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successive approximation. Moreover, by using some properties of Mittag-Leffler function and fixed
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Introduction

In recent years, the scientific community has been paying more attention to fractional calcu-
lus because it is an effective tool in modeling many phenomenaln various fields of engineering
and science, since its non-local properties are suitable for describing memory phenomena such as
non-local elasticity, polymers, diffusion in complex medium, biological, electrochemical chemistry,
porous media, viscosity, electromagnetism, etc. For more details, we refer the reader to mono-
graphs of Kilbas et al. [12], Samko et al. [21], Hilfer [10], Podlubny [19] and the papers [5,9]. In
the recently years, Kilbas et al. in [12] introduced the properties of fractional integrals and frac-
tional derivatives of a function with respect to another function. Sousa and Oliveira [22] proposed
a y-Hilfer fractional operator and extended few previous works dealing with the Hilfer [7,10].
Moreover, they discussed some important qualitative properties of solutions such as existence,
uniqueness, and stability results in the following papers [18,22-24]. Over the last years, the sta-
bility results of fractional differential equations have been robustly developed. Very significant
contributions about this topic were introduced by Ulam [28], Hyers [11] and this type of stability
is called Ulam-Hyers stability. Thereafter, the Ulam-Hyers stability was extended by Rassias [20]
in 1978 to a new type of stability which called Ulam-Hyers-Rassias stability. For some recent
results of stability analysis, we refer the reader to a series of papers [2,3,14,17,18,24,26, 30, 31].
For the existence and uniqueness results of different classes of initial value problem for fractional
differential equations involving y-Hilfer derivative operator, one can see [1-4,15,27]. More re-
cently, Wang and Li in [32] introduced four new types of E,-Ulam stabilities. Gao et al., in [§]
established the existence and uniqueness of solutions to the Hilfer nonlocal boundary value prob-
lem by using some properties of Hilfer fractional calculus, Mittag-Leffler functions, and fixed
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point methods. Kucche et al., in [13] obtained representation formula for the solution of Cauchy
problem in the form of Mittag—Leffler function.

Motivated by [8,13,32], in this paper, we use Picard’s successive approximation technique to
obtain representation formula for the solution of linear Cauchy problem with constant coefficient

B: _ —
HDSPVy(t) = Ay(t) +h(t), n—1<a<n, Be[0,1], t€J:=(ab], (0.1)
ygﬁfj][g:%wy(a) = ¢, j=12,...,n, a<y=a+nf—ap. (0.2)

_; 1 a\""’
in the form of Mittag—Leffler function, where yEﬁ J]y(t) = (1[/’([)(11‘) yt), j=1,2,...,n
Furthermore, we introduce new results of some qualitative properties of solution such as existence,
uniqueness, and Eg-stability results of a nonlinear y-Hilfer fractional differential equation

HDSPYy (1) = Ay(t) + f(1,3(1)), o€ (1,2), Be(0,1], t€J:=(ab], (0.3)

¥@) =0, y(b) =} 8L:¥(w), ©€ (@b, (0.4)

where HDj;B Ydenotes the y-Hilfer fractional derivative of order o € (1,2), type B € [0,1],
y=a+B2—-a), A <0, meN, and f: (a,b] x R — R is given function satisfying some
assumptions that will be specified later.

To the best of our knowledge, this is the first paper dealing with y-Hilfer fractional derivative
with constant coefficient of order a € (1,2). In consequence, our findings of the present work
will be a useful contribution to the existing literature on the topic.

This paper is organized as follows: In Section 2, we recall the basic definitions and prove
some lemmas which are used throughout this paper, also we present the concepts of some fixed
point theorems. In Section 3 , we derive representation formula for the solution of the problem
(0.1)—(0.2) in the form of Mittag-Leffler function. Furthermore, we derive an equivalent fractional
integral equation to the nonlocal problem (0.3)—(0.4). In Section 4, we study the existence and
uniqueness results of y-Hilfer nonlocal problem (0.3)—(0.4) by using some properties of Mittag-
Leffler function and fixed point theorems. In Section 5, we discuss E,-Ulam-Hyers stability of
solution to a given problem. In Section 6 we give one example to illustrate our results. Concluding
remarks about our results in the last section.

