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Solution of the Linear Problem of Thermal Convection
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Abstract. The initial boundary problem arising in the modeling of viscous fluid creeping rotational
motion in a flat layer was solved. A stationary solution was found. The quadrature solution in images was
obtained using the Laplace transform method. The time convergence of the the non-stationary problem
solution to the established stationary solution was proved under certain conditions on the temperature
distribution on the walls.
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1. Problem statement

Let us assume that the fields of pressure and temperature velocities are rotationally symmet-
rical. Then, their values depend only on r = /22 + 92, z, and time ¢ in a cylindrical coordinate
system. Moreover, we suppose that the only external force acting on the fluid is the centrifugal
force. Then [1], the momentum, continuity, and energy equations can be written as

v? 1 U 9
up + v, +wu, — 2V — — = —— p,-—|—u<Au——2> — w*preo,
r p r
vt—|—uv,«—|—wvz—|—2wu+% :V(AU—%),
r r
1
wy + uw, +ww, = — p, + vAw, (L.1)
P

U + % +w, =0,
O+ u0, + wO, = YAO,
where A = 02/0r? +r=10/0r + 0?/02* is the axisymmetric part of Laplace operator.

Equations (1.1) are written in the rotating coordinate system with constant angular velocity
w relatively to the original inertial system. Its rotation axis and the z axis of the cylindrical
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coordinate system 7, ¢, z are coincide. The radial and axial components of the velocity are
denoted as v and w, respectively, and v is the deviation of the rotational velocity component
from the solid rotation velocity wr. The quantity p characterizes the pressure deviation from
equilibrium pressure: pw?r?/2; and © is the temperature deviation from the mean value. The
positive constants p, v, x, 5 are the physical liquid characteristics: density, kinematic viscosity,
thermal diffusivity, and volumetric expansion coeflicient.

The solution of a system (1.1) is sought in the form [2]

U:’I"f(Z,t), UZTg(Z,t), w:w(z,t),
1 o Appw? , r 1
p= 2K(t)r + 5" In i + h(z,t), (1.2)

©=Aln— +T(z,1),
a

where A and a is the constant dimensions of temperature and length correspondingly. The
substitution of (1.2) in (1.1) results in the system

1
fi+wf. —2wg+ f>—g* = - K(t) +vf.. —w’BT,
gt +wg, + ZWf + 2fg = VGzz, 2f +w, = O, (13)
1
Ty +wl,+ Af =xT,., w+ww, = —; h, +vw,,.

The solution of (1.2) may be interpreted as the following. A viscous heat-conductive liquid
fills the layer between flat walls z = +a rotating with angular velocity w = const around the z
axis. The no-slip condition u(r, +a,t) = 0, v(r, +a,t) = 0, w(r, +a,t) = 0 is satisfied on them.
At the initial instant the velocity and temperature distributions are specified consistent with
(1.2) formulas. On the rotation axis r = 0 sinks or sources of heat are distributed with constant
linear density 2w Ak (k > 0 is the constant liquid thermal diffusivity coefficient). The solid walls
(planes) bounding the liquid are ideally heat conductive. All the assumptions above lead to the
formulation of an initial boundary value problem for the system (1.3)

f:_%woz(Z% 9=90(2), w=wo(z), T=T(2), l|z[<a, t=0; (14)

f=9g=0, w=0, T=Ts(), z==a, t>0 (1.5)

with the specified functions wo(2), go(2), To(z), T1,2(t). The conditions of thermal insulation
of one (or both) walls can be used instead of the last in (1.5), for instance T'(—a,t) = T1(t),
T.(a,t) = 0. Note, that for smooth solutions the agreement conditions should be satisfied

’wo(ia) =0, sz(ia) =0, gO(ia) =0,

(1.6)
TO (:I:a) = Tl,g (O) (TQ(—CL) = T1 (0)7 TOZ(CL) = 0)
Let us introduce the dimensionless variables by
a?_ — _
t=—% z=az f=wR’f, g=wRj w=awR>wW, T =RAT,
. _ 2 y (1.7)
K = pw’RK, h=pw?a?Rh R=—, P=—, c=}A,
v X
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where R, P, ¢ are the Reynolds, Prandtl, and Boussinesq numbers correspondingly. Since
0?0t = va=20%/0t, 8?/0z = a=10%/0z, we obtain the following system by substituting (1.7)
into (1.3) and omitting the upper bars
fi+ RPwf. — 29+ R*f* — Rg* = f.. — K(t) — €T,
gt + RSU}QZ + 2R2f =02z, 2f+w.=0, (18)

