DOI: 10.17516/1997-1397-2022-15-1-75-79

УДК 515

Some New Congruence Identities of General Partition for $p_r(n)$

B.R.Srivatsa Kumar* Shruthi Shruthi[†] Halgar J. Gowtham[‡]

Manipal Institute of Technology Manipal Academy of Higher Education Manipal -576 104, India

Received 07.01.2020., received in revised form 10.08.2021, accepted 20.09.2021

Abstract. In the present work, we deduce some new congruences modulo 3 and 5 for $p_r(n)$, where $r \in \{-(3\lambda + 3), -(5\lambda + 3) \mid \lambda \text{ is any non-negative integer}\}$. Our emphasis throughout this paper is to exhibit the use of q-identities to generate the congruences for $p_r(n)$.

Keywords: q-identity, partition congruence, Ramanujan's general partition function congruences.

Citation: B.R. Srivatsa Kumar, S. Shruthi, H.J. Gowtham, Some New Congruence Identities of General Partition for $p_r(n)$, J. Sib. Fed. Univ. Math. Phys., 2022, 15(1), 75–79.

 $DOI:\ 10.17516/1997\text{-}1397\text{-}2022\text{-}15\text{-}1\text{-}75\text{-}79.$

1. Introduction

For |ab| < 1, Ramanujan's general theta function f(a, b) is given by

$$f(a,b) := \sum_{k=-\infty}^{\infty} a^{\frac{k(k+1)}{2}} b^{\frac{k(k-1)}{2}}.$$

By Jacobi's triple product identity [5, p. 35], we have

$$f(a,b) = (-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty},$$

where here and throughout the paper, we utilize the following q-shifted factorial:

$$(a;q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k), \qquad |q| < 1.$$

One of the special case of f(a, b) as defined by S. Ramanujan [5, p. 36] is as follows

$$f(-q) := f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{n(3n-1)}{2}} = (q; q)_{\infty}.$$

 $^{^\}dagger shruthikarranth@gmail.com \quad https://orcid.org/0000-0002-3305-0085$

 $^{^{\}ddagger} gowthamhalgar@gmail.com \quad https://orcid.org/0000-0001-5276-2363 \quad Corresponding \ authorized a constraint of the contraction of the contrac$

[©] Siberian Federal University. All rights reserved

For convenience, we write $f(-q^n) = f_n$. Due to Euler, we have

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{f_1},$$

where p(n) is the number of partitions of n. S. Ramanujan initiated the general partition function $p_r(n)$ as

$$\sum_{n=0}^{\infty} p_r(n)q^n = \frac{1}{f_1^r},\tag{1}$$

for non-zero integer r. For partition function p(n), Ramanujan's so called "most beautiful identity" is given by

$$\sum_{n=0}^{\infty} p(5n+4)q^n = 5\frac{f_5^5}{f_1^6},$$

which readily implies

$$p(5n+4) \equiv 0 \pmod{5}.$$

Further he also recorded two more congruences as follows:

$$p(7n+5) \equiv 0 \pmod{7},$$

$$p(11n+6) \equiv 0 \pmod{11}$$

The generalization of the congruences modulo powers of 5 and 7 for all $p_r(n)$ was proved by K. G. Ramanathan [16]. Later A. O. L. Atkin [2] found that Ramanathan's proof is not correct. M. Newmann [13–15], studied the function $p_r(n)$ and obtained several interesting congruences and identities involving $p_r(n)$. The functions $p_r(n)$ have been studied by many mathematicians. For the wonderful work one can see [1–4, 6, 8–10, 12, 17–22]. For r=-2, R. Hammond and R. Lewis [11] proved that

$$p_{-2}(5n+\ell) \equiv 0 \pmod{5},$$

where $\ell \in \{2, 3, 4\}$. Also in [7], W. Y. C. Chen et. al. proved

$$p_{-2}(25n+23) \equiv 0 \pmod{25}$$

by using modular forms. More recently D. Tang [24] for $p_r(n)$ proved some new congruences for $p_r(n)$, where $r \in \{-2, -6, -7\}$. For example,

$$p_{-2}\left(5^{2\delta-1}n + \frac{7 \times 5^{2\delta-1} + 1}{12}\right) \equiv 0 \pmod{5^{\delta}},$$
$$p_{-6}\left(5^{2\delta}n + \frac{3 \times 5^{\delta} + 1}{4}\right) \equiv 0 \pmod{5^{\delta}}$$

and

$$p_{-7}\left(5^{2\delta-1}n+\frac{13\times5^{2\delta-1}+7}{24}\right)\equiv 0\pmod{5^\delta}.$$

Motivated by the above work in this paper, we deduce some new congruences modulo 3 and 5 for $p_r(n)$, where $r \in \{-(3\lambda + 3), -(5\lambda + 3) \mid \lambda \text{ is any non-negative integer}\}$. By using the binomial theorem, one can easily deduce the below mentioned congruence, and it will be used again and again in our proof without mentioning precisely. For a prime p, we have

$$f_1^p \equiv f_p \pmod{p}$$
.