1. Preliminary

Let [a,b) CRT with0<a<b<oo. Fory=a+B2—-a), 1 <o <2,0<f < 1. Then
1 <y<2. Let y € C'[a,b] be an increasing function with y’' # 0, for all t € [a,b] , the weighted
space Cy_y.y [a, b] of continuous function f: [a,b] — R is defined by

Copy la,0] = {f : (a,0] = Ry (w(t) — y(@)*f(r) €Cla,b]}, 1<y<2.

Obviously C>_y.y [a, b] is the Banach spaces with the norm

max [(y(0) — y(@)* £ 0)].

Next, define L, ([a,b] ,R) the Banach space of all Lebesgue measurable functions u : [a,b] — R
Wlth ||IJ’HLp[aﬁb] < Q.

HfHCz—v:w[avb] -

Definition 1.1 ([12]). Let @ > 0, f € Ly[a,b]. Then, the y-Riemann—Liouville fractional
integral of a function f with respect to y is defined by

1Y (1) = ﬁ [ v w0 - we) s
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Definition 1.2 ([22]). Letn—1 < oo <n € N, and f,y € C'a,b] (w00 < a < b < x0) be
two functions such that Y is increasing and y'(t) # 0, for all t € [a,b]. The left-sided y-Hilfer
fractional derivative of a function f of order o and type 0 < B < 1 is defined by

Hpya By poy _ ooy (L A\ 0-pn-any
M 1

Lemma 1.1 ([12]). Let o,y > 0. Then
(1) FEVEEY 1 0) = 57 ()

(2) 1Y (o) — wla)) " = e (o) — )=
() "D (w(e) — y(@)"! = 0.

Lemma 1.2 ([22]). If f € C"a,b],n—1 < a<n, and 0 < B < 1, then

159 1By g > (W) = V(@)™ i (1-B) oo
f(t) k; Y k+) f Y1(a),

n—k
where f[" k]f(t) = (l//’l(t) jt) ().

Theorem 1.1 ([6]). (Banach fized point theorem) Let X be a Banach space, K C X be closed,
and G : K — K be a strict contraction, i.e., |G(x) — G(y)|| < L||x —y| for some 0 <L <1 and
all x,y € K. Then G has a fixed point in K.

Remark 1.1. To simplify the notation and the proof of some results, we will introduce the
following notation

Oy (a) = (w(t) — w(@) > and A (1,5) = W () (W) — w(s)* "

Lemma 1.3 ([29]). Let o € (1,2] and B > 0 be arbitrary. The function Eq(-), Eq.q(-) and Eqg(-)
are nonnegative, and for all z <0

1 1
Eq(z) = Eq1(z) <1, Ega(z) < @) Eqp(z) < TB)
Moreover, for any A <0 and 11,1, € [0, 1], we have
Eqap(AQy(12,a)) = Eqa:p(AQy(11,a)) asty — b, (1.1)
where Eq g is the Mittag-Leffler function.
Proof. See [29], Lemma 2 and [33]. O

Lemma 1.4. Let a >0, >0, y>0 and A € R. Then
LYol (1,a)Ey g (A0 (1, a) = 04 P (1, a)Ey 0 5 (A0 (1, a).
Proof. By Definition 1.1, we have
1 ! _ _
q\ Qﬁ l(t a) yﬂ(AQw(t a)) = m/ </VWOC I(I,S)Qe, l(s,a)E%ﬁ(lQ),;,(s,a))ds

_ 1 ! o— B— - (A’Qy(sva))n
= @/m 0s)0h ™! 0. Y TR
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[e.°] Al‘l

= _— S (A "+ﬁ1€as
= Y i Pt /J/ Yt,5)QY P (5, a)d

Via Lemma 1.1, we get

1Y (1, 0)E s (A QY (1,a)) = O3 P71 (1,a)Ey oy s (AQY (1, a).

O
Lemma 1.5. Let a >0, >0,k>0,A R, zeR and f € Cla,b]. Then
Y [ @B 0 = [ A @) Bk (MO0 W)t
Proof. According to Definition 1.1 and Lemma 1.4, we obtain
1Y [ A @0 Eaa(A Q) () =
_ 1 k—1 " oa—1
i [ o] [ R e Eaa Ay st b
1 o—
- @ / / N (1,1) B (A O% (1, 1)) A (2, ) £ (1)l
= T | OO ) e (AQG 1)
F(k ) o,0+k VAR
- /Zwm—‘<z,r)Ea,a+k<xQ$<z,r))f(r)dr.
O

2. Equivalent fractional integral equations

In this section, we present explicit solutions to y-Hilfer fractional differential equations 0.1,
0.2 in the form of Mittag—LefHler function. Moreover, we interduce equivalent fractional integral
equation of the problem 0.3-0.4.