1
T, + R?*wT, + R*f = FTZZ’ wy + RPww, = —h, + w,., |zl <1, t>0.

The conditions (1.4), (1.5), (1.6) remain unchangeable, it is just needed to take into account

that |2| < 1. In addition, wo(2) = wR?W,(2), go(z) = wRgy(Z), To(z) = RAT((2), Ti2(t) =
= RAT »(%) in the initial data.

2. Linear initial boundary value problem

Let be R << 1; such movements are called creeping. In practice they arise due to the high
kinematic viscosity, cross-sectional layer size fineness or small angular velocity w. Assuming that

f=f+RA+-, g=go+Rop+--, w=wo+Rwi+---,

2.1
T=To+RTy+ -, K=Ky+RK, + -, (2.1)

and substituting it into (1.8) we obtain the initial boundary value problem in the zero approxi-
mation (the subscript "0" is omitted)

ft_2g:fzz_K(t)_5T7

gt = Gzz, 2f +wy = 0; (22)
1
Tt: Fsz wt:wzz_hz7 |Z| < 17 t>07
Fz0) = —wos(2), g(.0) = (=), T(.0) = Ty(2)
z = ——wp.(z z = z z = z
) 2 0z ) 9\z, 9o ) 5 0 3 (23)

w(z,0) = wo(z), |2| < 1;

f(£1,¢6) =0, g(£1,t) =0, T(£1,t)=Ti2(t), w(£l,t)=0, t>0. (2.4)
Note, that

/_11 f(z,t)dz =0, (2.5)

what follows from the third equation in (2.2) and non-slip condition (2.4): w(+1,t) = 0. The
integral equality (2.5) is correct also for the general problem (1.3), (1.4), (1.5). This additional
condition is used to compute the part of radial pressure "gradient", which is the function K(¢),
see (1.2). Thus, the problem under consideration is an inverse problem.

Let us find the stationary solution of system (2.2)—(2.5). It is denoted as f*(z), ¢°(z), w®(2),
T°(z), K*, h*(z) and corresponds to the data 77, = const. Simple calculations lead to the next
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formulas

1
9°(2) =0, T°(x) =5 (I3 —T7) 2 + TY + T3),

f(z) = 15 — Tl)(z _Z)

12(
; 3 ;
K* = =2 (T} +T3), (2.6)

w?(z) = % (17 — T3) (22 — 1)2,

= (Tf = T3)z (2> = 1), h{ = const.

h?(z) = h{ + 5

The real fields of velocities u®(r, z), v*(r, z), w*(z), pressure p*(r, z), and temperature O°(r, z)
are given by (1.2).

The solution of inverse problem (2.2)—(2.5) can be obtained using the partition method in
the form of Fourier series. First, the functions ¢(z,t), T'(z,t) are to be found as solutions of the
first classical initial boundary value problems for the heat conduction equations [3]. After that
f(z,t) and K(t) should be determined taking into account the overloading condition (2.5). The
function w(z,t) can be recovered by quadrature from the third equation of the system (2.2), and
h(z,t) can be found by the latter from (2.2). This solution procedure is rather cumbersome.
Here we use the Laplace transform method to find a solution [4].

Let

oo
u(z,8) = / u(z, t)e st dt
0
be the Laplace transform for the function u. Since

0

(2, 8) = sti(z,8) —ug(2), U, = 5.3
the problem for ]?(z, s), g(z,s), f(z7 s), ]A((S) takes the form

Foo—sf =T =25+ K — fo(2)

N K 2.7)
/g\zz - 3./9\: _90(z)7 T,, — PsT = _PTO(Z)’ ‘Z| <1,

where ﬁ,g(s) is the Laplace transform of the specified functions Tj 2(t). Moreover, the next
conditions are satisfied

F(£1,5) =0, §(&1,5) =0, T(%1,5) =T (s),

/ fos) (2.8)

Thus, we obtain the boundary value problem (2.7), (2.8) in Laplace images for ODE systems.

