to solving the integral
equation [12, 13]

1 +1 1 1 +1
2l y(s){E—G }ds iy ()5 [ 1(5) G, (15)
where x and F, are functions of the hydrofoil shape and kernels D ; and G, are given by G, = (§ —s)/A;
G,=¢/A; A(éfs)2 +8%; € :4}7(0). The foil shape is defined as F = F,, + F,, where F, is the centerline
equation and F, is the thickness distribution. In the first approximation of the no-penetration boundary

condition we obtain:

n ntl.
+1§ ’

a) FC()( ):—a+2a§ if F, z
b) x()( &)=2w(E )Zb & +2w(E )fi&“” if F, :ib—"i”*lw(é) where w =1 for a sharp leading
T n+l ¢ 4in+l ’

edge and w=/1-&* for a rounded one.
Equation (15) is an integral Fredholm equation of the first kind with a singularity in its kernel

[(& 5. ey(s)ds=1(2) (16)

The solution y of Eq. (16) is known [16] to be unstable even at small errors in f{¢) data and
sensitive to errors in the kernel £(&, s) and it is virtually independent of the solving technique.

The problem itself, (15), is essentially ill-defined and requires proper regularization techniques to
enable its solution [20]. What makes it ill-posed when 4 — 0 is that integral equation (15) degenerates
to a differential equation that is linear with respect to the higher derivative. By means of unsophisticated
mathematics [12, 13] integral equation (15) of the flow boundary-value problem is rewritten as

2 n

23 e (@ o v e -0(2) a7

n=1

whete  ®(&)==F, (&)= 5= t(E)Wa(& €)= > AW (& ¢),
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+1
Wy (6o)= [(e-s) Gt 54 (0

From Eq. (17) it follows that when % — 0, problem (15) reduces to a boundary-layer-type
problem, which sheds light on why the problem is ill-posed. The physical conditions impose
limitation on N.

This problem can be solved employing a hybrid approach. First, solutions to the exterior, (15), and
interior, (17), problems are found [11, 12] and then these are mutually adjusted.

There is yet another way to tackle the problem. It starts with constructing a perturbed exterior
solution and then this solution, which is ill-suited for # —> 0, is transformed so that it is able to reveal
the nature of singularity. The resultant solution thus becomes uniformly valid everywhere and provides
good approximation to the true solution. The solution can be further improved quantitatively via
higher-order approximations and, finally, nonlinear methods can be applied to accelerate convergence
of the functional sequence [12, 13].

If the sequence is divergent, which depends on the class of the function f(§) in (15), then the linear
transformations and algorithms discussed above allow the main term of the sequence to be extracted.
Write the solution of integral equation (15) as y =1 +y2. The first term is associated with the influence
of the centerline shape on circulation, while the second one is attributed to the dynamic curvature

resulting from the flow around a profile near the separation boundary.

5. The functional parameter method
Represent y; solution in the form of a T=+1+4h>—2h series obtained by mapping h e[O,oo] to
t€[1,0]:

AR I as)

N
G=3%k, ", (19)

with &y, defined in [12].

Series (19) is convergent. Moreover, it is convergent over the entire actual range of variation
of the parameter r. Convergence of series (18) remains questionable because it is not possible to
construct a general term. It is however possible to evaluate a convergence domain for specific foil
shapes. Substituting (18) and (19) into (15) and resolving the solution into two terms (terms of the
same T power are taken equal) yields a system of singular integral equations with a Cauchy-type

kernel:

+1
: ds _ g e
_le(l(z)'")(s)@:q)(m)(é)’ m=0,1,2, ..N; n=L2, .. (20)

Converting this equation into @’ class functions we have

. 1 g ¢ g @l)(s
y(l(gm)(é):_?\/ﬁ :wﬁ é_(s)ds- @n
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The function CID(,:,’)(m:I, 2, .., N ) is found from the boundary conditions via the solutions

Y(lzlz)m) (m =12, .., N—l). Let us now write the solutions for N= 13 and n =1 for a plate when FC(;) =—q.