Lemma 2.1. Let h € Co—yy(J,R), A e R, n—1 < a <n and B €[0,1]. Then, the solution of
Cauchy problem 0.1, 0.2 is given by

n . t
(0) = ¥ s 0ot 20500 + [ A 0 (RG5O, ). (2)
-
Proof. The equivalent fractional integral of the linear Cauchy problem (0.1)—(0.2) is

Qyjta
Ly—j+

A 't _ 1 1 ~
) cj+ F(Ot) /a JV]VO‘ l(fys)y(S)dS + m /a J/y;x l(l,S)h(S)ds. (2-2)
For explicit solutions of Eq. (2.2), we use the method of successive approximations, that is,

Q}’Jta)
i 2.3

Wt = yoltr) + /w (6 syr(e)ds + = /w (¢, 5)h(s)ds (2.4)
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By Definition 1.1, Lemma 1.1 together with Eq. (2.3), we obtain

nilt) = yolt) + r(la) / " (e, s)yols)ds + / "V (1, 5)h(s)ds
n 2 A’l IQW'H3 n—o)— ([, a) 1 ot ol
j; ’;Fahtﬁ =)=+ 1) +F(a) /a Ny (2, 5)h(s)ds. (2.5)

Similarly, using Eqs. (2.3)—(2.5), we get

n 3 )yl 1Q(x1+ﬁn a) A,l 1 vt
:,; ; et b _H / (5)Q%1 (¢, 5)h(s)ds.

Continuing this process, the expression for y(7) is given by

o

T X N S NS
:;C; I'ai+ B(n— )—j+1)+/allr‘(a) ()Q (t,8)h(s)ds.

Taking the limit k — oo, we obtain the expression for y;(), that is

n [S) )Uz lQahLﬁ(” o) w1
r>=j:21,2ra,+ﬁn_ _]+ / )05 (t,5)h(s)ds.

i=1

Changing the summation index in the last expression, i — i+ 1, we have

=T o F o s [ ¥ 905 s
_j: S(ai+y—j+1) .ai:OF(ai+a)w v ’ ’

Using the definition of Mittag-Lefller function, we can obtain (2.1). O
Lemma 2.2. Let y=a+ 2B — af such that oo € (1,2), B € [0,1] and f: (a,b] x R = R be a

continuous function. Then 'y is a solution of the problem (0.3)-(0.4) if and only if y is a solution
of the follwing integral equation

v t,a ay(A0y(t,a = el
i = G LB [_26,- LA 09 B @ 55015 (5l
/JVO‘ I :8)Eq,a(AQy (b, 5)) f(s,y(s))ds | +
[ R Eaa A1) 5305, (26)
where

K = 0l (b,a)Eqy(AQ% (b, a) 251” '(t:,a)Eqy(AQ%(1;,a)) # 0. (2.7)
Proof. In view of Lemma 2.1, the problem (0.3)—(0.4) is equivalent to

y(t) = Q).;fl(t,a)Ea_,Y(/'LQ‘;,(t,a))c1+Qz;,fz(t,a)Ea_y_l(lQ‘J,(t,a))cz
[ A ) a0 1,9)) (5. 5()s, (2.8)
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where

1 d _ — -
o= () B0 =D and e =)

By the first condition (y(a) = 0), lim,_, Q?;fz(t,a) = 00, we get ¢; = 0 and hence, Eq. (2.8)
reduce to

1) = O (6 @Bay (A5 s + [ A 0,5 Eaa RO ) S ro)ds. (29)

Next, substitute r = 7; into Eq. (2.9) and multiplying both side of Eq. (2.9) by §;, we derive
that

5y(%) = 8,0 (%1, @) Eqy(AQ(T, @) )c1 + & /T N (T 9)Eaa(AQY(Ti, 5)) £ (5, y(s))ds.

