DOI: 10.17516/1998-2836-0217

УДК 541.135+547.0

Electrocatalytic Resorcinol Oxidation by Active Oxygen forms in Situ Generated in Conjugate Reactions on Pt and Pb/PbO₂ Anodes and Mesostructured Carbon Cathode CMK-3

Galina V. Kornienko^{a,b}, Tatyana A. Kenova^a, Vasiliy L. Kornienko^{*a}, Aleksey A. Kukushkin^b ^aInstitute of Chemistry and Chemical Technology SB RAS FRC «Krasnoyarsk Scientific Center of the SB RAS» Krasnoyarsk, Russian Federation ^bReshetnev Siberian State University of Science and Technology Krasnoyarsk, Russian Federation

Received 22.01.2021, received in revised form 20.02.2021, accepted 11.03.2021

Abstract. Kinetics and selectivity of indirect electrocatalytic resorcinol oxidation by active oxygen forms (AOF) in situ generated from oxygen in gas diffusion electrode (GDE) mesostructured carbon CMK-3 and Pt, Pb/PbO₂ at different pH were studied. The high resorcinol oxidation process effectivity in both Pt-GDE at pH=10 (99 %) and Pb/PbO₂ + Fe²⁺ at pH=2 (99 %) systems was shown; the resorcinol oxidation scheme was proposed.

Keywords: indirect electrocatalytic oxidation, active oxygen forms, resorcinol, mesostructured carbon, gas diffusion electrode, intermediates.

Citation: Kornienko G.V., Kenova T.A., Kornienko V.L., Kukushkin A.A. Electrocatalytic resorcinol oxidation by active oxygen forms in situ generated in conjugate reactions on Pt and Pb/PbO₂ anodes and mesostructured carbon cathode CMK-3, J. Sib. Fed. Univ. Chem., 2021, 14(1), 72-81. DOI: 10.17516/1998-2836-0217

© Siberian Federal University. All rights reserved

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

^{*} Corresponding author E-mail address: kvl@icct.ru

Непрямое электрокаталитическое окисление резорцина активными формами кислорода, in situ генерированными в сопряженных реакциях на анодах из Pt и Pb/PbO₂ и катоде из мезоструктурированного углерода СМК-3

Г.В. Корниенко^{а,б}, Т.А. Кенова^а, В.Л. Корниенко^а, А.А. Кукушкин^б ^аИнститут химии и химической технологии СО РАН, ФИЦ «Красноярский научный центр СО РАН» Российская Федерация, Красноярск ^бСибирский государственный университет науки и технологии имени академика М.Ф. Решетнева Российская Федерация, Красноярск

Аннотация. Исследована кинетика и селективность непрямого электрокаталитического окисления резорцина активными формами кислорода (АФК), генерированными in situ из кислорода в газодиффузионном электроде (ГДЭ) на основе мезоструктурированного углерода СМК-3 и анодах из Pt и Pb/PbO₂ при различных pH. Показана высокая эффективность процесса окисления резорцина (99 %) в системе с ГДЭ и Pt при pH =10 в растворе 0.05 M NaOH: 0.5 M Na₂SO₄ (3:1), и Pb/PbO₂ + Fe²⁺ при pH=2 (99 %) в растворе 0.5 M Na₂SO₄:0.1 M H₂SO₄ (3:1), предложена схема его окисления.

Ключевые слова: непрямое электрокаталитическое окисление, активные формы кислорода, резорцин, мезоструктурированный углерод, газодиффузионный электрод, интермедиаты.

Цитирование: Корниенко, Г.В. Непрямое электрокаталитическое окисление резорцина активными формами кислорода, in situ генерированными в сопряженных реакциях на анодах из Pt и Pb/PbO₂ и катоде из мезоструктурированного углерода СМК-3 / Г.В. Корниенко, Т.А. Кенова, В.Л. Корниенко, А. А. Кукушкин // Журн. Сиб. федер. ун-та. Химия, 2021, 14(1). С. 72-81. DOI: 10.17516/1998-2836-0217

Введение

Изомеры дигидроксибензола (гидрохинон, пирокатехин, резорцин) находят широкое применение в производстве красителей, каучуков, полимеров, используются в фармацевтической, пищевой, косметической и ряде других отраслей промышленности [1]. Сточные воды, содержащие производные фенола и/или продукты их деструкции, являются серьезной экологической проблемой, поскольку эти поллютанты большей частью относятся к трудно фото- и биоразлагаемым соединениям [2–4].

