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Abstract. The initial boundary problem arising in the modeling of viscous fluid creeping rotational
motion in a flat layer was solved. A stationary solution was found. The quadrature solution in images was
obtained using the Laplace transform method. The time convergence of the the non-stationary problem
solution to the established stationary solution was proved under certain conditions on the temperature
distribution on the walls.
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1. Problem statement

Let us assume that the fields of pressure and temperature velocities are rotationally symmet-
rical. Then, their values depend only on r =

√
x2 + y2, z, and time t in a cylindrical coordinate

system. Moreover, we suppose that the only external force acting on the fluid is the centrifugal
force. Then [1], the momentum, continuity, and energy equations can be written as

ut + uur + wuz − 2ωv − v2

r
= −1

ρ
pr + ν

(
∆u− u

r2

)
− ω2βrΘ,

vt + uvr + wvz + 2ωu+
uv

r
= ν

(
∆v − v

r2

)
,

wt + uwz + wwz =
1

ρ
pz + ν∆w, (1.1)

ur +
u

r
+ wz = 0,

Θt + uΘr + wΘz = χ∆Θ,

where ∆ = ∂2/∂r2 + r−1∂/∂r + ∂2/∂z2 is the axisymmetric part of Laplace operator.
Equations (1.1) are written in the rotating coordinate system with constant angular velocity

ω relatively to the original inertial system. Its rotation axis and the z axis of the cylindrical
∗andr@icm.krasn.ru
†llatonova@sfu-kras.ru

c⃝ Siberian Federal University. All rights reserved

– 273 –



Victor K.Andreev, Liliya I. Latonova Solution of the Linear Problem of Thermal Convection . . .

coordinate system r, φ, z are coincide. The radial and axial components of the velocity are
denoted as u and w, respectively, and v is the deviation of the rotational velocity component
from the solid rotation velocity ωr. The quantity p characterizes the pressure deviation from
equilibrium pressure: ρω2r2/2; and Θ is the temperature deviation from the mean value. The
positive constants ρ, ν, χ, β are the physical liquid characteristics: density, kinematic viscosity,
thermal diffusivity, and volumetric expansion coefficient.

The solution of a system (1.1) is sought in the form [2]

u = rf(z, t), v = rg(z, t), w = w(z, t),

p =
1

2
K(t)r2 +

Aρβω2

2
r2

(
ln

r

a
− 1

2

)
+ h(z, t), (1.2)

Θ = A ln
r

a
+ T (z, t),

where A and a is the constant dimensions of temperature and length correspondingly. The
substitution of (1.2) in (1.1) results in the system

ft + wfz − 2ωg + f2 − g2 = −1

ρ
K(t) + νfzz − ω2βT,

gt + wgz + 2ωf + 2fg = νgzz, 2f + wz = 0, (1.3)

Tt + wTz +Af = χTzz, wt + wwz = −1

ρ
hz + νwzz.

The solution of (1.2) may be interpreted as the following. A viscous heat-conductive liquid
fills the layer between flat walls z = ±a rotating with angular velocity ω = const around the z

axis. The no-slip condition u(r,±a, t) = 0, v(r,±a, t) = 0, w(r,±a, t) = 0 is satisfied on them.
At the initial instant the velocity and temperature distributions are specified consistent with
(1.2) formulas. On the rotation axis r = 0 sinks or sources of heat are distributed with constant
linear density 2πAk (k > 0 is the constant liquid thermal diffusivity coefficient). The solid walls
(planes) bounding the liquid are ideally heat conductive. All the assumptions above lead to the
formulation of an initial boundary value problem for the system (1.3)

f = −1

2
w0 z(z), g = g0(z), w = w0(z), T = T0(z), |z| 6 a, t = 0; (1.4)

f = g = 0, w = 0, T = T1,2(t), z = ±a, t > 0; (1.5)

with the specified functions w0(z), g0(z), T0(z), T1,2(t). The conditions of thermal insulation
of one (or both) walls can be used instead of the last in (1.5), for instance T (−a, t) = T1(t),
Tz(a, t) = 0. Note, that for smooth solutions the agreement conditions should be satisfied

w0(±a) = 0, w0 z(±a) = 0, g0(±a) = 0,

T0(±a) = T1,2(0) (T0(−a) = T1(0), T0 z(a) = 0).
(1.6)