Thus, we have

Y 85Yy(n) = clzs Y0l (11, a)Eay(A 0% (1;, @)
i=1

+ Z 5,~I§;W/ C/Vll,afl(’r,-, $)Ea,a(AQY(Ti,5)) f(s,¥(s))ds. (2.10)
i=1 a
From Egs. (2.9), (2.10) and second condition (y(b) = % SiI‘lCiWy(Ti)), we get
i=1

Ty

Iw / NN (T, 8) B (AQL(Tis 9)) f (5, ¥(5) )dis

—/a %a_l(b,s)Ema(lQﬁ‘,(b,s))f(s,y(s))ds . (2.11)

Substitute Eq. (2.11) into Eq. (2.9) and using Lemma 1.5, we obtain Eq. (2.6).
Conversely, applying Dgﬂw on both sides of Eq. (2.6) and using the fact DZ""Q’F1 (t,a) =0, we
can easily prove that

HDSBYy(ry = Ay(t) + £(1,¥(2)).

Next, take t — a in Eq. (2.6), we get y(a) = 0. On the other hand, applying If;w on both sides
of Eq. (2.6) with taking # — 1;, and multiply by &;, we get

Z S5y () = T a0 (5 Ear A0y (% @)
B K

X [i Eilfi %a+§—l(fi’S)Etx.owé(ng(Ti,S))f(s,y(s))ds—
b
_ / N (b, 5)Eq,a(AQ%(b, ) f(s,y(s))ds| +
+ i i /afi m,,a+4—l(ri, s)Ea7a+g(lQ$‘,(Ti, $))f(s,y(s))ds. (2.12)

Thus, from Eq. (2.7), we can reduces Eq. (2.12) to
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Y 3I5"3(5) = () (b,0)Ea s (AQ5(b.a) — K) x
i=1
x [z & [ A 05 B (03 (119) F(5,3(5))ds
i=1 Ja

b
= [ A B35 b1 5505 +

P18 A (0 Es s RO S5O =50, (213

Thus, the nonlocal boundary conditions of the problem (0.3)—(0.4) are satisfied. O

3. Existence of solution

The existence and uniqueness theorems of solutions to problem (0.3)—( 0.4) are presented in
this section. For our analysis, the following assumptions should be valid.

(Hy) f:(a,b] x R — R is jointly continuous.

(Hy) There exist 0 < ¢ < 1 and a real function V € L. ([a,b],R") such that |f(z,y)| < V(¢) for
all7 € [a,b] and y € R.

(H3) There exist 0 < ¢’ < 1 and a real function W € L1 ([a,b] ,R™) such that |f(z,x) — f(t,y)| <
q
W(t) |x —y| for all ¢ € [a,]] and x,y € R.

For brevity, we set

«+8—q y—q -1 e a+l—q'+y-2
p: (B( l—q/ 5 l—ql ;51'QI[I 1 (T,’,Cl)7
VR 1—4'
oo (Lba (gl g ¥—dq -1 .
LK l-¢" 1-¢
Theorem 3.1. Assume that f : (a,b] Xx R = R is continuous and satisfies (H,)—(H,). Then the
problem (0.3)-(0.4) has at least one solution in Cy_y,y [a,b].

Proof. Consider the operator U : Co_y.y [a,b] — Cr—y,y [a, b] defined as

_ 0l (t,a)Eqy(AQ%(1,a))

Uy(e) 2 [z 5 | T (6, 5) B e (AOR(T, ) £ (5. (5))ds—

_./a‘b%’a—l(b,S)Ea,a()LQ:f,(b,S))f(s7y(s))ds:|+

15
+ /a JI{l,a*l(t,s)Ea,a(lQ‘;‘,(t, $))f(s,y(s))ds. (3.1)
It is obvious that the operator i is well defined. Define a bounded, closed, convex and nonempty
set
Hy ={y€Coyylab]: ble,_, <&}
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of Banach space C>_y,y [a, b] with

8> { S W B IVl

where
1

= l-¢ g o+E—
e Cea ) ML LR
B .= Qflx/_q(b’a) (1 _C]>1q’

I'la) o —gq
OV ba) (1)
) (aq> |

Claim(1). The operator U is continuous in He. Consider a sequence {ya}.2, such that y, —y
in Cy_y,y [a,b]. In view of Lemmas 1.3 and 1.5, for 1 € (a,b], we have

