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Abstract. It was obtained aluminum hydroxide in the form of bayerite by precipitation with ammonia. 
The precipitation pH was found by the potentiometric titration. Based on the data of thermal, X‑ray 
diffraction and IR‑analysis it was identified the sequence of bayerite transitions up to 800 °C. The study 
of nitrogen adsorption-desorption allowed to determine a specific surface, a volume, and dimensions 
of pores for boehmite and γ-Al2O3 as 135±2 and 238±10 m2/g; 0.38 and 0.51 cm3/g; 1.7 and 3.8 nm, 
relatively. The value of effective activation energy for boehmite →γ-Al2O3 transition ((136±5) kJ/mol) 
was found by means of non-isothermal method (by Avrami equation).
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Физико-химический анализ  
перехода байерита Al(OH)3 в γ-Al2O3

Н. В. Филатова, Н. Ф. Косенко, А. С. Артюшин
Ивановский государственный  

химико-технологический университет 
Российская Федерация, Иваново

Аннотация. Получен гидроксид алюминия в виде байерита осаждением аммиаком. рН осаждения 
определен методом потенциометрического титрования. На основании данных термического, 
рентгенофазового и ИК‑спектрального анализа установлена последовательность превращений 
байерита в интервале температур до 800 °C. По данным адсорбции-десорбции азота для 
образующихся бёмита и γ-Al2O3 определена удельная поверхность, объем и средний размер пор: 
135±2 и 238±10 м2/г; 0,38 и 0,51 см3/г; 1,7 и 3,8 нм соответственно. Неизотермическим методом 
(по уравнению Аврами) оценена эффективная энергия активации перехода байерит→бёмит: 
(136±5) кДж/моль.

Ключевые слова: бёмит, γ-Al2O3, байерит, термолиз, кинетика разложения, уравнение Аврами, 
энергия активации, термический анализ, дифрактограммы.
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Introduction
Alumina is an inorganic material which is widely used in ceramics [1], catalysts andcatalysts 

supports [2], photocatalysts [3], hydrogen production [4], as electronic material[5], and in other 
fields. Materials on the base of aluminum oxides and hydroxides are among the most studied. 
In recent years, the increasing attention has been focused on the development of alumina nano-
sized powders. They have a high potential as composites [6], as binder in no cement high alumina 
castable [7], for pollution prevention [8], as biocompatible material for medical composites [9], 
etc. In the literature, there are many methods of the nano alumina preparation by different 
methods such as sol-gel [10], combustion [11], hydrothermal [12] and other liquid phase synthetic 
methods [13]. Currently, the most common route is the thermal decomposition of aluminum 
hydroxides and oxyhydroxides. Hydroxides are usually obtained by precipitation [14–21]. There 
were used various precipitating agents, such as NaOH and n-butylamine [15], ammonium acetate 
[16], ammonium carbonate [17], ammonium bicarbonate [18], soda [19], ammonia [20], sodium 
carbonate [21].
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Gibbsite and bayerite are the most important aluminum trihydroxidesAl(OH)3 [20,22–24]. Among 
aluminum hydroxides, boehmite, aluminum oxyhydroxide AlOOH, is an accepted precursor because 
ofits heat treatment produces transition aluminas [25]. Boehmite γ-AlOOH is one of two polymorphs 
of aluminum oxyhydroxide (the other one is diaspore, α-AlOOH). Boehmite can be prepared by a solid-
state thermal transformation of gibbsite [26, 27]. Boehmite can be also synthesized from a liquid phase 
by hydrothermal/solvothermal routes or by sol-gel and precipitation techniques [28]. Experimental 
conditions such as an aluminum source, the nature of a precipitating agent, pH, temperature, and time 
of a thermal treatment may have the main influence on the boehmite crystallite size and morphology 
[29]. γ-Alumina is a kind of extremely important nano sized materials. It is used as a catalyst, can 
promote the sintering behavior of alumina, etc. [1, 2]. The characterization of transition aluminas 
formed by the dehydration of boehmite have been extensively studied [25, 27]. It was also under 
investigation the mechanism and kinetic parameters of the thermal decomposition of gibbsite and 
bayerite by non-isothermal thermogravimetric analysis [30–32].

