
Journal of Siberian Federal University. Mathematics & Physics 2020, 13(6), 694–707

DOI: 10.17516/1997-1397-2020-13-6-694-707
УДК 517.958:519.633

On the Construction of Solutions to a Problem with a Free
Boundary for the Non-linear Heat Equation

Alexander L. Kazakov∗

Matrosov Institute for System Dynamics and Control Theory SB RAS
Irkutsk, Russian Federation

Lev F. Spevak†

Institute of Engineering Science Ural Branch RAS
Ekaterinburg, Russian Federation

Ming-Gong Lee‡

Chung Hua University
Hsinchu City, Taiwan

Received 08.06.2020, received in revised form 14.07.2020, accepted 10.08.2020

Abstract. The construction of solutions to the problem with a free boundary for the non-linear heat
equation which have the heat wave type is considered in the paper. The feature of such solutions is that
the degeneration occurs on the front of the heat wave which separates the domain of positive values of
the unknown function and the cold (zero) background. A numerical algorithm based on the boundary
element method is proposed. Since it is difficult to prove the convergence of the algorithm due to the
non-linearity of the problem and the presence of degeneracy the comparison with exact solutions is used
to verify numerical results. The construction of exact solutions is reduced to integrating the Cauchy
problem for ODE. A qualitative analysis of the exact solutions is carried out. Several computational
experiments were performed to verify the proposed method.
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Introduction

We consider the non-linear parabolic heat equation [1] with a source (sink)

Tt = ∆Ψ(T ) + Φ(T ), (1)

which is also called the generalized porous medium equation [2]. If Ψ(0) = 0 and Φ(T ) is power
function Eq. (1) can be written as

ut = u∆u+ γ(∇u)2 + αuβ . (2)
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Here, γ > 0, α, β ̸= 0 are constants, α > 0 means the presence of a source and α < 0 corresponds
to a sink. In what follows Cartesian coordinates are used.

Various forms of equation (2) are used to describe processes in continuum mechanics [2, 3],
plasma physics [1], etc. This mathematical object has a distinctive property related to the
propagation of perturbations with finite velocity, which is not typical for parabolic equations.

For equation (2) the problem of initiating a heat wave is considered. The heat wave is a
construction consisting of two hypersurfaces: u(t,x) > 0 and u(t,x) ≡ 0 that continuously
joined along some sufficiently smooth manifold Γ(t,x) = 0. The latter determines the front of
the heat wave. Since the front is unknown in advance and it is determined simultaneously with
the construction of the unknown function, we have a special problem with a free boundary [3],
where u|Γ(t,x)=0 = 0. The boundary conditions have the form

u|b(x)=0 = f(t,x), f(0,x) = 0, (3)

where b(x), f(t,x) are sufficiently smooth functions.
Previously, problem (2), (3) was already considered in the case α = 0, i.e., without a source

(sink). Solutions were constructed both in the form of special series [4] and with the use of the
boundary element method (BEM) [5]. In this paper, we propose an approximate method for
constructing solutions to the problem of heat wave initiation based on the BEM.

There are various approaches to solve boundary value problems for parabolic equations using
the BEM. The most natural one is to use the BEM based on time-dependent fundamental
solutions [6]. This method is not suitable for solving problem (2), (3) because of the non-
linearity of the right-hand side and because of the presence of a movable boundary (the heat
wave front). Therefore, it is preferable to use a time-stepping BEM [7], where the boundary
value problem for the elliptic equation is considered at each step, and the fundamental solution
of the Laplace equation is used. In addition to the classical BEM, it is used in the method of
fundamental solutions (MFS) [8], as well as in the interior field method (IFM) [9] and the null
field method (NFM) [10] in annular domains for the case of circular symmetry. For problem (2),
(3), we obtain the Poisson equation with a non-linear right-hand side at each time step. The dual
reciprocity boundary element method (DRBEM) [11] is most suitable for solving this equation.

We did not establish the convergence of the developed method. Therefore, to verify numerical
results exact solutions in the form of travelling wave are used [2]. Construction of exact solutions
is reduced to the solution of the Cauchy problem for a second-order ordinary differential equation
with a singularity.