QW (t,a)
= I(pK

- |6l /T" atl—1,_ B
;r(a‘i‘g) g JVII/ (Tlvs) |f}n f)|dS+

’Q (t,a) [Uyn(t) — Uy(t) ’

b 2—y a .
tigag [, ) f»x—fyidﬁ +Q"’r(§)’) | A ) 1 3m(6)) = £lsi30) ds <

Qq/ t a - |5‘r( ) at+-84+y—2/ B((X Y- 1>Qa+y 2<b a)
STOR |ETas gy @9F C(a)
B(a,y—1)0%(b,
x ||f(ayn()> - f("y('))‘lzfy,q/ + ( ! r(;) W( a) Hf(v)’n()) - f('ay('))”zfy,wa
h B . . Q{/(Tiaa) .
where B(a, Y — 1) is Beta function. As 1 <y <2, then ————= < 1, it follows that
Qw(Tiaa)
Uy — sl <
Ql,, (t,a) & |6:|T(y—1) a+l, (Qq,(t,a) ) B(a, vy —1)Qy (b, a)
S ; Mo+ Cry-D2 (a)+ rK [(a) )

<3 ) = £y
Since f is continuous function and y, — y as n — oo, we have
ltdy — Z/lyanziy_w — 0.

Thus, the operator U is continuous in He.

Claim(2). ¢ maps bounded sets into bounded sets in C>_y,y [a,b] . For each y € He, t € (a,b],
by Lemmas 1.3, 1.5 and Hoélder inequality, we have

0% " auy(n)| <

Qylt, e ;i ol
i L g [ s o) as

i=1

b 2—y a t
ﬁ/ M (B,5) £ (5,3(5)) dS] " er«(;))/ A (1,5) 1£(5,3(5))] ds
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< Tk [Brwrg [ wmees s g [ 0av )dsl
Qt(ija) [ e s visns

< St [Brero ([ (‘/V*”H_l““”)lds)l q(/ Vi)' as)
e ([ .0 as) - (f e d)]

N

N

<=
QU
S}
SN~—
_

£ g ([ ) ([Fow)
s ([ Jm”‘%b,sms)l_q ([ vy d)]

. Qir(y((;;a) </a’my‘.‘;’—'(t7s)ds>l_q (/t (V(s) ds)q

N

Qy(1,a) 1 ( 1—g )1 am e ”
s I'(yK |T(a+¢) \a+—g¢q §|5|Q (1;,a)
05 (b,a) (1—q\'* 05T (b a) (1 g\
T T <O‘—q> L () (a—q> Wz, o
Qw(b,d)
< { Tk (A+B)+c} ||V||L%[a’b]<g. 52

Thus, U : H: — He, that is UH¢ is uniformly bounded.

Claim(3). U maps bounded sets into equicontinuous set of Cy_yy [a,b]. For any y € Hg,
t1,t € [a,b] such that #; < fp, using Lemmas 1.5 and 1.3, we have

O3 o2, a)tdy(a2) — O (1, ()| <

{QW(tz’a)Ea,Y(A’Qli«/(lé?a)) — Qy(t1,a)Eqy(AQY (11, a)) } y
K|

< Mhle,,,

r(y -
(a+§+y—1

Z5Qa+€+7 1 (T.,a) — Bw;‘(y))Qw( a)| +

D (Q4(n.0) - 05(n.0)|.
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By Eq. (1.1) as t{ — t,, the right-hand side of the preceding inequality is not dependent on y
and goes to zero. Hence

‘Q%,,_V(tz,a)uy(tz) — Q5 (t,a)Uy(n)| >0, ¥ [ —1] =0, y € H. (3.3)

From the above claims, together with Arzela—Ascoli theorem, we infer that the operator U is
completely continuous. In the remaining part of the proof, we only need to prove that the set

A={y€Cyla,b]:y=oUYy, for some @ € (0,1)},

is bounded set. For each t € (a,b], let y € A, and y = @Uy for some @ € (0,1). Then
¥l < Ul - Hence, by virtue of claim (2), we obtain

¥, <&

Thus, the set A is bounded. According to Schaefer’s fixed point theorem we deduce that U
has a fixed point which is a solution of the problem (0.3)-(0.4). The proof is completed. O

Theorem 3.2. Assume that (H, )-(Hs) hold. If

Qylba) _p Oy (ba)
T(K T(a+Q) I(a)

o
VI, 0y <1 (34)
q/

then the problem (0.3)-(0.4) has a unique solution in Ci_yy [a,b].