In this paper, we tried to describe the bayerite → boehmite →γ-Al2O3thermal decomposition, to 
give some characteristics of obtained boehmite and γ-Al2O3, and to determine theactivation energy of 
the bayerite dehydrationunder non-isothermal conditions.

Materials and experiments

Aluminum nitrate nonahydrate Al(NO3)3·9H2O, analytically grade, in the form of 0.25 M solution 
in a distilled water was under stirring. The ammonium hydroxide solution (chemically pure, 6 M) was 
added to this solution during 1.5 h under constant stirring to pH 9.1–9.3. The precipitate was filtered, 
washed with distilled water, filtered again, and dried at 100–105 oС to a powder which was ground in a 
mortar. Dried precursor was heated at a rate of 10 °C/min in air atmosphere up to required temperature 
in a muffle oven SNOL 1300.

XRD‑patterns were obtained using a diffractometer DRON‑6 with a copper target (λ=0.1542 Å, 
40 kV, 100 mA). Thermalanalysis was performed in a computer-controlled instrument (model TGA/
SDTA851e/LF/1600); crucible 700 mkL; air blow 50 mL/min; temperature program up to 1200 °C at 
various heating rates (2, 3, 5, 10, 15, 20, 30, and 50 °C/min). Infrared spectra of samples were obtained 
on Avatar 360-FT-IR spectrometer(«Nicolet»). The nitrogen adsorption-desorption measurements of 
calcined samples were performed using adsorption analyzer Sorbi-MS.The specific surface areas were 
calculated by means of the Brunauer–Emmett–Teller (BET) method and the pore size distribution was 
obtained according to the Barret–Joyner–Halenda (BJH) method.

Results and discussion

It was done the direct titration of aluminum nitrate solution by ammonia solution to determine 
the precipitation pH. The equivalence point was fixed by the potentiometry (Fig. 1).The potential 
jumps (pH) corresponded to pH of the full precipitation beginning and finish, namely, 3.62 and 9.06, 
respectively. So, it might consider that pH ~9.1 would provide the Al(OH)3 full precipitation. According 
to work [22], under precipitation by ammonia Al(OH)3was at first separated as a gel which then was 
crystallized in the bayerite form. It was confirmed by XRD pattern (Fig. 2).

Allmain peaks corresponded to bayerite Al(OH)3 (JCPDS No 21–1307).Boehmite- and 
gibbsite peaks (JCPDS No 21–1307 and 76–1871, relatively) were not considerable.The process of 
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its thermal decomposition was complex and run in several stages (Fig. 3). The endotherms at 138 
and 203 °Con the DSC curve might refer to the removal of physical and interlaminar water which 
was in a low quantity [22,27]. The sharp mass loss (~23.5 %) and an intense endothermic peak 
were observed at ~300 °C. They corresponded to the partial Al(OH)3 dehydration to monohydrate 
as boehmite γ-AlOOH. Thenthe removal of expanded water followed to form γ-Al2O3 from 
boehmite (mass loss 14.8 %). All subsequent changes run with no mass loss, so, a gradual heat 
release in the rangeof 500–1000 °C and exothermic peaks at 1109 and 1158 °C were attributed to 
alumina polymorphic transitions up to α-Al2O3 (probably, through δ- and θ-phases). Rough values 
of the molar water content were calculated as 0.89 (300 °C), 0.19 (450 °C), and 0.07 (600 °C). The 

Fig. 1. The titration curve of aluminum nitrate solution by ammonia

Fig. 2. XRD pattern of a precipitated product. Registered peaks refer to bayerite
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exotherm appeared at the very end of DTA curve (1158 °C) corresponded to the transformation 
into α-alumina.