Традиционные методы очистки фенолсодержащих сточных вод, такие как химические, физические и биологические, имеют ряд существенных недостатков [5].

В этой связи инновационные процессы окисления («advanced oxidation processes» (AOPs)) все чаще рассматриваются как альтернативные способы очистки промышленных и муници-

пальных сточных вод, содержащих различные органические и неорганические поллютанты, очистки и дезинфекции питьевой воды, рекультивации загрязненных почв [2, 6–11].

Среди AOPs электрохимические методы обладают рядом преимуществ, поскольку в них используется «чистый реагент» – электрон. Они протекают в мягких условиях, со сравнительно высокими скоростями, контролируемыми плотностью тока или потенциалом, не требуют сложного оборудования и легко автоматизируются» [9].

Следует отметить, что в настоящее время электрохимические технологии рассматриваются в качестве перспективных для переработки биомассы с получением целевых продуктов с высокой добавленной стоимостью [12,13]. Эти процессы удовлетворяют большинству требований зеленой химии.

В основе **AOPs** лежит in-situ получение высокореакционных АФК (главным образом, •OH-радикалов), участвующих в процессах окисления [14].

По способу получения •OH-радикалов в электролитической системе можно выделить два вида электрохимических процессов: прямой и непрямой. В случае прямого электрохимического процесса образование •OH-радикалов протекает на аноде за счет прямого разряда молекул воды, скорость получения и концентрация которых зависит от каталитической активности анодного материала (1).

$$H_2O \to HO^{\bullet}_{(a,a,c,\cdot)} + H^+ + e. \tag{1}$$

К непрямому электрохимическому процессу обычно относят процессы с получением •OH на основе реакции Фентона (2) (электро-Фентон, фото-электро-Фентон, соно-электро-Фентон и др.).

$$H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH^- + HO^{\bullet}.$$
 (2)

В этом случае требуется добавление или электрохимическая *in situ* генерация H_2O_2 и Fe²⁺ [15].

В качестве модельного фенольного компонента сточных вод разрушение резорцина было исследовано с помощью химического (HClO, NH₂Cl, KMnO₄) [16,17], каталитического [18], фотокаталитического [19] окисления, озонирования [20] и адсорбции [21]. В [22] было показано, что резорцин эффективно может быть окислен электрохимически на допированном бором алмазном электроде (ДБАЭ).

В данной работе исследовано электрокаталитическое окисление резорцина активными формами кислорода, *in situ* генерированными в сопряженных реакциях на анодах из Pt и Pb/PbO₂ и катоде из мезоструктурированного углерода CMK-3 при различных pH в бездиафрагменном электролизере. Изучено влияние материала анода, плотности тока, pH электролита на эффективность и кинетику процесса.

Экспериментальная часть

Для получения H₂O₂ и проведения электролиза с его участием *in situ* использовали термостатируемую ячейку с неразделенным катодным и анодным пространством. Газодиффузионные электроды изготовляли в виде 2-слойных дисков диаметром 30 мм по методике, описанной в [23]. Содержание фторопласта Ф-4Д в рабочем слое составляло 60 мас. %, в запорном слое – 50 мас. %. Для запорного слоя использовали ацетиленовую сажу марки А-437 Э, для рабочего слоя – мезоструктурированный углерод СМК-3. Текстурные характеристики данного углеродного материала приведены в [24].

В качестве анодов применяли платиновую пластину и электрод из диоксида свинца (Pb/PbO₂), изготовленный по методике, описанной в [25], площадь анодов составляла 2,5 см². В качестве электрода сравнения использовали хлорид – серебряный электрод (ЭВЛ-1М1), относительно которого приведены все значения потенциала в статье. Объем ячейки 50 мл.