Finding exact solutions of non-linear partial differential equations is an important field of
modern mathematics. There is a wide variety of methods to find exact solutions. Among
these methods we emphasize the group analysis method that was proposed and developed by
L.V. Ovsiannikov and his colleagues [12, 13]. A review of methods for constructing exact solutions
to equations of mathematical physics can be found, for example, in handbook [14]. Various
generalizations and modifications of the method of separation of variables [15, 16] are especially
often used to construct exact solutions of non-linear parabolic equations having the form (1).

1. Formulation of the problem

In the case of one spatial variable, equation (2) can be written as

ut = uuρρ + γu2
ρ +

νuρ

ρ
+ αuβ . (4)
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Here, ν = 0, 1, 2 corresponds to Cartesian, cylindrical and spherical coordinate systems, respec-

tively; ρ =

√
ν+1∑
i=1

x2
i , where xi are the Cartesian coordinates. Condition (3) has the form

u|ρ=R = f(t), f(0) = 0, (5)

where R > 0 is some constant which must obviously be positive for ν ̸= 0.
The cases ν = 0 and ν = 1 are considered here. It follows from previous results [17] that

for Cartesian and cylindrical coordinate systems problem (4), (5) has unique analytical heat-
wave type solution (in the form of a convergent Taylor series). The coefficients of the series are
determined from the solution of systems of linear algebraic equations. However, the radius of
convergence of the series is usually small, and it can be estimated only in some spacial cases. To
solve this problem and obtain an approximate solution to the problem of heat wave initiating
at a given time interval [0, t∗], we usually use a step-by-step method based on the boundary
element approach [5]. We also note that presence of additional term (source) requires significant
modification of the previously developed approach.

2. Solution algorithm based on BEM

Problem (4), (5) is solved in the specified time interval t ∈ [0, t∗] by a step-by-step method
based on the BEM. At each time step tk = kh, where h is the step size, we solve the spatial
problem obtained from (4), (5) with t = tk. The solution domain where the unknown function u

is positive is the interval ρ ∈ [0, a(tk)), and ρ = a(t) is the equation of motion of the heat wave
front, u(tk, a(tk)) = 0.

For certainty, it is assumed that the heat wave front moves from the origin. Since a(tk) is
unknown in advance, the solution domain is also unknown at the moment t = tk. That is why, we
interchange the desired function and the spatial variable ρ [5]. Equation (4) takes the following
form

ρtρ
2
u = uρuu − γρu − νuρ2u

ρ
+ αuβρ3u. (6)

We rewrite equation (6) in the form of the Poisson equation and obtain at t = tk the boundary
value problem

ρuu = F (u, ρ, ρt, ρu), ρ|u=L = R, (7)

where F (u, ρ, ρt, ρu) = (ρtρ
2
u + γρu)/u+ νρ2u/ρ+αuβ−1ρ3u, ρ = ρ(tk, u) is the unknown function

and L = f(tk). The unknown heat wave front for the original problem is defined by the condition
ρ|u=0 = a(tk).

At the front of the heat wave we have [18]

q(ρ)|u=0 =
∂ρ

∂n

∣∣∣∣
u=0

=
γ

a′(tk)
, (8)

where q(ρ) is the flow of ρ(tk, u), n is the external normal to the boundary of the solution domain,
n(0) = −1, n(L) = 1. It follows from the results presented in [17] that a′(tk) ̸= 0.

Thus, we arrive to the boundary value problem (7), (8) in the domain u ∈ [0, L]. Using the
boundary element method, we write the solution of this problem in the following form

ρ(v) = q
(ρ)
1k u∗(v, 0) + q

(ρ)
2k u∗(v, L)− ρ1kq

∗(v, 0)−Rq∗(v, L)−
∫ L

0

F (u, ρ, ρt, ρu)u
∗(v, u)du. (9)
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Here, v ∈ (0, L), ρ1k = ρ(tk, 0), ρ2k = ρ(tk, L) = R, q(ρ)1k = q(ρ)(tk, 0), q
(ρ)
2k = q(ρ)(tk, L), u∗(v, u)

is the fundamental solution of the one-dimensional stationary problem, q∗(v, u) = ∂u∗(v, u)/∂n