For comparison, DTA curve of the original gibbsite had an intense endotherm around 300–320 °C 
(gibbsite → boehmite) and a second endotherm, less intense, above 500 °C (boehmite → γ-alumina) 
[31]. For the natural boehmite, the dehydroxylation started at 480 °C and was complete by 520 °C [33]. 
Visible changes of transformations temperatures towards less values might relate to the small particle 
sizes of bayerite and a fresh boehmite and their high reactivities.

An obtained bayerite was treated at various temperaturesfor 1 h.XRD patterns indicated the existence 
of a product up to 250 oС in a XRD amorphous form. At 300 oС clear reflexes were appeared (Fig. 4). 
According to the JCPDS card No. 21–1307 forγ-AlOOH peaks (2θ) 14.48, 28.11, 38.25, 45.65, 48.81, 51.44, 
55.09, 60.45, 63.88, 64.78, 67.53, 71.73 correspond to hkl positions (020), (120), (031), (131), (051), (220), 
(151), (080), (231), (002), (171), (251), respectively. So, boehmite represented practically the only phase in 
the range of 300–400 °C. At 400 °C intensities of boehmite peaks were decreased and their width grew, 
that might indicate the start of AlOOH decomposition to γ-Al2O3 that was confirmed by the data of JCPDS 
Card No. 29–0063 for this phase: peaks 37.60, 39.49, 45.79, 60.89, 66.76 refer to the (311), (222), (400), (511), 
(440), respectively. The crystal structure of this polymorph remained up to до 800 °C. As seen in Fig.4, 
boehmite was transformed completely to γ-alumina. No intermediate compound was found.

The crystallite sizes (D, nm) of crystalline phaseswere estimated using Debay-Scherrer equation:

D = 0.90λ/βcosθ,	 (1)

where λ – X‑ray wavelength; β and θ – ​full-width-at-half-maximum (FWHM) of an observed peak and 
diffraction angle, respectively.

The calculation of the average crystallite sizes was made using the strongest reflexes (4 for 
boehmite and 2 for γ-Al2O3). They were found as 2.17 (300 °C) and 2.09 nm (400 °C) for boehmite, and 
1.69 (500 °C) and 2.08 nm (800 °C) for γ-Al2O3.

Fig. 3. TG-DSC curves of a dried precipitated product
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IR‑spectra are shown in Fig. 5. The IR spectrum of boehmite had a characteristic υs(Al)O–H and 
υas(Al)O–H stretching bandsor O–H stretching mode with two maxima at 3380 and ~3050 cm‑1. The 
stronger broadening band occurred due to the hydrogen bond between the various hydroxyl groups 
in boehmite. This was confirmed by the presence of H–O–H bending band at about 1640–1650 cm‑1, 
originating from bending–scissoring vibrations which were typical for water molecules. Boehmite 
showed strong infrared intensity in the 1050 to 1640 cm‑1 region [5]. The transmission in the spectra of γ-
Al2O3 was very weak in this field. Bands presence at ~1160 cm‑1 (shoulder) and 1050 cm‑1 corresponded 
to in-plane bending–scissoring vibration of OH in Al–O–H. The second hydroxyl deformation band 
at 1050 cm‑1 related to boehmite [27]. The dehydroxylation of the boehmite followed by the decrease 
in intensity of the hydroxyl deformation modes. The region of 1000–400 cm‑1 corresponded to Al-
O vibrations for γ-Al2O3. The bands at 668, 555, and 461 cm‑1were ascribed to the stretching and 
bending–scissoring vibration modes in octahedral aluminum AlO6, while a band at 998 cm‑1 related to 
the stretching mode of AlO4 tetrahedral configuration [5, 27, 33].