Окисление модельных растворов резорцина проводили при плотности тока в интервале от 25 до 100 мАсм⁻². Исходные концентрации резорцина составляли 50 и 100 мг л⁻¹. В работе использовали следующие электролиты: pH=2–0.5 M Na₂SO₄: 0.1 M H₂SO₄ (3:1); pH=7–0.5M Na₂SO₄; pH = 10–0.05 M NaOH: 0.5 M Na₂SO₄ (3:1), температура электролита составляла 20 °C. При окислении в электролите с pH=2 процесс проводили с добавлением сульфата железа C_{Fe}²⁺ = $3,2 \cdot 10^{-3}$ мг л⁻¹. Кислород в ГДЭ подавали с его тыльной стороны.

Анализ продуктов окисления резорцина проводили на приборе Shimadzu LC/MS-2002 с колонкой RAPTOR ARC-18 100. Хроматографирование образца осуществляли в изокритическом режиме в ацетонитриле. Для регистрации масс-спектров использовали квадрупольный масс-спектрометр с электронапылительным источником ионов (ESI) при прямом вводе образца и элюата, подаваемого хроматографом со скоростью 20 мкл/мин. Все электрохимические измерения проводили с помощью потенциостата ПИ 50–1.1 (ЗИП, г. Гомель, Республика Беларусь).

Результаты и обсуждение

На рис. 1 приведены кинетические кривые окисления резорцина в кислом и щелочном электролитах в ячейке с платиновым анодом. Исходная концентрация резорцина 100 мг л⁻¹.

Рис. 1. Кинетические кривые окисления резорцина на Pt аноде в зависимости от pH при плотности тока 50 мAсм⁻² (1, 2) и 100 мAсм⁻² (3, 4): 1.3 - pH = 2 и 2,4 - pH = 10

Fig. 1. Kinetic curves of resorcinol oxidation on Pt anode versus pH at current density 50 mAcm⁻² (1, 2) and 100 mAcm⁻² (3, 4): 1.3 - pH = 2 and 2.4 - pH = 10

На рис. 1 видно, что как в щелочном, так и в кислом электролитах с увеличением плотности тока эффективность окисления резорцина возрастает. Наиболее значительно это наблюдается в течение первых двух часов работы ячейки. Так, в щелочном электролите за первый час электролиза эффективность окисления составила 60 % при плотности тока 50 мAсм⁻² и 94 % – при 100 мAсм⁻². В кислом электролите за первый час электролиза эффективность составила 59 % при плотности тока 50 мAсм⁻² и 60 % – при 100 мAсм⁻². Сравнение результатов показывает, что окисление резорцина в щелочном растворе при pH = 10 протекает значительно эффективнее, чем в кислом. Это можно объяснить тем, что при электрохимическом восстановлении O₂ в зависимости от pH раствора образуются различные по своей реакционной способности AФK:

$$O_2 + H_2O + 2e = HO_2^- + OH^ pH \ge 7$$
, (3)

$$O_2 + 2 H^+ + 2e = H_2O_2$$
 pH <7. (4)

На аноде протекает реакция окисления воды с образованием НО'-радикалов (1) [11].

В ячейке с неразделенным пространством электрогенерированный H_2O_2 может быть окислен на аноде по реакциям (5, 6), давая в качестве интермедиата радикал HO_2^{\bullet} с меньшей окислительной способностью, чем HO^{\bullet} :

$$H_2O_2 \rightarrow HO_2^{-} + H^+ + e, \tag{5}$$

$$H_2O_2 + HO^{\bullet} \rightarrow HO_2^{\bullet} + H_2O. \tag{6}$$

В щелочном растворе HO_2^- по условиям электропереноса будет переноситься к аноду и окисляться до пергидроксильного радикала HO_2^{\bullet} . Кроме того, OH^- , окисляясь на аноде, будет давать гидроксильные радикалы HO^{\bullet} . Поэтому в электролизере без мембраны в щелочном электролите с участием платинового анода наблюдается более эффективное окисление резорцина.

На рис. 2 представлены кинетические кривые окисления резорцина с применением анодов из Pt и PbO/PbO₂ в кислом электролите в присутствии ионов Fe(II). Из рисунка видно, что за первый час электролиза при плотности тока 50 мAсм⁻² эффективность окисления составила для анода из Pt – 44 %, Pb/PbO₂ – 57 %, Pb/PbO₂ + Fe²⁺ – 64 %. Анализ кинетических кривых окисления резорцина при различных значениях pH показал достаточно хорошие линейные зависимости с коэффициентом корреляции ~ 0,95 для реакции псевдопервого порядка, описываемой уравнением:

$$lnC_0/C = kt, \tag{7}$$

где: C_0 – исходное значение концентрации резорцина, мг л⁻¹; C – концентрация резорцина через время t, мг л⁻¹; k – кажущаяся константа скорости окисления, ч⁻¹.