[6]. Values of ρ1k, q
(ρ)
1k and q

(ρ)
2k are not specified by the boundary conditions and should be

determined.
Taking the limits v → 0 and v → L in equation (9), we obtain the system of two boundary

integral equations
ρ1k − q

(ρ)
1k L = Q1, ρ1k + q

(ρ)
2k L = Q2, (10)

where Q1 = R−
L∫
0

F (u, ρ, ρt, ρu)u
∗(0, u)du, Q2 = R+

L∫
0

F (u, ρ, ρt, ρu)u
∗(L, u)du.

Using quadratic approximation of the function ρ(t, 0) = a(t) on the interval [tk−1, tk], one
can write condition (8) in the following approximate form

ρ1k − ρ1(k−1) =
γh

(
q
(ρ)
1k + q

(ρ)
1(k−1)

)
2q

(ρ)
1k q

(ρ)
1(k−1)

. (11)

Expressing ρ1k from (11) and substituting it into the first equation (10), we obtain an equation
in the unknown q

(ρ)
1k

L
(
q
(ρ)
1k

)2

+

Q1 − ρ1(k−1) −
γh

2q
(ρ)
1(k−1)

 q
(ρ)
1k +

γh

2
= 0. (12)

Since the derivative of the unknown function in (4), (5) is negative along the front uρ|ρ=a(t) <

0 (for chosen direction of the movement of the heat wave front), the inverse function obeys the
inequality ρu|u=0 = 1/(uρ|u=0) < 0. Therefore, q(ρ)1k = n(0)ρu|u=0 = −ρu|u=0 > 0, and a suitable
solution of equation (12) has the form

q
(ρ)
1k =

1

2L

ρ1(k−1) −Q1 +
γh

2q
(ρ)
1(k−1)

+

√√√√√Q1 − ρ1(k−1) −
γh

2q
(ρ)
1(k−1)

2

+ 2γhL

 . (13)

Substituting (13) into (10), we can find ρ1k and q
(ρ)
2k :

ρ1k = q
(ρ)
1k L+Q1, q

(ρ)
2k =

Q2 − ρ1k
L

. (14)

Since function F (u, ρ, ρt, ρu) in (7) depends on the unknown function and its derivatives, we use
the following iterative procedure to solve problem (7), (8). Let us take ρ(0) ≡ R and Q1 = 0,
Q2 = 0 as the initial values. Then the i-th iteration of the solution has the form

ρ(i)(v) = q
(ρ)(i)
1k u∗(v, 0) + q

(ρ)(i)
2k u∗(v, L)−

−ρ
(i)
1k q

∗(v, 0)−Rq∗(v, L)−
∫ L

0

F (u, ρ(i−1), ρ
(i−1)
t , ρ(i−1)

u )u∗(v, u)du.
(15)

The boundary values of the unknown function and flow can be found according to (13), (14)
as

q
(ρ)(i)
1k =

1

2L

ρ1(k−1) −Q
(i−1)
1 +

γh

2q
(ρ)
1(k−1)

+

√√√√√Q
(i−1)
1 − ρ1(k−1) −

γh

2q
(ρ)
1(k−1)

2

+ 2γhL

 ,
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ρ
(i)
1k = q

(ρ)(i)
1k L+Q

(i−1)
1 , q

(ρ)(i)
2k = (Q

(i−1)
2 − ρ

(i)
1k )/L.

Here, Q(i−1)
1 , Q(i−1)

1 are calculated from the previous iteration:

Q
(i−1)
1 = R−

∫ L

0

F (i−1)u∗(0, u)du, Q
(i−1)
2 = R+

∫ L

0

F (i−1)u∗(L, u)du, (16)

where F (i−1) = F
(
u, ρ(i−1), ρ

(i−1)
t , ρ

(i−1)
u

)
. The iteration process is terminated at the n-th

iteration if
∣∣∣(ρ(n)1k − ρ

(n−1)
1k )/ρ

(n)
1k

∣∣∣ < ε, where ε is a given constant. Then the approximate solution

of (7), (8) at t = tk is ρ(tk, u) = ρ(n)(u). Since this solution is continuous, the solution of problem
(4), (5) at t = tk, u(tk, ρ) can be determined without a loss of accuracy.