Proof. In view of Theorem (3.1), we have known that the operator U defined by 3.1 is well defined
and continuous. Now, we prove that U is a contraction map on C,_y [a, b] with respect to the
norm ||-||C27W. For each y,y* € Cy_yy [a,b] and for all € (a,b] with the help of Lemmas 1.3,
1.5 and Holder inequality, we have

IE ‘QW“’@EM%Qi(r,a» )

03 (@) y(r) — Uy e

x [z 5 / N (0, 5) B ¢ (MOR(,5)) [F(5:3(5)) — Fls.y"(s))] ds

[ A 0,5 Baa Q5 0, 9) F5,3(5)) — 5,7 (9] ds}

FOVT(0a) [ K Ea M5, 9) [53(5) = 53" ()] ds

1

¥ s ([ (5 oy ) ) l_ql</:<w(” DN
+ e ([ (0o 0.a) ™ ) ([ ovintas) 1> —y*llu,w]
- S ([ (e ) ) ([ ot ) 1=y

Qy(t,a) 1 ao+8—q v—q —1 1=4" m wrtdira,
LYK T'(a+ ) <B< l—-¢q ° 1-¢ )) ;@Qv (Ti,a) x

X
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0y(t,a) oy (ba) [ (a—q y—d -1\ .
. ( FVE}/)K +1 l’/1“(05) B 1~ 1-¢ HWIIL#[L,‘,;,]Hy*y 1y <

Qy(t,a) p 0% (b, a)o]

X

T()K T(o+ Q) + I(a) |W”Lqi,[a,b] [y =y yy  (3:5)

By (3.4), the operator U is a contraction map. According to Banach contraction principle,
we conclude that the problem (0.3)—( 0.4) has a unique solution in C,_y,y [a, b] O

4. E,-Ulam-Hyers stability

In this section, we discuss the E4-Ulam-Hyers stability of the problem (0.3).

Lemma 4.1 ([23]). Let a > 0 and x,y be two nonnegative function locally integrable on [a,b].
Assume that g is nonnegative and nondecreasing, and let w € C'[a,b] an increasing function such
that w (¢t) # 0 for all t € [a,b]. If

x(t) < y(r) + (1) / t NN s)x(s)ds, € [a,b],

then

n

w0 <0+ [ f L e (s, 1€ [and]

If y be a nondecreasing function on |a, b], then we have
x(1) < y(1)Eq {g(1)T () Q5 (t,a)}, 1 € [a,b].

Remark 4.1. A function z € C,_yy[a, b] satisfies the inequality

TDEPY(r) — Azlt) — (1,20))| < eEaQ(1,a), 1 € (a,b], (4.1)
if and only if there exists a function n € Cla, b] such that
() In()l < eEaQy(t,a), 1€ a,b];
(i) “DEPVe(r) = Az(t) + £(1,2(1))) + (2, 1 € (a,b).
Definition 4.1 ([32]). The problem (0.3) is Eq-Ulam-Hyers stable with respect to EqQ%(t,a)
if there exists Cg, > 0 such that, for each € > 0 and each z € Co_yy[a,b] satisfies the inequality

(4.1), there exists a solution x € C—_yy[a, b] of the problem (0.3) with

”Z - x||2—y,u/ < CEaEEa(KQ(lf/(tva))a re [a7b] , kK>0.

Lemma 4.2. Let 1 < a < 2,0 < B <1, if a function z € Co_yyla,b] satisfies the inequality
(4.1), then z satisfies the following integral inequality

<

X

) = A= [ M RO (1,9)) 5. 2(5)ds

<e

1z . . )
W; 18 0% (%1, @)Eq 110 (i, @) + (W + 1) EqQ%(b, a)] ,
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where

r—1 a m %
4~ O, (050a) [Z B [ A 5 g (L0550 5)) (55
i=1 a

K

b
- / A8 (b, 5) B a(AQ%(B, 5)) (s, z(s))ds} .
Proof. Indeed by Remark 4.1, we have
TDEPYa(e) = Az(t) + f(e,2(0)) + (), 1€ (a,B]

By Lemma 2.2, we obtain

Qz;lil (t, a)Eoc,yOL Qﬁc/ (t,a))

2(t) = A, — e

[z & [ M (59 B (A0 (515)M(5)ds
i=1 a

b t
- / %““w»s)Ea,a(lQi(bas>>n<s>ds} + / NN 9)Eaa(AQY(1,5)) f(s,2(s))ds

+ /al JVWO‘*l (t,8)Eq,a(AQy(t,5))N(s)ds.