Найденные значения кажущихся констант скорости при различных плотностях тока и рН приведены в табл. 1.

Из данных табл. 1 видно, что более оптимальные условия реализуются при pH = 10 и плотности тока 100 мАсм^{-2.}

Рис. 2. Кинетические кривые окисления резорцина на анодных материалах из Pt, PbO/PbO₂ при плотности тока 50 мАсм⁻², pH =2: 1 – анод Pt; 2 – анод Pb/PbO₂; 3 – анод PbO/PbO₂ с добавлением в раствор Fe²⁺. Исходная концентрация резорцина 50 мг π^{-1}

Fig. 2. Kinetic curves of resorcinol oxidation on anodes Pt, PbO/PbO₂ at current density 50 mAcm⁻², pH =2: 1 - anode Pt; $2 - \text{anode Pb/PbO}_2$; $3 - \text{anode PbO/PbO}_2$ with addition to the solution Fe²⁺. Initial resorcinol concentration 50 mgl⁻¹

Таблица 1. Константы скорости окисления резорцина при разных значениях плотности тока и pH электролита. Исходная концентрация резорцина 50 мг л⁻¹, анод Pt

Table 1. Resorcinol oxidation rate constants at different current densities and pH electrolyte. Initial resorcinol concentration 50 mg l^{-1} , anode – Pt

<i>i</i> , мАсм ⁻²	k, ч ⁻¹			
	pH=2	pH=7	pH=10	
25	0,23	0,19	0,29	
50	0,65	0,60	0,81	
100	1,00	0,90	1,60	

В табл. 2 приведены результаты эффективности окисления резорцина в зависимости от плотности тока, времени электролиза, концентрации субстрата и pH электролита с использованием различных анодов.

Из результатов табл. 2 видно, что эффективность окисления резорцина увеличивается при всех значениях pH с увеличением плотности тока. Эффективность окисления за первый час электролиза зависит от природы материала анода, плотности тока, концентрации субстрата и pH раствора электролита. Применение различных анодных материалов показало, что более эффективным анодом при pH = 2 является Pb/PbO₂, а при pH =10 – Pt.

Методом хромато-масс-спектроскопии реакционной смеси в течение 5 ч электролиза были идентифицированы следующие продукты – интермедиаты для обеих схем окисления: І-резорцин, Па-1,2,4-тригидроксибензол, Пb-пирогаллол, Ша-2-гидроксигекса-2,4-диен-1,6дикарбоновая кислота, IIIb-3-гидроксигекса-2,4-диен-1,6-дикарбоновая кислота, IV- щавелевая Таблица 2. Результаты эффективности окисления резорцина в зависимости от плотности тока, времени электролиза, концентрации субстрата и рН электролита с использованием различных анодов

Условия эксперимента			Эффективность окисления,%			
рН	анод	Плотность тока <i>i</i> , мАсм ⁻²	1 ч	5 ч		
$C_P = 50 \text{ мг } \pi^{-1}$						
10	Pt	25	16	94		
		50	48	91		
		100	58	99		
7	Pt	25	12	92		
		50	27	95		
		100	32	96		
2	Pt	25	8	91		
		50	20	96		
$C_{\rm P} = 100 \; { m Mr} \; { m J}^{-1}$						
10	Pt	50	39	96		
		100	69	99		
2	Pt	50	34	93		
		100	37	98		
2	Pb/PbO ₂	50	42	90		
		100	22	98		
2	Pb/PbO ₂ +	50	51	99		
	Реактив Фентона	100	68	95		

Table 2. Results of resorcinol oxidation efficiency versus current density, electrolysis duration, substrate concentration and pH electrolyte using different anodes

кислота. Интермедиаты с индексом а идентифицированы в ячейке с анодом из диоксида свинца, с индексом b – в ячейке с платиновым анодом.