Now we state our results which we are proving in this paper. The following congruences holds good for any non-negative integer λ :

Theorem 1.1. We have

$$p_{-(3\lambda+3)}(3n+1) \equiv 0 \pmod{3},\tag{2}$$

$$p_{-(3\lambda+3)}(3n+2) \equiv 0 \pmod{3}.$$
 (3)

Theorem 1.2. We have

$$p_{-(5\lambda+3)}(5n+2) \equiv 0 \pmod{5},\tag{4}$$

$$p_{-(5\lambda+3)}(5n+3) \equiv 0 \pmod{5},\tag{5}$$

$$p_{-(5\lambda+3)}(5n+4) \equiv 0 \pmod{5}.$$
 (6)

2. Congruences of modulo 3 and 5

Proof of Theorem 1.1. Set $r = -(3\lambda + 3)$ in (1), we observe that

$$\sum_{n=0}^{\infty} p_{-(3\lambda+3)}(n)q^n = f_1^{3\lambda+3} = f_1^{3\lambda}f_1^3.$$
 (7)

From [5, p. 345 Chapter 20, Entry 1], we have

$$f_1^3 = f_9^3 \left(\frac{1}{u} - 3q + 4q^3 u^2\right),\tag{8}$$

where

$$u = \frac{f_3 f_{18}^3}{f_6 f_9^3}.$$

Substituting (8) in (7), we have

$$\sum_{n=0}^{\infty} p_{-(3\lambda+3)}(n)q^n = f_1^{3\lambda} f_9^3 \left(\frac{1}{u} - 3q + 4q^3 u^2\right)$$
$$\equiv f_3^{\lambda} f_{27} \left(\frac{1}{u} - 3q + 4q^3 u^2\right) \pmod{3}.$$

On extracting the powers of q^{3n+1} and q^{3n+2} in the above congruence, we deduce (2) and (3). \square *Proof of Theorem 1.2.* From [20], we have

$$f_1 = f_{25} \left(\frac{1}{R(q^5)} - q - q^2 R(q^5) \right),$$
 (9)

where

$$R(q) = \prod_{n=1}^{\infty} \frac{(1-q^{5n-4})(1-q^{5n-1})}{(1-q^{5n-3})(1-q^{5n-2})}.$$

Set $r = -(5\lambda + 3)$ in (1), we see that

$$\sum_{n=0}^{\infty} p_{-(5\lambda+3)}(n)q^n = f_1^{5\lambda+3} = f_1^{5\lambda} f_1^3$$

$$\equiv f_5^{\lambda} f_1^3 \pmod{5}.$$
(10)

From (9), we observe that

$$f_1^3 = f_{25}^3 \left(\frac{1}{R^3(q^5)} - \frac{3q}{R^2(q^5)} + 5q^3 - 3q^5 R^2(q^5) - q^6 R^3(q^5) \right). \tag{11}$$

Utilizing (11) in (12), one can easily see that

$$\sum_{n=0}^{\infty} p_{-(5\lambda+3)}(n)q^n \equiv f_5^{\lambda+6} \left(\frac{1}{R^3(q^5)} + \frac{2q}{R^2(q^5)} + 2q^5R^2(q^5) + 4q^6R^3(q^5) \right) \pmod{5}. \tag{12}$$

On extracting the powers of q^{5n+2} , q^{5n+3} and q^{5n+4} in the above congruence, we obtain (4), (5) and (6). The above result is also due to B. R. Srivatsa Kumar et al. [23].