The developed algorithm allows us to construct a solution that is continuous with respect to
a spatial variable for problem with a free boundary (4), (5) at each given time step.

To calculate integrals
L∫
0

F (u, ρ, ρt, ρu)u
∗(v, u)du in (15), (16), we use the dual reciprocity

method [11] based on the expansion of F (u, ρ, ρt, ρu) in terms of radial basis functions (RBF)

F (u, ρ, ρt, ρu) =
n∑

k=1

αkϕk(u). (17)

Functions ϕk depend on the distance between the current point and collocation points
u1, u2, . . . , un that belong to the interval [0, L]: ϕk(x) = ϕ (rk), where rk = |u − uk|. For
each function ϕk there is a function ŵk such that ϕk = ∆ŵk. After substituting expansion (17)
into the integrand and twice integrating by parts, we obtain the following equality∫ L

0

F (u, ρ, ρt, ρu)u
∗(v, u)du =

=
n∑

k=1

αk[−ŵk(v) + p̂k(0)u
∗(v, 0) + p̂k(L)u

∗(v, L)− ŵk(0)q
∗(v, 0)− ŵk(L)q

∗(w,L)],
(18)

where p̂k(x) = ∂ŵk(u)/∂n. The coefficients αk for each iteration are determined from the
system of equations obtained from (17) for the current iteration ρ(i)(u) at the collocation points

F
(
uj , ρ

(i) (uj) , ρ
(i)
t (uj) , ρ

(i)
u (uj)

)
=

n∑
k=1

αkϕk(uj), j = 1, 2, . . . , n.

The use of the simplest functions ϕk = rk as RBFs [5, 18] results in stable convergence of iterative
processes and good accuracy of solutions. However, it is rather complicated to use these functions
to solve problems with the source term because convergence of iterative processes is unstable and
depends on the parameters of the problem. Obviously, the additional non-linear term requires a
more precise expansion.

It is difficult to analyse the influence of RBFs on convergence analytically. Therefore, we
perform a numerical analysis of the influence of used RBFs on convergence and accuracy of the
solution. We consider linear function ϕk = 1+rk, polyharmonic spline ϕk = r3k and multi-quadric
function ϕk =

√
1 + ϵr2k. Stable convergence is observed when the last two functions are used.

At the same time, multi-quadric function ensures better accuracy of the solution so we use it in
calculations. The results are shown in Section 4.
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3. Construction and study of exact solutions

It is problematic to prove convergence of the algorithm based on the BEM. One possible way
is to construct and study exact solutions and then use them to verify numerical results.

Plain geometry. We consider the non-linear heat equation with a source for ν = 0

ut = uuxx + γu2
x + αuβ . (19)

We assume that in this case the heat wave front is defined by following equation

u(t, x)|x=a(t) = 0. (20)

If functions a(t) and uβ are analytical (β ∈ N) then it follows from the previously proved
theorems (see, for example, [16]) that problem (19), (20) has unique analytical solution in form
of a power series with respect to variable z = x − a(t) with recurrently determined coefficients.
We consider the case when the condition of the analyticity of the source is not satisfied. Let
β > 0, β ∈ R in equation (19). For non-integer β the source function can not be expanded into
a Taylor series with respect to powers of u. We construct the solution in the form of a travelling
wave u = v(z), z = x−µt− η, µ > 0, η > 0. Due to the invariance of equation (19) one can take
η = 0.

Substituting v(z) in (19), we obtain the following ordinary differential equation

vv′′ + γ(v′)2 + µv′ + αvβ = 0. (21)

Solving this equation with the condition v(0) = 0, we obtain the solution of problem (19),
(20) which is a heat wave with the front x = a(t) = µt+η (if it exists). Properties of solutions of
this type for β ∈ N were previously studied [16]. For non-integer values of β, as far as we know,
this problem was not previously considered and it is now studied for the first time.