Let us introduce the dimensionless variables by

t =
a2

ν
t, z = az̄, f = ωR2f, g = ωRg w = aωR2w, T = RAT,

K = ρω2RK, h = ρω2a2Rh R =
a2ω

ν
, P =

ν

χ
, ε = βA,

(1.7)
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where R, P , ε are the Reynolds, Prandtl, and Boussinesq numbers correspondingly. Since
∂2/∂t = νa−2∂2/∂t, ∂2/∂z = a−1∂2/∂z, we obtain the following system by substituting (1.7)
into (1.3) and omitting the upper bars

ft +R3wfz − 2g +R3f2 −Rg2 = fzz −K(t)− εT,

gt +R3wgz + 2R2f = gzz, 2f + wz = 0,

Tt +R2wTz +R2f =
1

P
Tzz, wt +R3wwz = −hz + wzz, |z| < 1, t > 0.

(1.8)

The conditions (1.4), (1.5), (1.6) remain unchangeable, it is just needed to take into account
that |z| 6 1. In addition, w0(z) = ωR2w0(z), g0(z) = ωRg0(z), T0(z) = RAT 0(z), T1,2(t) =

= RAT 1,2(t) in the initial data.

2. Linear initial boundary value problem

Let be R << 1; such movements are called creeping. In practice they arise due to the high
kinematic viscosity, cross-sectional layer size fineness or small angular velocity ω. Assuming that

f = f0 +Rf1 + · · · , g = g0 +Rg1 + · · · , w = w0 +Rw1 + · · · ,
T = T0 +RT1 + · · · , K = K0 +RK1 + · · · , (2.1)

and substituting it into (1.8) we obtain the initial boundary value problem in the zero approxi-
mation (the subscript "0" is omitted)

ft − 2g = fzz −K(t)− εT,

gt = gzz, 2f + wz = 0, (2.2)

Tt =
1

P
Tzz, wt = wzz − hz, |z| < 1, t > 0;

f(z, 0) = −1

2
w0 z(z), g(z, 0) = g0(z), T (z, 0) = T0(z),

w(z, 0) = w0(z), |z| 6 1;
(2.3)

f(±1, t) = 0, g(±1, t) = 0, T (±1, t) = T1,2(t), w(±1, t) = 0, t > 0. (2.4)

Note, that ∫ 1

−1

f(z, t) dz = 0, (2.5)

what follows from the third equation in (2.2) and non-slip condition (2.4): w(±1, t) = 0. The
integral equality (2.5) is correct also for the general problem (1.3), (1.4), (1.5). This additional
condition is used to compute the part of radial pressure "gradient", which is the function K(t),
see (1.2). Thus, the problem under consideration is an inverse problem.

Let us find the stationary solution of system (2.2)–(2.5). It is denoted as fs(z), gs(z), ws(z),
T s(z), Ks, hs(z) and corresponds to the data T s

1,2 = const. Simple calculations lead to the next
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formulas

gs(z) ≡ 0, T s(z) =
1

2
((T s

2 − T s
1 ) z + T s

1 + T s
2 ) ,

fs(z) =
ε

12
(T s

2 − T s
1 )

(
z3 − z

)
,

Ks = −ε

2
(T s

1 + T s
2 ) ,

ws(z) =
ε

24
(T s

1 − T s
2 )

(
z2 − 1

)2
,

hs(z) = hs
0 +

ε

6
(T s

1 − T s
2 ) z

(
z2 − 1

)
, hs

0 = const.