CD() —27o0; CI) Iylokllds

+1
q)(zl) = _[ {y£2k12 * Yglz)ku}dS; (22)

Substituting (22) into (21) gives

1 1- 1 1
ygg(é’;):hm é; Yg()zm):Y(lngm (23)
wherem=1,2, ..., 13;
3
Wz:§+<i;
9 1
Wy=g—5t-38 -t
15 9 7
G—E*§§*—§2+3§3+—§4+§5;
105 21 15 9
W= g g2, 3__ a_1o¢s Fy6 w7
TR 2& 2& &
255 217 145 165 27 11
W, =222, 2l _2 3 4 5+_6+147+_8+9
1227 471 617., 2553.; 889 305 5 415 6 7 275
= F— = —— —_— _— ="
12771024 256é 256é 128é 64‘2 g St é e
2*;9 13 10 éll
:2613¥263 (:*5825&2_1631&3 11943é4 10773<: 8372;6 553{;
1472048 1024 512 128 256 128
1295{;8 305{;9 273&10_’_3381 (:12_,_&13;
_ 36297 5617§_ 20883 £ 4 27063 £+ 99597 £ 6939 £ - 73617 g6 —
167732768 2048 2048 1024 1024 256 256
20669 ., 32835.5  5325., 1035 101, 945 93 17014 s,
28 C g St 6 St e e gt gl 28 g
4500439 2374493 . 81825 295437 13037 100183 25677
M = 65536 * 32768 &+ 1024 &+ 2048 &+ 128 g- 512 & 128 &+
165239 .7 33753.5 2049 .9 20049 ., 1 12 13 14
+ 256 &+ D E+ 3 & ) T =594 + 778 +294E° +187E° +
+60&15+%§16+é17;
W — 12616275 5179823& 8336061&2_5550025&3_3159457&4_745381é5+
207 262144 65536 65536 32768 8192 1024
14974113 18855, 115145 2223 153

16 17 21 18 19.
2 e 2203 Zle g,
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W :1322662033534_317275015003&_F158781624145§24»25;124698217&3+
2 131072 262144 131072 16384
112600162755é44_67212868461é5+_420259071£6+_2705060269§7+_2688570425é8+

65536 32768 2048 2048 2048
80850475 £y 41139813 gy 6691095 n 5094639 g 299933 g 66759 g
265 128 256 256 64 16
1085 .5 20835, 8091.;; 1575, 19 23090 w1
— + + + +95E7 +=E7 +&7,
> a T £ 2 = ) & ' 2& &

W :17129979402909+1241572992573(:4_18898384376438+1355616985531§3+
o 4194304 262144 524288 262144
13119257912198+396503371015§5+388978944203&6+106117200107&7+

262144 65536 65536 32768
+58073081641§3+116789059&9+337015355éw__94300235&“__28915279&u
16384 512 512 512 512 )
__4595813§n__612715§M__1086565§5__9434469§w__13413&”__45135§m__
64 16 16 128 16 16

181850 43010 2Bl 95pm_po

— & 3 & 2& 2& &

If we do not go beyond linearized formulation of the problem, then with (18) and (23) we can find
the resultant aerodynamic characteristics — the lift force and pitching momentum coefficients — using

the following formulas

+1 +1
= [4"ds; G = [ (s)sds. (24)
21 31

In the first boundary conditions approximation, at n = 1 we get the functions of influence of the

distance parameter / (0) on CI(VI) and CSI) in the form of t-series:

()
n_ ¢’ 1, 353 23 4 11 5 39 5 163 ; 5491 4
Yy 7W71+8+§8 +Zs +§a +E8 +as +ﬁ8 +ms +
by d
2244877 o 5379225 1o 528804484515 ;; 7641989002175 |,
+ g — e+ g+
32768 65536 524288 2097152
37205275391907813 .
16777216
()
O_ Oy, 1o Lo 75 15, 155 29, 899 ,
Y Cﬁ,[)w 1+28+28 +168 +328 +328 +648 +20488+

3587 5 192315 , 1604301 ,, 128261286621 i

*8192% 16384 & T 6536 © 524288 (25)
2091064690271 , 4259769570263 5
2097152 3388608 -

where € =12, C&l =270, CI(\?OO =—7a.

Under formal application of the discussed method, the solution y given by (18)—(23) is unstable
[20]. It is considered that a coarse solution can be obtained taking just a few terms of the series; a
further increase in the number of terms will only enhance the instability and the resultant multi-term
series will have nothing to do with the true solution of Eq. (15). If however this instability is treated as
a transient process, then it can be asserted that increasing the number of approximation terms provides

additional information on the behavior of the true solution.
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Let y(e) be an analytical function, then expression (25) can be treated as a Taylor-series expansion.
The asymptotic behavior of coefficients of this expansion ¥ = Xa,£" is determined by the type of the
function singularity. So it is natural to look for a way to deduce singularity parameters from a limited
sequence {a,}of coefficients of the series [17].

The radius of convergence of the Taylor series is determined by the singularity of the function
y(€) that is closest to the point around which expansion is performed. Farther away singularities may
appear to influence the behavior of the series coefficients as well. If this is the case, one should find the
spectrum of singularities.