In this case one cannot impose arbitrary condition for the derivative at z = 0. If we set z = 0

in both parts of Eq. (21) then we obtain the quadratic equation

γ(v′(0))2 + µv′(0) = 0,

which has two roots v′(0) = −µ/γ and v′(0) = 0. For other values of v′(0) equation (21) is
incompatible. Thus, we obtain from the continuity condition that either

v(0) = 0, v′(0) = −µ/γ, or (22)

v(0) = 0, v′(0) = 0. (23)

Problems (21), (22) and (21), (23) have specific properties that they inherit from original
problem (19), (20). In particular, at the starting point z = 0 function v(z) (that is the term at
the higher derivative) turns to zero. It means that problems cannot be written in normal form,
and the classical theorems on existence of solutions of the Cauchy problem are not applicable.
It is obvious that (21), (23) has trivial solution v ≡ 0. Special study is required to prove the
existence and uniqueness of the solution of (21), (22) and the existence of a non-trivial solution
of (21), (23).

In what follows we consider only the case α > 0. It means that there is an influx of energy
(matter) into the system. This case is widely encountered in applications.
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Theorem 1. The Cauchy problem (21), (22) for α > 0, β > 1 has unique solution v(z) ∈
C[z0,0] ∩ C2

(z0,0)
for some z0 < 0.

Proof. Using substitution v′ = p, we lower the order of equation (21). Then it takes the form

vp
dp

dv
+ γp2 + µp+ αvβ = 0. (24)

Using the change of variable w = vβ in equation (24), we obtain

βw
dp

dw
+ γp+ µ+

αw

p
= 0. (25)

Since for β > 0 the equality vβ |v=0 = 0 holds then for equation (24) conditions (22) correspond
to

p(0) = −µ/γ. (26)

Let us perform a qualitative analysis of equation (21). To do this, we consider the equivalent
dynamic system

dw

dξ
=

β

µ
wp,

dp

dξ
= −γ

µ
p2 − p− α

µ
w. (27)

Here the parametrization is performed in such a way that dz = µwdξ. System (27) is very close
to system (4.3) from [19]. The first equations differ by a positive constant multiplier on the
right-hand side. The second equations are the same.

System (27) has two singular points M1(0,−µ/γ) and M2(0, 0). It follows from qualitative
analysis [19] that M1 has the topological type "saddle", and M2 is the "saddle-node" with one
nodal and two saddle sectors. Considering condition (26), we are primarily interested in phase
trajectories that enter point M1 and/or leave it. In this case, there is no need to consider the left
phase half-plane w < 0 (except β = k/m, where k,m are natural odd numbers) because w = vβ .

There is a separatrix S that tends to the point M1 as ξ → +0. Phase trajectories which are
located to the right of S bypass the nodal sector bounded by S and the coordinate axis Op. The
phase trajectories inside the nodal sector tend to M2 as ξ → +∞ (Fig. 1).

The separatrix S corresponds to the solution v = v∗(z) of problem (21), (22). Taking into
account the conditions of the theorem, the solution has the following properties: 1) v is defined
and continuous on some interval [z0, 0]; 2) v is twice continuously differentiable on the interval
(z0, 0); 3)@v∗(0) = v∗(z0) = 0, v∗(z) > 0; 4) v′∗(z) changes sign once, v′∗(zmax) = 0, v∗(zmax) =

vmax, lim
z→z0+0

v′(z) = +∞; 5) v′′∗ (z) < 0. Let us note that condition β > 1 guarantees that

properties 1 and 2 hold. The schematic representation of function v(z) is shown in Fig.2.
It seems impossible to find the exact values z∗, zmax, vmax. Further we discuss how to find

interval estimates for them.

Remark 1. For β = k/m, where k,m are natural odd numbers, k > m, the left phase half-plane
w = vβ < 0 can also be considered. The solution of problem (21), (22) can be continued to the
right from the point z = 0 as well as problem (21), (23) at z < 0 has a non-trivial solution. Both
solutions are negative so they are meaningless from the physical point of view.