Remark 1. The functions T} 2(¢) can have a finite number of the discontinuities of the first
kind [4].

After simple calculations, we obtain a quadrature representation of the solution to the prob-
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lem (2.7), (2.8)

G(z,s) = R
52 = ssh(2y/5)

o(y) sh [vs(1—y)] dysh [vs(z+1)] —

\‘\H

go(y)sh [V/s(z —y)] dy,

)
H> S"‘

T sh QF VPs(1 -~ z)} + f2(3> sh {\/Pis(z + 1)} +

\f / VPs(1 )] dy sh[VPs <z+1)}}— (2.9)
\f/ To(y sh (—y)} dy,

Fos) = ch (\fz) .t
Flas) = = (Ch\[ ) T
1
x /_ Pla.3)sh[VA(1 = )] dysh [Va(: + / (v, 5)sh [V/3(z — 9)] dy,
where
F(z,5) = T(z,5) — 2G(z,5) — fo(2). (2.10)

Now, from equality (2.8) and representation f(z,s) (2.9) we obtain

— C S 1
R(s) = f[“fffg\f;) / F(y. )sh [Va(1 - )] dyt

/ / (y,5)sh [Vs(2 — y)] dde}

with F'(z, s) defining by (2.9), (2.10).
The functions @(z, s), h(z s) are determined from (2.2) taking into account differentiation
properties of the Laplace transform by the following formulas

(2.11)

w(z,s) = —2 /_1 f(y,s) dy,

E(z, 8) = ho(s) + W,(z,8) — sW(z,s) +wo(z) = (2.12)
= ho(s) — Zf(z, s) + 2s /Zl f(y, s) dy + wo(2)

with an arbitrary function hg(s) and the function f (z s) determined by (2.9).

Under the assumptions that the Laplace transform T1 2(s), 0112 / Ot exists and that there
is the limit lim;_, o 71 2(t) = Tt 5 = const the following holds because of the property of limit
relations for the Laplace transform (see [4])

llg(l) sTh 2(s) = tli)rgo Ty 2(t) =17 5. (2.13)

Let us demonstrate that lim, o sf?(s) = K°*, where K?® is given by (2.6), i. e. that
lim; oo K(t) = K*®. It is obviously that sg(z,s) ~ 0, s — 0. Now we proceed to consider
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the first approximation of the function sj;(z7 s) using the Taylor series expansion of hyperbolic
functions:

~

sT(z,8) =~

1 CVPs(1—2z SV Ps(z =
i TiVPs(1 — 2) + TsVPs(z + 1) o1

1 S S S S AS
:§[T1 + T35 + (T3 = 1T7) 2] = T%(2).

Taking into account (2.6) and (2.13) we can obtain provided s — 0
3

sK(s) ~ M[— / VA - gy dy + /_ 11 /_ Zl sT%<z—y>dyd4 _

—1

3€ 1 S El S
= 4[—/1((T5—Ti)y+T1 +T5)(1 —y) dy+

_ (2.15)

1 z
+/ / (T3 — Ty + T§ + T5)(= — y) dyd=
—1J-1

_ 32
T 4|3

4

S S S S 2 S S
(T3 = 17) — 2(Ty +T2)__§(T2 =1T7) + 3

(17 + Tf)] =

3e 2, s o R
=7 (_3(T1 +T2)> = K”.

Here, the Taylor series expansions of the following functions were taken into account with the
retention of the main terms

2cthy/s g5 (L4 00 4.} 2V5(L+o(s) N
1~ ch (2¢/5) TR (2.16)

= ~ —1.

Vs sh (24/5) \/5(2\/g+%+...)