The algorithms considered above offer a solution to the problem of y(g) synthesis.

a) Numerical solution of Eq. (15).

Integral equation (15) can be solved by reducing it to a set of algebraic equations (discrete
singularities method, collocation method and others). The mentioned methods are strongly unstable
[20] as they use conventional quadrature formulas. Attempts to improve the result by increasing the
number of nodes when € — 0 only aggravate the situation.

Solution of singularity equation (18) relies on regularization techniques, hence a proper choice of
regularizator can essentially enhance stability of the computation scheme.

The structure of the solution y(&)=,/(1-¢)/(1+&)-v (&), where v(&) is a non-zero regular function
for § = +1, is determined by a specific behavior of the edge flow. After substitution of this solution into

(15) and some simple manipulations we have

2 +1 1
o s NS A% o)

where Y(&, s) = 1/A and D(€) is the right-hand side of Eq. (15).

With the nodes, reference points and quadrature coefficients chosen by the formulas

g =cosb, ; s,=cosB;; 0,=m(2i—1)/(2N+1), (i=1,2, .., N); 0,=2m/(2N+1);

A=2mfI-s2 [2N+1), (=1, 2, .. V),

we get the following set of algebraic equations
ifb, JY,=b, (i,j=1,2, ..., Nis the number of nodes), (6)
Where: "
A =v(Ens.e)f(6-s) s Y =(1=5,)v(s,)/(2N+1) ;
b=-Fy(&) Sz—gx(si WI=53w(Es;, )/s(2N+1); Y=VA ; A=(g-s,) +e2.

Aerodynamic characteristics of a foil are derived from formulas (24). Switching to the quadrature

formulas gives
N N
G, =2nYY, and C,, =2n}Y,s,. (27)
J=1 j=1

The BCF algorithm is a powerful tool to handle integrals and resolve sets of algebraic equations

due to the quadrature and cubature formulas:
S:T{zn:[_’kS(fk)]+R (28)
=i
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Where: Pk — weights, X — nodes, R — remainder and the Nedashkovsky-Skorobogatko BCF
method [16] acting as regularizators in the process. The advantage of this technique [16, 18] is that
it is inherently self-regularized because of mutual cancellation of computational errors and as such it
is little sensitive to adverse changes in the coefficient matrix conditioning. A good result is obtained
when the BCF method is employed to accelerate convergence or find an antilimit of sequences. To that
end, a set of equations is constructed with matrixes of Toeplitz type [21]. So, for finding the Shanks-

Schmidt transformation o, , we have

17 AS}’I ASVI+/C*1 Z S"
LAS,, AS, |2 |_|Su |, (29)
1; ASnJrk AS,,Jrzk,l Zkn Sn+k

Once (29) has been solved, transformation follows the formula
Opn= 1/(21 +z+ ... +Zk+1). (30)

The T}, , transformation is implemented using the following system

L Ay Ayfns s Ay fn v 1T,
k-1

L An+1; A,Hl/n-i'l; o An+1/(n+1) Y, _ S,,H ’ o

1; An+k; An+k/n+k; s An+k/(n+k)k71 ’Ykﬂ Sn+k

where 4, = AS,,, A, =nAS,, A, = AS,, AS,., | A>S, for Levin’s t-, w-, and v-transformations, respectively.
Actually, we can limit ourselves to finding only the first two components of solutions, z; and 7y, as the

rest k components are required for analysis of the transformation spectrum.

6. Transformation of divergent sequences and series

If solution of Eq. (15) has been obtained in the form of a series, the sequence y1(2m) (m = 0,
1, 2, ..), as a rule, is divergent. Summation of such series and sequences is done using nonlinear
transformations. Since representation (4) holds for {Sn}, then by analogy with the Fourier-series, the

Fire summation is applied:

= E S
Gn n : k* (32)
For the series
Sn—i+l
= €. 33
0, =" (33)

Sometimes we know the location of the singularity [10], giving rise to divergence of the series, on
the axis or in the domain of variation of the parameter €. A divergent series can be converted into an
absolutely or conditionally convergent one by introducing some other comparison function. The Euler
transformation [12] €= 8/(1+8)(§ € [0,0.5}) applied to the series in (25) yields new series

s k
V=Y (-1) AF€E - (1-8),
k=0
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k P e . .
where Aaq,=a,—a,; A’ay=a,-2a,+ay; ..; Atay=3"€, (-1)¢/>; AF is the operator of finite
=

differences of order &, and C/ are the binomial coefficients. Reiterating the procedure & = §/ (1+ é) it is
feasible to eventually obtain a uniform approximation for the solution at the extremes of the specified
— N k
interval & . The source series is to be represented in the form y= Z(—l) aksk.
=0
After grouping the terms with the same power € and dropping the terms of order O(EN ) we
finally obtain the following approximating expressions for the foil lift force and pitching momentum

as an influence function of the j; interval at small angles of attack:

3, 115 1754 177_5+1423_6 11323_7+715923_g

y,=l+e+=e"°+—"+——¢c"+— + +
Wy e e Tt T T 6 Tes ¢ T 256 © TRIO2 ¢
+7870829§9+56910769EIO+530324997219511+3O926120625699 g2
32768 65536 524288 2097152
+188797345897933l§13+m :
16777216 (34)
g =1t Lp g2 i 2t | 23905, Il og  BOGTS oy, 483548 s,
Y 2 16 32 32 64 2048 8192
+210893959_i_20321375510_‘_1286399279815114_77375164366035124_
16384 65536 524288 2097152
240090786810183 g4
8388608 o

While these series are slow to converge for large h, they are uniformly valid in a larger
domain. Therefore when nonlinear methods of convergence acceleration are employed even Aitken’s
transformation can yield the best approximation, with an accuracy of up to 23 significant figures for
he [0.02, 0.1}. The accuracy improves for larger /.

Let us now write an analytical expression for the sequence 6, ,(n =0, 1,2, ..., N— 1) derived from

N
the series = Zama”’. Constructing a sequence of partial sums and substituting it into (9) we get
0

o .- 20: b em /(a —d, ). (35)

where by = apa,; by = a1a, — aopi1; by = Ay — Q1@

Ifin (35) @, — a,+1€ = 0, then the nominator of the fraction should be examined for zeroes. Suppose,
there is &, = a,/a,+1 among the polynomial zeroes; this defect can be readily cured. When &, is a pole,
we should set 6, , = 6, ,.1. Sometimes appearance of a pole indicates the limits of series convergence.
Thus for the y series from (25) these are &, = a,/a,+1, which agrees with the results obtained by other
techniques [12, 13].

The amount of information that can be derived for a given number of approximations does not
appear to be enough for a transformation to ensure the best approximation over the entire domain of
variation of parameter €. We then have to approach the true solution via various transformations for

each A value.

— 517 —



Journal of Siberian Federal University. Engineering & Technologies 2022 15(4): 505-520

The Shanks-Schmidt-Levin transformations are based on rational approximation of the series
Zakxk . They complement each other as their representation error is associated with the Loran-series

expansion of the function

f(@)= iakzk + ibkz‘k. (36)
= =

The first term in (36) refers to errors under Shanks and second one under Levin transformations.
In a general case, it is necessary to have available these transformations along with the recursive
techniques for their evaluation to be able to automatically monitor the situation. If it appears that the
Shanks transformation fails or is slow to converge for n; — 0, i.e. (Gk’ n Sk, ) > ¢, we should then
switch to the Levin transformation.

If Fire summation (33) is applied to series (25) and (34) followed by summation for each h using
Shanks-Schmidt and Levin’s algorithms then the result we obtain will agree with that of numerical
simulation. The best analytic approximations employing transformation of o, series (34) are obtained
with rational fractions 6 3; G 6; G2,7; O3, 5; O3 s. The figure shows the influence function yy as evaluated
by (25). Also shown are the results of Fire summation applied to series (34) followed by summation
using the Shanks-Schmidt-Levin algorithm. Computational results based on this algorithm are in very
good agreement with the numerical result for integral equation (15) solved by the collocation technique

using BCF apparatus as prescribed by the given algorithm. The four-term expansion yy from (25) is

6
A WY, (h)=C,(h,)/C,(0)

Fig. The function of influence of h interval on the lift force: L — influence function derived from (34) using

Levin’s transformation for each 7 ; 0 — Numerical simulation results for Eq. (15) obtained by the collocation
method using the BCF apparatus
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uniformly valid over the interval h e(ﬁlg), Eg) ), the quantitative result, however, being far from
exact.

Optimal asymptotics contains nine terms, and still it rapidly deviates from the exact solution;
however an approximation such as o3 g for # < 0,01 already gives a relative error less than 1 %.

The discussed algorithms have been implemented as computational programs for algebraic
(ALFA) and integral (OMEGA) equations, ordinary (SIMP) and improper (SECOB) integrals, including
the Cauchy integral (DSECOB) as well as summation programs for sequences and series (SHENKS,
AYTKEN), including divergent ones (EULER).
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