4
It follows from Lemma 1.3 and the fact Q’J,_l(t,a) = Qy(t,a) <1, that
QW(t7a)
Z(f) *AZ o /l %’afl([,s)Ea,a(xQ(J,(t,S))f(svz(s))ds <
- |6l| K at+l—1,_ L b a—1
K ;r(a_,_ C)/a Ny (Tis) [n(s)] ds + F(a)/a Ny (bys)n(s)| ds
1 L
ey |, G m)lds <
m 81‘ Ti atrl— o 1 b . o
< F(;K X{F(O'ch)/a </V.,,+c I(Ti7S)EaQW(S,a)dS+m/a% l(b,s)EaQV,(s,a)ds]

€ ! o— o
+ @/ A8 (2, 5)EaQ%(s, a)ds

By definition of Mittag-Leffler function and Theorem 1.1, we get

<

X

)= A= [ A 09 B a A1 5)) 5. 2(5)ds

1 m S Q(X(n+1)(fi7a) 1 oo Qa(”+l)(b’ a)
S € I(y)K ;|5|Q"’(T” ),;)F((nil)a+c+l) * (F(y)K+1>,§g)r((:+1)a+1)
[ 1 m 00 Qan Tza ) 1 Qan( )
“_ gL PI0E0 B e >+(r<y>1<“>,§ nat1))
—¢ _#iwgc(r« 0)Eqt010%(ta) + (1 0%(b.a)
) ~ il 2yt oa,l+1y s F(}’)K E, v
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In the forthcoming theorem, we prove the Ey-Ulam-Hyers stability result for the prob-
lem (0.3). For that, the following assumption should be valid.

H, There exist Ly > 0 such that |f(t,x) — f(t,y)| < Ly |x — y| for all r € [a, ] and x,y € R.

Theorem 4.1. Assume that (Hy) and (Hi), are satisfied. Then Eq. (0.3) is Eq-Ulam-Hyers
stable.

Proof. Let € > 0, z € Cy_yy [a,b] be a function satisfying the inequality 4.1 and let x €
C>—y.y a, b] be the unique solution of the following problem

{ HDYPYy(r) = Ax(t) + f(1,x(t)), 1 € (a,b],
x(at) =z(a®), x(b) =z(b).
Now, by using Lemma 2.2, we have

W) = At [ A Eaa@ 0, ) x(5)ds, € (o).

Hence, from (Hy) and Lemmas 4.2, 1.3, for each ¢ € (a,b], we have

[2(t) =x(1)] <

Z(t) — A, — /; NN t,5)Eq,aQy(t,5) f(s,2(s))ds

<

+ / A ) Eaa@(1:5) (1(5:206)) — S5:x(5) ds

e o 1 [04
(K ; 16| 04 (71, @ JEq 410y (T, a) + <W + 1> EqQy (b, a)]

/ Ut,s) |2(t) — x(r)| ds. (4.2)

Using Lemma 4.1, we obtain
|2(t) — x()] <

<€

7k L 18] 06 (500105 (5) + (r(;)KJrl)EaQﬁ‘,(bva)] Eu(LyQ5(0,0).

For all t € (a,b], we have

! +1)Eagg(b,a) «

1 & o _
||Z—x||277.w < € _W;‘silQCW(Ti7a)Ea,€+le/(Tiaa) + (F(Y)K
x QY (1,a)Ea(LQy(1,a))

1 o . 1 3
W ; i Q%’(Tﬁa)E(X’CJrIQy/(Tiaa) + (F(')/)I( + 1) EaQw(b7a) X

N
[

x Q) (b,a)Ea(LQ3(1,a)).