~

Now consider the limit lims_,o sf(s, z). Since

K (ds) ) K (1 <\/5z>2/fi?§)>2;21+—0E£>2/2 - o(s?)) e ( 1)

2¢h\/s

the following can be derived

2 2

2 1

sfes) w K0 (5= 5) = £ [ 105 =Ty T+ T VR0 - ) do/Sle + 1)+

2 2) 4s ),
€ : S S S S
roe [ @ Ty T Ve - - (217)
€ S S 2’3 S S z S
22[(73 —T)g (I —Ti)G] =/

By direct substitution it is easy to show that

z 4 2
~ s € s s Yy Yy
SW(Z,S)%*Q/lf dy:*g(Tz Tl)(42)

= % (TF —T3) (24 — 22 +1) = w?,

z

- (2.18)

~

sh(z,s) = hy —2f° = h°,
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where h{ = limg_,g sho(s).
We have proven the

Theorem. Under conditions (2.13), fo(2), go(2), To(z) € C[—1,1] the solution of a nonstation-
ary inverse initial boundary value problem (2.2)—(2.5) converges to the stationary solution (2.6)
with t — oo.

Note, that initial values of function K (¢) can be found directly from the problem (2.2)—(2.5).

The solution formulas (2.9) obtained in the images can be transformed into Fourier series.
To show it for the function g(z,t) we will use the first formula for g(z, s) from (2.9). Note, that
d(z, s) cannot be translated directly into the original space since the second term does not tend
to zero at s — 0o. It can be seen that

.5 = [ Glenaotu)dy, (2.19)
where
_ 1 shy/s(y+1)shy/s(l—2), -1<y<z
Clave) = Vssh(2v/s) {sh Vs(z+ Dshys(l—y), z2<y<1 (2.20

is the Green’s function for the operator d?/dz? — s with zero first-type boundary conditions at
z = +1. It is clear that G(z,y,s) — 0 at s — oo for any z,y € [—1;1].
Now we can use the result from [5], p. 273, formula No. 188, namely that the image of the
function G(z,y, s) corresponds to the original
o0
Z sinnmz sin mrye*"Q“Qt =T(z,y,t), (2.21)
n=1
therefore g(z, s) corresponds to the Fourier series
1 RS
g(z,t) = / I(z,y,t)g90(y) dy = Z/ go(y) sinnmy dy sin nrze L (2.22)
-1 /-

It is easy to verify that the series (2.21) are the solution to the initial boundary value problem
for g(z,t). Tt is classical provided there is the agreement condition go(—1) = go(1) = 0 and
90(y) € L2(—1,1)

1

1 1
. 1
Jon = / go(y) sinnmy dy = - lgo(y) cos nmwy - / 96(y) cos nmy dy] =
-1 1 -1

- (2.23)
L[ 0(y) cos ny d 16(71)
= — T = — .
— 90 Y yay n
. 11 2
whence it follows that |gon| < ot B (n). Then
— 1
t g n| X a 2 ) .
)| g: |90n| < nE ) 2n2 E 26 (n) < oo (2.24)

as [ go(y) cos nrydy — 0, n — oo. The convergence to zero velocity for the function g(z,t) is
-1

determined from the inequality

lg(z 0] <o tZlgome—” e tZ\gou =Ce™™, (2:25)
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o0
since the series Y |gon| converges as noted above.

n=1
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Pemnenue amHeliHOl 3aa91 TeNJIOBOII KOHBEKIINNI
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Awnnoranusi. Pemena HagasibHO-KpaeBast 3ajiavua, BOSHUKAIOINIAS TP MOJIETUPOBAHUN MOI3YIIETO Bpa-
MATEILHOTO JIBUKEHUsI BSI3KOM XKUIKOCTH B ITIOCKOM cjoe. Haiineno crarmmonapruoe pemrernne. C momo-
IIbIO MeTO/a IpeobpazoBanus Jlamnsaca perienne B n300parkeHUAX IIOJIyYeHO B KBaipaTypax. Joka3aHo,
YTO IIPM HEKOTODPBIX YCJIOBUSX Ha paclipesesieHre TeMIlepaTyphbl Ha CTEHKaX pellleHHe HeCTallMOHApPHON
3a/1a49U CXOIUTCA C POCTOM BPEMEHH K HAMJEHHOMY CTAIIMOHAPHOMY PEIIEHUIO.

KirroueBble ciioBa: TerioBast KOHBEKIIHUAI, npeo6pa3OBaHHe ﬂannaca, CTallUOHapHOE DEIIeHue.
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