Nitrogen adsorption and desorption were measured to investigate the pore characteristics, namely 
diameter, volume, and size distributions of samples. As shown in Fig. 6, both samples exhibited type IV 
isotherm with an H2 hysteresis loop according to IUPAC classification.with a capillary condensation 

Fig. 4. XRD patterns of a precipitated product
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step at p/p0= 0.4–0.5. It was the characteristic of a mesoporous material withthe presence of cylindrical 
type pores in both synthesized alumina. Arched initial curve pieces indicated a strong adsorbate-
adsorbent interaction. Pore size distributions curves are shown in Fig. 7. Obtained peaks were single 
with narrow pore size distribution. The pore size distribution plots were uniform with one main peak in 
the ranges of 2–5 nm. It indicated very homogeneous mesopores by size. The average pore sizes were 
found as 1.7 and 3.8 nm, respectively.

Specific surface areas, SBET, were 135±2 and 238±10 m2/g for boehmite and γ-Al2O3. Pore 
volumeswere around 0.38 and 0.51 cm3/g, respectively.

Thermal analysis techniques were used in the evaluation of kinetic parameters of solid-state 
reactions in the dehydroxylation process of bayerite powder.Al(OH)3 decomposition to boehmitewas 
accompanied by the heat absorbance, that is revealed as endoeffect in DTA/DSC curves. Fig. 8 
illustrated DSC curves fragments for bayerite →boehmite transition.

Fig. 5. IR-spectra of a product after heat treatment at 300 °C (boehmite) and 800 °C (γ-Al2O3)

Fig. 6. N2 adsorption-desorption isotherm plots of boehmite and γ-Al2O3 samples
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These fragments differed by the heating rate during curves registration and by the extremum 
temperature. Peak temperatures of each endothermic curve shifted to the higher temperatures with the 
heating rate increase. It meant that dehydration temperature was not fixed but grew with increasing of 
heating rate. These data could be used to make a kinetic analysis of boehmite dehydration by Avrami 
equation:

	 (2)

whereTmax – ​endothermic peak temperature which related to dehydration reaction; h – ​heating rate, К/с; 
Ea – ​effective activation energy, J/mol; R – universal gas constant (8,314 J/mol∙К); А – pre-exponential 
factor in Arrhenius equation:

k = A exp(–Ea/RT).	 (3)

Fig. 8. DSC curve fragments for bayerite → boehmite transition at various heating rates of samples

Fig. 7. Pore size distribution for boehmite and γ-Al2O3 samples
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The plot of  versus  expected to be linear with slope tgα. So, the activation energy 
could be attained via this expression as Ea = R·tgα. Experimental and calculated data are presented in 
Table 1. Values of tgα (16.3±0.6) and coefficient of correlation R2 (0.975) were determined from slope 
of the dependencegiven in Fig. 9.

Table 1. Data for the effective activation energy estimation by Avrami equation

Tmax, K 541 547 554 566 576 584 590 598

h, K/min 2 3 5 10 15 20 30 50

Fig. 9. The Avramiplotforbayerite → boehmite transition

The effective activation energy for the partial bayerite dehydration and boehmite formation was 
calculated as 136±5 kJ/mol. This magnitude was in accordance with the activation energy value for 
gibbsite → boehmite transition which was estimated by different authors in the range of 155–159 kJ/mol 
[30], 108.5 kJ/mol [31], 133–142 kJ/mol [32].

Conclusion

Aluminum hydroxide as bayerite was precipitated with ammonia. The process of its thermal 
decomposition was complex and run in several stages.XRD patterns indicated the existence of a 
product up to 250 oС in an amorphous form. The boehmite represented practically the only phase in 
the range of 300–400 °C. At 400 °C AlOOH was decomposed to γ-Al2O3. No intermediate compound 
was found. The specific surface, volumes, and dimensions of pores for boehmite and γ-Al2O3were 
determined as 135±2 and 238±10 m2/g; 0.38 and 0.51 cm3/g; 1.7 and 3.8 nm, relatively. First, the 
effective activation energy for bayerite → boehmitetransition (136±5 kJ/mol) was found by means of 
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non-isothermal method (by Avrami equation).It was compared with the analogous value for gibbsite 
→ boehmite transition.
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