References

- [1] G.E.Andrews, in: G.-C.Rota(Ed.), The Theory of Partitions, in: Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley, Reading, 1976 (Reprinted: Cambridge Univ. Press, London and New York, 1984).
- [2] A.O.L.Atkin, Ramanujan congruences for $p_k(n)$, Canad. J. Math., 20(1968), 67–78.
- [3] N.D.Baruah, K.K.Ojah, Some congruences deducible from Ramanujan's cubic continued fraction, *Int. J. Number Theory*, **7**(2011), 1331–134.
- [4] N.D.Baruah, B.K.Sarmah, Identities and congruences for the general partition and Ramanujan τ functions, *Indian J. of pure and Appl. Math.*, 44(2013), no. 5, 643–671. DOI: 10.1007/s13226-013-0034-7
- [5] B.C.Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991.
- [6] M.Boylan, Exceptional congruences for powers of the partition functions, Acta Arith., 111(2004), 187–203. DOI: 10.4064/aa111-2-7
- [7] W.Y.C.Chen, D.K.Du, Q.H.Hou, L.H.Sun, Congruences of multi-partition functions modulo powers of primes, *Ramanujan J.*, **35**(2014), 1–19.
- [8] H.M.Farkas, I.Kra, Ramanujan's partition identities, Contemporary Math., 240(1999), 111–130.
- [9] J.M.Gandhi, Congruences for $p_k(n)$ and Ramanujan's τ function, Amer. Math. Mon., $\mathbf{70}(1963)$, 265-274.
- [10] B.Gordon, Ramanujan congruences for $p_k \pmod{11^r}$, Glasgow Math. J., 24(1983), 107–123.
- [11] P.Hammond, R.Lewis, Congruences in ordered pairs of partitions, *Int. J. Math. Math. Sci.*, 45-48(2004), 2509–2512.
- [12] I.Kiming, J.B.Olsson, Congruences like Ramanujan's for powers of the partition function, *Arch. Math.*, (Basel), **59**(1992), no. 4, 348–360.
- [13] M.Newmann, An identity for the coefficients of certain modular forms, *J. Lond. Math. Soc.*, **30**(1955), 488–493.

- [14] M.Newmann, Congruence for the coefficients of modular forms and some new congruences for the partition function, *Canad. J. Math.*, **9**(1957), 549–552.
- [15] M.Newmann, Some theorems about $p_k(n)$, Canad. J. Math., 9(1957), 68–70.
- [16] K.G.Ramanathan, Identities and congruences of the Ramanujan type, *Canad. J. Math.*, **2**(1950), 168–178.
- [17] S.Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Phillos. Soc., 19(1919), 207–210.
- [18] S.Ramanujan, Congruence properties of partitions, Proc. Lond. Math. Soc., 18(1920), Records of 13 March 1919.
- [19] S.Ramanujan, Congruence properties of partitions, Math. Z., (1921), 147–153.
- [20] S.Ramanujan, Collected Papers. Cambridge University Press, Cambridge, 1927; reprinted by Chelsea, New York, 1962; reprinted by Narosa, New Delhi, 1987; reprinted by the American Mathematical Society, Providence, 2000.
- [21] N.Saikia, J.Chetry, Infinite families of congruences modulo 7 for Ramanujan's general partition function, *Ann. Math. Quebec.*, **42**(2018), no. 1, 127–132.
- [22] Shruthi, B.R.Srivatsa Kumar, Arithmetic identities of Ramanujan's general partition function for Modulo 17, *Proceedings of the Jangjeon Mathematical Society*, **22**(2019), no. 4, 625—630. DOI: 10.17777/pjms2019.22.4.625
- [23] B.R.Srivatsa Kumar, Shruthi, D.Ranganatha, Some new Congruences Modulo 5 for General Partition Function, Russian Mathematics, 64(2020), 73–78.
 DOI: 10.26907/0021-3446-2020-7-83-88
- [24] D.Tang, Congruences modulo powers of 5 for k-colored partitions, J. Number Theory, 187(2018), 198-214, .

Некоторые новые конгруэнтные тождества общего разбиения для $p_r(n)$

Б. Р. Шриватса Кумар Шрути Шрути Халгар Дж. Гаутам

Технологический институт Манипала Академия высшего образования Манипала Манипал – 576104, Индия

Аннотация. В настоящей работе мы выводим некоторые новые сравнения по модулю 3 и 5 для $p_r(n)$, где $r \in \{-(3\lambda+3), -(5\lambda+3) \mid \lambda$ любое неотрицательное целое число $\}$. В этой статье мы делаем упор на демонстрацию использования q-тождеств для генерации сравнений для $p_r(n)$.

Ключевые слова: q-идентичность, конгруэнтность разбиений, общие конгруэнции статистической суммы Рамануджана.