Interval estimates are constructed for the key parameters of the solution of (21), (23) in the
particular case β = 1 to simplify the study. We follow the procedure suggested in [19].

Let us use linear substitution of the unknown function and independent variable

z̃ = Az, ṽ = Bv, A = αγ/[µ(γ + 1)], B = αγ2/[µ2(γ + 1)]. (28)
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Fig. 1. Phase portrait Fig. 2. The traveling wave configuration

Then problem (21), (23) takes the form

vv′′ + γ(v′)2 + γv′ + (γ + 1)v = 0, v(0) = 0, v′(0) = −1. (29)

Here the tilde is omitted.
We analyse the properties of solution of (29) and find estimates for z∗, zmax, vmax. In the proof

of Theorem 1 we show that for z ∈ [zmax, 0] function v decreases, −1 6 v′ 6 0 and v′(zmax) = 0.
Then from (29) we have that −1− γ 6 v′′ 6 −1, and v′′(0) = −1, v′′(zmax) = −γ − 1.

Integrating the upper bound for v′′ on the interval [z, 0] and taking into account the Cauchy
conditions (29), we obtain that

v′ 6 −(γ + 1)z − 1, v > −0.5(γ + 1)z2 − z, zmax 6 z 6 0. (30)

It follows from the first inequality (30) that zmax 6 −1/(γ + 1). The right-hand side of
the second inequality at z1 = −1/(γ + 1) > zmax takes the maximum value that satisfies the
inequality v(z1) > 1/[2(γ + 1)]. Since v(z1) 6 vmax we obtain that vmax > 1/[2(γ + 1)].

Integrating the lower bound for v′′ on the interval [z, 0] we obtain that

v′ > −z − 1, v 6 −0.5z2 − z, 0 < z 6 zmax. (31)

It follows from (31) that zmax > −1 and vmax 6 0.5.
When z ∈ [z0, zmax] function v increases, i.e., v′ > 0. Taking into account this inequality, it

follows from (29) that v′′ 6 −γ−1. Integrating it twice, we obtain vmax−v > (γ+1)(zmax−z)2/2,
z0 6 z 6 zmax. Since vmax 6 0.5, for z = z0 we have 0 < zmax− z0 6 1/

√
γ + 1 whence it follows

that −1/
√
γ + 1− 1 6 z0 6 −1/(γ+1). So, we have all the required estimates. Let us apply the

transformation inverse to (28). Then we obtain the following inequalities

−µ(γ + 1)

αγ
6zmax 6 − µ

αγ
; − µ

αγ
(
√

γ + 1+γ+1) 6 z0 <zmax;
µ2

2αγ2
6 vmax 6 µ2(1 + γ)

2αγ2
. (32)

We omit cumbersome transformations that are required to construct estimates of the form
(32) for the general case. Now a solution of equation (19) can be found. The solution has the
form of a heat wave that propagates with the constant velocity u(t, x) = v∗(x− µt− η).

An interesting feature of this solution is that it is a soliton (solitary wave). We point out
that if α = 0 (no source) then solution has explicit form u = −µ(x − µt − η)/γ. It is easy to
show that it is not a soliton.
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Derivation of travelling wave solution. Since one can not obtain analytical solution of
problem (21), (22) we solve it numerically. It follows from the proof of Theorem 1 that solution
should be constructed on the interval [z0, 0], and z0 < 0 is unknown. We only know that v(z0) = 0

and v′(z) → ∞ when z → z0. This is the problem with a free boundary, and its formulation is
non-standard for solving by the boundary element method. Note that we prefer to use the BEM
because, unlike difference methods, it allows one to construct a continuous solution.

For convenience, we use substitution V (z) = v(−z) and resolve equation (21) with respect to
the higher derivative. Taking into account (22), we have the Cauchy problem

V ′′ =
1

V

[
µV ′ − γ (V ′)

2 − αV β
]
, V (0) = 0, q(0) = −µ

γ
. (33)

It is difficult to find its solution with satisfactory accuracy on the interval z ∈ [0, z∗], where
z∗ = −z0, because of specific properties (mentioned above) of the unknown function. A correct
solution can be found in two stages. In the first stage, problem (33) is solved on the interval
z ∈ [0, L], where L < z∗ is selected in such a way that V ′(L) < 0, i.e., L > −zmax. Then the
BEM iterative procedure is used to obtain continuous solution of this problem (see [20]).