(2.6)

The real fields of velocities us(r, z), vs(r, z), ws(z), pressure ps(r, z), and temperature Θs(r, z)

are given by (1.2).
The solution of inverse problem (2.2)–(2.5) can be obtained using the partition method in

the form of Fourier series. First, the functions g(z, t), T (z, t) are to be found as solutions of the
first classical initial boundary value problems for the heat conduction equations [3]. After that
f(z, t) and K(t) should be determined taking into account the overloading condition (2.5). The
function w(z, t) can be recovered by quadrature from the third equation of the system (2.2), and
h(z, t) can be found by the latter from (2.2). This solution procedure is rather cumbersome.
Here we use the Laplace transform method to find a solution [4].

Let

û(z, s) =

∫ ∞

0

u(z, t)e−st dt

be the Laplace transform for the function u. Since

ût(z, s) = sû(z, s)− u0(z), ûzz =
∂

∂z2
û,

the problem for f̂(z, s), ĝ(z, s), T̂ (z, s), K̂(s) takes the form

f̂zz − sf̂ = εT̂ − 2ĝ + K̂ − f0(z)

ĝzz − sĝ = −g0(z), T̂zz − PsT̂ = −PT0(z), |z| < 1,
(2.7)

where T̂1,2(s) is the Laplace transform of the specified functions T1,2(t). Moreover, the next
conditions are satisfied

f̂(±1, s) = 0, ĝ(±1, s) = 0, T̂ (±1, s) = T̂1,2(s),∫ 1

−1

f̂(z, s) dz = 0.
(2.8)

Thus, we obtain the boundary value problem (2.7), (2.8) in Laplace images for ODE systems.

Remark 1. The functions T1,2(t) can have a finite number of the discontinuities of the first
kind [4].

After simple calculations, we obtain a quadrature representation of the solution to the prob-
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lem (2.7), (2.8)

ĝ(z, s) =
1√

s sh(2
√
s)

∫ 1

−1

g0(y) sh
[√

s(1− y)
]
dy sh

[√
s(z + 1)

]
−

− 1√
s

∫ z

−1

g0(y) sh
[√

s(z − y)
]
dy,

T̂ (z, s) =
1

sh(2
√
Ps)

{
T̂1(s) sh

[√
Ps(1− z)

]
+ T̂2(s) sh

[√
Ps(z + 1)

]
+

+

√
P

s

∫ 1

−1

T0(y) sh
[√

Ps(1− y)
]
dy sh

[√
Ps(z + 1)

]}
−

−
√

P

s

∫ z

−1

T0(y) sh
[√

Ps(z − y)
]
dy,

f̂(z, s) =
K̂(s)

s

(
ch (

√
sz)

ch
√
s

− 1

)
− 1√

s sh(2
√
s)

×

×
∫ 1

−1

F (y, s) sh
[√

s(1− y)
]
dy sh

[√
s(z + 1)

]
+

1√
s

∫ z

−1

F (y, s) sh
[√

s(z − y)
]
dy,

(2.9)

where
F (z, s) = εT̂ (z, s)− 2ĝ(z, s)− f0(z). (2.10)

Now, from equality (2.8) and representation f̂(z, s) (2.9) we obtain

K̂(s) =
3

2s cth
√
s

[
(1− ch (2

√
s))√

s sh (2
√
s)

∫ 1

−1

F (y, s) sh
[√

s(1− y)
]
dy+

+

∫ 1

−1

∫ z

−1

F (y, s) sh
[√

s(z − y)
]
dydz

] (2.11)

with F (z, s) defining by (2.9), (2.10).
The functions ŵ(z, s), ĥ(z, s) are determined from (2.2) taking into account differentiation

properties of the Laplace transform by the following formulas

ŵ(z, s) = −2

∫ z

−1

f̂(y, s) dy,

ĥ(z, s) = h0(s) + ŵz(z, s)− sŵ(z, s) + w0(z) =

= h0(s)− 2f̂(z, s) + 2s

∫ z

−1

f̂(y, s) dy + w0(z)