На основании полученных результатов анализа можно предположить, что окисление резорцина в обеих системах протекает последовательно через ряд интермедиатов и конечным продуктом является щавелевая кислота. Исходя из этого, можно предположить наиболее вероятную схему его окисления:

Схема окисления резорцина: І-резорцин, Па-1,2,4-тригидроксибензол, Пb-пирогаллол, IIIa-2-гидроксигекса-2,4-диен-1,6-дикарбоновая кислота, IIIb-3-гидроксигекса-2,4-диен-1,6-дикарбоновая кислота, IV- щавелевая кислота.

Таким образом, в исследованных условиях из резорцина можно получать по маршрутам I–IV-щавелевую кислоту (IV), которая находит широкое применение в различных отраслях промышленности.

Заключение

Установлена высокая эффективность непрямого электрокаталитического окисления резорцина активными формами кислорода (АФК), генерированными *in situ* из кислорода в газодиффузионном электроде (ГДЭ) на основе мезоструктурированного углерода СМК-3 и анодах из Pt и Pb/PbO₂ при различных pH в ячейке с неразделенными анодным и катодным пространствами. Выявлено влияние материала анода, плотности тока, pH электролита на эффективность и кинетику процесса. Установлено, что как в щелочном, так и в кислом электролитах с увеличением плотности тока эффективность окисления резорцина возрастает на всех исследованных анодных материалах. В ячейке с Pt анодом в щелочном электролите за первый час электролиза эффективность окисления составила 60 % при плотности тока 50 мАсм⁻² и 94 % – при 100 мАсм⁻², в кислом электролите за первый час электролиза 59 % при плотности тока 50 мАсм⁻² и 60 % – при 100 мАсм⁻².

Установлено, что при окислении резорцина при pH=2 с анодами из Pb/PbO₂ и Pt наиболее эффективно реализуется схема Pb/PbO₂ + добавление солей железа (электро – Фентон): при плотности тока 50 мАсм⁻² эффективность составила 99 %. При использовании Pt анода лучшие результаты получены при pH=10 – эффективность окисления при плотности тока 100 мАсм⁻² составила 99 %.

Из резорцина в исследованных условиях непрямого электрокаталитического окисления можно получать щавелевую кислоту, которая находит широкое применение в различных отраслях промышленности.

Благодарности / Acknowledgments

Работа выполнена в рамках государственного задания Института химии и химической технологии СО РАН (проект 0287–2021–0012) с использованием оборудования Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

This work was conducted within the framework of the budget project 0287–2021–0012 for Institute of Chemistry and Chemical Technology SB RAS using the equipment of Krasnoyarsk Regional Research Equipment Centre of SB RAS.

Список литературы / References

1. Lopes da Silva A. R., Jhones dos Santos A., Martinez-Huitle C. A. Electrochemical measurements and theoretical studies for understanding the behavior of catechol, resorcinol and hydroquinone on the boron doped diamond surface. *RSC Advances 2018*. Vol. 8, P. 3483–3492.

2. Kornienko G.V., Kenova T.A., Kornienko V.L., Golubtsova O.A., Maksimov N.G. Electrochemical oxidation of dyes on oxide lead anode with the involvement of active oxygen species. *Russian Journal of Applied Chemistry 2017.* Vol. 90, P. 1234–1238.

3. Dos Santos A.B., Cervantes F.J., and Van Lier J.B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology, *Bioresource Technology 2007*. Vol. 98, P. 2369–2385.

4. Sirés I., Brillas E., Oturan M.A., Rodrigo M.A., Panizza M. Electrochemical advanced oxidation processes: today and tomorrow. A review, *Environmental Science Pollution Research 2014*. Vol. 21, P. 8336–8367.

5. Brillas E., Martínez-Huitle C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. *Applied Catalysis B: Environmental 2015*. Vol. 166–167, P. 603–643.

6. Kharlamova T.A., Aliev Z. M. Use of electrolysis under pressure for destructive oxidation of phenol and azo dyes. *Russian Journal Electrochemistry 2016*. Vol. 52, P. 251–259.

7. Anglada Á., Urtiaga A., Ortiz I., Mantzavinos D., Diamadopoulos E. Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. *Water Research 2011*. Vol. 45, P. 828–838.