One cannot construct a solution of problem (33) on the interval z ∈ [L, z∗] in the original
formulation because the derivative is unbounded. Then, in the second stage, we interchange the
independent variable and the unknown function, just as we did in Section 2. As a result, we
obtain the inverse Cauchy problem for the unknown function z(V ).

z′′ =
z′

V

[
γ − µz′ + αV β(z′)2

]
, z(L∗) = L, qz(L

∗) =
1

q(L)
, (34)

where V ∈ [0, L∗], qz = ∂z/∂n, L∗ = V (L); V (L) and q(L) are obtained in the first stage.
Now problem (34) can be solved with the use of the iterative BEM. As a result, in particular,

the value z(0) = z∗ is found. The continuousness of the found function allows us to determine
V (z) for z ∈ [0, z∗] and the solution of problem (21), (22) without loss of accuracy. Note that
estimates (32) can be used to select parameter L.

Cylindrical geometry. For ν = 1, there are no exact travelling wave solutions for equa-
tion (4). It is known [16] that for β = 1 equation (4) has a self-similar solution u(t, ρ) =

= a(t)a′(t)v(r), where r = ρ/(Reθt), and R > 0, θ are constant. Function v(r) satisfies the
Cauchy problem

vv′′ + γ(v′)2 +
(
r +

v

r

)
v′ +

(α

R
− 2

)
v = 0, v(1) = 0, v′(1) = − 1

γ
. (35)

This solution corresponds to a heat wave with an exponential law of motion of the heat wave
front a(t) = Reθt. Since equation (35) is not autonomous, it is difficult to perform a qualitative
analysis in this case, and we don’t consider this task here.

In conclusion, we note that solution of problem (35) by the iterative boundary element method
[20] does not require additional modification because the unknown function in the solution domain
r ∈ (0, 1] monotonically decreases. In this case, to solve problem (4), (5) in the time interval
t ∈ [0, t∗], it is sufficient to solve problem (35) in the segment r ∈ [a(0)/a (t∗) , 1].

4. Computational experiment

Verification of the BEM algorithm. Here we test the BEM algorithm developed in
Section 2 by comparing the calculation results with the exact solutions presented in Section 3
for various values of parameters.
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Example 1. We consider the problem in the case of plane geometry (ν = 0) with γ = 1/3, α =

1, µ = 1, η = 0. Parameter β is varied: β = 0.8; 1; 1.2; 1.4; 1.6; 1.8; 2.
The accuracy of solving problem (4), (5) using the BEM algorithm is tested as follows. The

exact travelling wave solution ue(t, x) is found by solving problem (21), (22) using the boundary
element method described in Section 3. When the exact solution is found condition (5) that
corresponds to this solution is

u|x=0 = ue(t, 0). (36)

Next, numerical solution of problem (4), (36) is calculated using BEM. Then it is compared
with the exact solution ue(t, x). Numerical and exact solutions for β = 1.4 are shown in Fig. 3.

Fig. 3. Travelling heat wave for β = 1.4

To estimate the accuracy of the numerical solution we compare the law of motion of the heat
wave front found by the BEM and the law of motion x = µt + η of the exact solution. The
relative error in determining the heat wave front is shown in Tab. 1.

Table 1. The relative error in determining the heat wave front

t β = 0.8 β = 1 β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2
0.5 4.96E–03 1.77E–03 6.29E–04 2.10E–04 7.22E–05 2.19E–05 2.86E–05
1 4.63E–03 1.61E–03 5.85E–04 2.10E–04 8.88E–05 4.97E–05 4.37E–05

The results show that the accuracy of the solution decreases as parameter β decreases. The
results are not acceptable for β < 0.8. This seems to be related to the fact that the term uβ−1

(see (7)) has a singularity at u = 0 if β < 1. Note that Theorem 1 is also valid only for β > 1.
Nevertheless, one should note that the acceptable numerical results are obtained not only under
the conditions of Theorem 1 but also for 0 ≪ β < 1.