(2.12)

with an arbitrary function h0(s) and the function f̂(z, s) determined by (2.9).
Under the assumptions that the Laplace transform T̂1,2(s), ̂∂T1,2/∂t exists and that there

is the limit limt→∞ T1,2(t) = T s
1,2 = const the following holds because of the property of limit

relations for the Laplace transform (see [4])

lim
s→0

sT̂1,2(s) = lim
t→∞

T1,2(t) = T s
1,2. (2.13)

Let us demonstrate that lims→0 sK̂(s) = Ks, where Ks is given by (2.6), i. e. that
limt→∞ K(t) = Ks. It is obviously that sĝ(z, s) ≈ 0, s → 0. Now we proceed to consider
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the first approximation of the function sT̂ (z, s) using the Taylor series expansion of hyperbolic
functions:

sT̂ (z, s) ≈ 1

2
√
Ps

[
T s
1

√
Ps(1− z) + T s

2

√
Ps(z + 1)

]
=

=
1

2
[T s

1 + T s
2 + (T s

2 − T s
1 ) z] = T̂ s(z).

(2.14)

Taking into account (2.6) and (2.13) we can obtain provided s → 0

sK̂(s) ≈ 3

2
√
s

[
−
∫ 1

−1

εT s
√
s(1− y) dy +

∫ 1

−1

∫ z

−1

εT s
√
s(z − y) dydz

]
=

=
3ε

4

[
−
∫ 1

−1

((T s
2 − T s

1 )y + T s
1 + T s

2 )(1− y) dy+

+

∫ 1

−1

∫ z

−1

((T s
2 − T s

1 )y + T s
1 + T s

2 )(z − y) dydz

]
=

=
3ε

4

[
2

3
(T s

2 − T s
1 )− 2(T s

1 + T s
2 )−−2

3
(T s

2 − T s
1 ) +

4

3
(T s

1 + T s
2 )

]
=

=
3ε

4

(
−2

3
(T s

1 + T s
2 )

)
= Ks.

(2.15)

Here, the Taylor series expansions of the following functions were taken into account with the
retention of the main terms

3

2s cth
√
s
=

3

2s
(

1√
s
+ (

√
s)
3 + · · ·

) =
3

2
√
s (1 + o(s))

≈ 3

2
√
s
,

1− ch (2
√
s)√

s sh (2
√
s)

=
1− 1− 4s

2 − · · ·
√
s
(
2
√
s+ (2

√
s)3

6 + · · ·
) ≈ −1.

(2.16)

Now consider the limit lims→0 sf̂(s, z). Since

Ks

s

(
ch(

√
sz)

2 ch
√
s

− 1

)
=

Ks

s

(
1 + (

√
sz)2/2 + o(s2)− 1− (

√
s)2/2− o(s2)

1 + (
√
s)2/2 + o(s2)

)
≈ Ks

(
z2

2
− 1

2

)
,

the following can be derived

sf̂(z, s) ≈ Ks

(
z2

2
− 1

2

)
− ε

4s

∫ 1

−1

[(T s
2 − T s

1 ) y + T s
1 + T s

2 ]
√
s(1− y) dy

√
s(z + 1)+

+
ε

2
√
s

∫ z

−1

[
(T s

2 − T s
1 ) y + T s

1 + T s
2

]√
s(z − y) dy =

=
ε

2

[
(T s

2 − T s
1 )

z3

6
− (T s

2 − T s
1 )

z

6

]
= fs.

(2.17)

By direct substitution it is easy to show that

sŵ(z, s) ≈ −2

∫ z

−1

fsdy = −ε

6
(T s

2 − T s
1 )

(
y4

4
− y2

2

) ∣∣∣∣∣
z

−1

=

=
ε

24
(T s

1 − T s
2 )

(
z4 − 2z2 + 1

)
= ws,

sĥ(z, s) ≈ hs
0 − 2fs = hs,

(2.18)
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where hs
0 = lims→0 sh0(s).