1 m
Take Cp, = & 05 (%, a)E o(g, ——— + 1) Eq0%(b 72 b
ake Ce. = € | iy 5 1919v(%0) "“'“'Q"’(T’a)Jr(F(Y)KJr ) “Qy( ’a)} Qy " (ba), we
get
1z = xll,—yy < Cr.8Ea(LsQy(t;a)).
Thus, Eq. (0.3) is Eq-Ulam-Hyers stable. O
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5. An example

In this section, one example is given to illustrate our theory results

Example 6.1 Consider the following problem

3 2. 1 -
IpEy(t) = —Ey(t) + 1e -siny(t), r >0 t€J:=(0,1],
) +1€ (5.1)
_ — Sy~
y0) =0, y(1)=3l5.y(3)
3 5 1 2 1
Here o = §7B - 57 Y= a+2ﬁ_a?t_ 67 m = 1711 - 57 61 - ga C - 57 ((l,b] - (071]7
y(t) =e" A =—=and f(t,y(t)) = 1: ~ siny(r). Then
e—rt e—rt e—rt
o)) = | sy < || < S5 >0
Let z,y € R and r € [0,1]. Then
e ' ) e
F0.20) = 70,50 < |5 Ginalo) = siny(0)] < S5 120) =500

e*l‘t

We note that V =W = € L1 [0,1]. Thus, for t € [0, 1] and Choosing suitable ¢’ € (0, 1), we
can arrive at the following inequality

’

70

1w

e—1 p +(e—1)
rOkT T T

Then all the assumptions in Theorem 3.2 are satisfied, the problem (5.1) has a unique solution
inC 1 [0,1]. Also we see that the inequality

1 WL, o <1

32, e | 3
MDY N0 + 33(0) — o sina(0)] < By (¢~ 1), 1€ 0,1] (5.2)
is satisfied. For z,x € Cg [0, 1], we have
1,
”Z xH2—y7q/\CE% SE% 2(6 71)2 , L€ [Oa 1]a Z7XGC% [Oa 1]7

where

1 2 1
Cg, = [ 15, (e —1)% + ( + 1) E;((e - 1)%)1 (e—1)s72>0.
Thus the Eq. (5.1) is Eq-Ulam-Hyers stable.

6. Concluding remarks

We can conclude that the main results of this article have been successfully achieved, through
some properties of Mittag-Leffler function and fixed point theorems such as Banach and Schaefer,
we have investigated the existence and uniqueness of the solutions of nonlinear Cauchy prob-
lem for y-Hilfer fractional differential equation with constant coefficient. Further, we discussed
Eq-Ulam-Hyers stability of solutions to such equations in the weighted space Co_yy [a, b].
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K teopun y-ruabdepoBckoil HesioKaabHOI 3agaun Korm

Moxammen A. AnpMmajiaxu

Carum K. Ilanygan

Kadenpa maremarukn

VYuusepcurer nokropa Babacaxeba Ambenkapa Maparsab
Aypanraban, Vuaus

Awnnoranusi. B gmanHOI crarhe MBI BBIBOAUM (DOPMYJIy TPEICTABJIEHUsI PEIeHus IPOOHO-
muddepeHmansHoro  ypaBaenus Y-I'mibdepa ¢ moCTOSHHBIM KodbduimeHToM B Buie QYHKII
Murrar-Jleddiiepa ¢ ucnosp3oBanueM IocienoBaTe/bHoOro npudsnkenus [Iukapa. BoJiee Toro, ucmosnn-
3ysl HEKOTOpble cBoiicTBa dyuknuu Murtar-Jleddirepa 1 TeopeMbl 0 HENMOABUIKHON TOYKE, TAKMe KaK
Banaxa u Illedepa, Mbl BBOAMM HOBbIE PE3YJILTATHI O HEKOTOPBIX KAYECTBEHHBIX CBONCTBAaX pPeIleHUs,
TaKMX KakK CyIIEeCTBOBaHME U eJuHCTBeHHOCTh. OB600IIeHHas leMMa O HepaBeHCTBe ['POHyoIIIa UCIOIIb-
3yeTcsl TIPU aHaIn3e yCTOMINBOCTU Fo-Ymama-Xaitepca. Hakowerr, 1an ouH npuMep, WLTIOCTPUPYIOIINAN
[IOJIy Y€HHbIE PE3YJIbTATHI.

KuaroueBbie cioBa: japobuble auddepeHnuaibuble YpaBHEHUS, JIPOOHBbIE TTPOU3BOJIHbIE, Hg-ycToitun-
BOCTB YJilaMa-Xafiepca, TeopeMa O HEeHOJIBUKHOM TOYKE.
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