8. Pacheco M.J., Santos V., Ciríaco L., Lopes A. Electrochemical degradation of aromatic amines on BDD electrodes, *Journal Hazardous Materials 2011*. Vol. 186, P. 1033–1041.

9. Chaplin B.P., Critical review of electrochemical advanced oxidation processes for water treatment applications, *Environmental Science: Processes Impacts 2014*. Vol. 16, P. 1182–1203.

10. Basha C.A., Sendhil J.S., Kumar K., Muniswaran P.K.A., Lee C.W. Electrochemical degradation of textile dyeing industry effluent in batch and flow reactor systems. *Desalination 2012*. Vol. 285, P. 188–197.

11. Rodrigues A.S., Nunes M. J., Lopes A., Silva J. N., Ciríaco L., Pacheco M. J. Electrodegradat ion of naphthalenic amines: Influence of the relative position of the substituent groups, anode material and electrolyte on the degradation products and kinetics. *Chemosphere 2018*. Vol. 205, P. 433–442.

12. Sun Y. and Li K. Electrocatalytic Upgrading of Biomass-Derived Intermediate Compounds to Value-Added Products. *Chemistry European Journal Minireview 2018*. Vol. 24, P. 18258–18270.

13. Movil-Cabrera O., Rodriguez-Silva A., Arroyo-Torres C., Staser J. A. Electrochemical conversion of lignin to useful chemicals. *Biomass and Bioenergy 2016*. Vol. 88, P. 89–96.

14. Moreira F.C., Boaventura R.A.R., Brillas E., Vilar V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. *Applied Catalysis B: Environmental 2017.* Vol. 202, P. 217–261.

15. Nidheesh P.V., Zhou M., Oturan M. A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. *Chemosphere 2018*. Vol.197, P. 210–227.

16. Zhao F., Li X., Graham N. Treatment of a model HA compound (resorcinol) by potassium manganate. *Separation and Purification Technology 2012*. Vol. 91, P. 52–58.

17. Cimetiere N., Dossier-Berne F., De Laat J. Monochloramination of Resorcinol: Mechanism and Kinetic Modeling. *Environmental Science and Technology 2009*. Vol. 43, P. 9380–9385.

18. Chang Chien S. W., Chen H. L., Wang M. C., Seshaiah K. Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite. *Chemosphere 2009.* Vol. 74, P. 1125–1133.

19. Pardeshi S.K., Patil A.B. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. *Journal of Hazardous Materials 2009*. Vol. 163, P. 403–409.

20. Sotelo J.L., Beltran F.J., Gonzalez M. Ozonation of aqueous solutions of resorcinol and phloroglucinol. 1. Stoichiometry and absorption kinetic regime. *Industrial and Engineering Chemistry Research 1990*. Vol. 29, P. 2358–2367.

21. Kumar S., Zafar M., Prajapati J. K., Kumar S., Kannepalli S. Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution. *Journal of Hazardous Materials 2011.* Vol. 185, P. 287–294.

22. Nasr B., Abdellatif G., Canizares P., Saez C., Lobato J., Rodrigo M.A. Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes. *Environmental Science and Technology 2005.* Vol. 39, P. 7234–7239.

23. Колягин Г.А., Корниенко В. Л. Электросинтез пероксида водорода в газодиффузионном электроде. Достижения и перспективы. LAP Lambert Academic Publishing, 2011. 101 с. [Kolyagin G. A., Kornienko V. L. Electrosynthesis of hydrogen peroxide in a gas diffusion electrode. Achievements and prospects. LAP Lambert Academic Publishing, 2011. 101 p. (in Russ.)]

24. Kornienko V.L., Kolyagin G.A., Kornienko G.V., Parfenov V.A., Ponomarenko I.V. Electr osynthesis of H₂O₂ from O₂ in a Gas-Diffusion Electrode Based on Mesostructured Carbon CMK-3. *Russian Journal of Electrochemistry 2018.* Vol. 54, P. 258–264.

25. Фиошин М.Я., Смирнова М.Г. Электрохимические системы в синтезе химических продуктов. М.: Химия, 1985. 256 с. [Fioshin M. Ya., Smirnova M.G. Electrochemical systems in the synthesis of chemical products. Moscow: Chemistry, 1985. 256 р. (in Russ.)]