We have proven the

Theorem. Under conditions (2.13), f0(z), g0(z), T0(z) ∈ C[−1, 1] the solution of a nonstation-
ary inverse initial boundary value problem (2.2)–(2.5) converges to the stationary solution (2.6)
with t → ∞.

Note, that initial values of function K(t) can be found directly from the problem (2.2)–(2.5).
The solution formulas (2.9) obtained in the images can be transformed into Fourier series.

To show it for the function g(z, t) we will use the first formula for ĝ(z, s) from (2.9). Note, that
ĝ(z, s) cannot be translated directly into the original space since the second term does not tend
to zero at s → ∞. It can be seen that

ĝ(z, s) =

∫ 1

−1

G(z, y)g0(y) dy, (2.19)

where

G(z, y, s) =
1√

s sh(2
√
s)

{
sh

√
s(y + 1) sh

√
s(1− z), −1 6 y 6 z;

sh
√
s(z + 1) sh

√
s(1− y), z 6 y 6 1

(2.20)

is the Green’s function for the operator d2/dz2 − s with zero first-type boundary conditions at
z ≡ ±1. It is clear that G(z, y, s) → 0 at s → ∞ for any z, y ∈ [−1; 1].

Now we can use the result from [5], p. 273, formula No. 188, namely that the image of the
function G(z, y, s) corresponds to the original

∞∑
n=1

sinnπz sinnπye−n2π2t = Γ(z, y, t), (2.21)

therefore ĝ(z, s) corresponds to the Fourier series

g(z, t) =

∫ 1

−1

Γ(z, y, t)g0(y) dy =
∞∑

n=1

∫ 1

−1

g0(y) sinnπy dy sinnπze
−n2π2t. (2.22)

It is easy to verify that the series (2.21) are the solution to the initial boundary value problem
for g(z, t). It is classical provided there is the agreement condition g0(−1) = g0(1) = 0 and
g′0(y) ∈ L2(−1, 1)

g0n =

∫ 1

−1

g0(y) sinnπy dy = − 1

πn

[
g0(y) cos nπy

∣∣∣∣1
−1

−
∫ 1

−1

g′0(y) cos nπy dy

]
=

=
1

πn

∫ 1

−1

g′0(y) cos nπy dy =
1

n
β(n).

(2.23)

whence it follows that |g0n| 6
1

2

1

n2
+

1

2
β2(n). Then

|g(z, t)| 6
∞∑

n=1

|g0n| 6
∞∑

n=1

1

2

1

n2
+

∞∑
n=1

1

2
β2(n) < ∞, (2.24)

as
1∫

−1

g′0(y) cos nπy dy → 0, n → ∞. The convergence to zero velocity for the function g(z, t) is

determined from the inequality

|g(z, t)| 6 e−π2t
∞∑

n=1

|g0n|e−π2(n−1)t 6 e−π2t
∞∑

n=1

|g0n| = Ce−π2t, (2.25)
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since the series
∞∑

n=1
|g0n| converges as noted above.
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Решение линейной задачи тепловой конвекции
во вращающемся слое жидкости

Виктор K. Андреев
Институт вычислительного моделирования СО РАН

Krasnoyarsk, Российская Федерация

Лилия И. Латонова
Siberian Federal University

Красноярск, Российская Федерация

Аннотация. Решена начально-краевая задача, возникающая при моделировании ползущего вра-
щательного движения вязкой жидкости в плоском слое. Найдено стационарное решение. С помо-
щью метода преобразования Лапласа решение в изображениях получено в квадратурах. Доказано,
что при некоторых условиях на распределение температуры на стенках решение нестационарной
задачи сходится с ростом времени к найденному стационарному решению.

Ключевые слова: тепловая конвекция, преобразование Лапласа, стационарное решение.
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