Example 2. We consider the problem in the case of cylindrical geometry (ν = 1) with γ =

1/3, α = 1, β = 1, R = 1, θ = 1.
The exact solution ue(t, ρ) is found by solving problem (35) using the BEM [20]. The bound-

ary condition for problem (4), (5) is

u|ρ=R = ue(t, R). (37)

Comparison of the BEM solution of problem (4), (37) and the exact solution is shown in Fig. 4.

– 703 –



Alexander A.Kazakov . . . On the Construction of Solutions to a Problem with a Free Boundary . . .

Thus, the results demonstrate the effectiveness of the developed algorithm for solving the
problem of heat wave initiating for a non-linear heat equation with a source.

Fig. 4. Heat wave with exponential front

Traveling wave. The second part of the computational experiment is devoted to the nu-
merical analysis of estimates obtained for the parameters of the solution of problem (21), (22).
Tab. 2 shows values of z∗, zmax and vmax, as well as boundaries of their interval estimates
z− 6 zmax 6 z+, z− 6 z0 6 zmax, v− 6 vmax 6 v+ (see (32)) for α = µ = 1 and various
γ. One can see that the estimates are relatively accurate for zmax and vmax. The values of zmax

are closer to the left border of the interval, and the values of vmax are closer to the right border.
For the wave length z∗ = −z0 the rough estimate was obtained, and further improvement is
needed.

The results of calculations show that obtained analytical estimates can be probably im-
proved. So, for all calculations performed (both presented in Tab. 2 and not included
in it) the inequalities |zmax − zM |/|zM | < 0.05, v− + 0.7 ∆v < vmax < v− + 0.8 ∆v

are valid. Here, zM = (z− + z+)/2, ∆v = v+ − v−. It follows from (28) and (29)
that if we have values of z0(γ, α, µ)|α=µ=1, zmax(γ, α, µ)|α=µ=1 and vmax(γ, α, µ)|α=µ=1, we
can find z0(γ, α, µ), zmax(γ, α, µ) and vmax(γ, α, µ) for all α and µ as z0(γ, α, µ) = =

µα−1z0(γ, 1, 1), zmax(γ, α, µ) = µα−1zmax(γ, 1, 1), vmax(γ, α, µ) = µ2α−1vmax(γ, 1, 1).

Table 2. Estimates of travelling wave parameters

γ α µ z− zmax z+ z− z0 v− vmax v+
1 1 1 –2 –1.547918 –1 –3.414214 –2.328672 0.5 0.858849 1

0.5 1 1 –3 –2.575608 –2 –5.449490 –4.265408 2 2.744421 3
1/3 1 1 –4 –3.590301 –3 –7.464102 –6.229110 4.5 5.643519 6
0.2 1 1 –6 –5.611311 –5 –11.477226 –10.194475 12.5 14.4864942 15

Conclusions

In this study we consider the problem of a heat wave initiating for a non-linear heat equation
with a source and construct the solution on a specified finite time interval. We develop a step-
by-step algorithm based on the iterative BEM using the dual reciprocity method. We choose
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systems of radial basis functions that ensure convergence of the iterative process at each step of
the solution. To verify the developed algorithm we use exact travelling wave solutions. Their
construction is reduced to solving the Cauchy problem for the ODE with a singularity. For this
Cauchy problem we prove the existence and uniqueness theorem of the classical solution that
does not have to be analytical. A qualitative study of the solution properties was performed,
and some estimates for the amplitude and wave length were obtained. To solve the Cauchy
problem numerically, we develop an iterative algorithm based on the BEM. It allows one to
determine correctly the boundary of the solution domain where the derivative of the unknown
function tends to infinity. The performed calculations show the effectiveness and accuracy of the
developed computational algorithm.

Further research can be directed towards expanding the proposed approach to other types of
problems and to multidimensional equations. It is also interesting to apply new methods such
as the method of fundamental solutions, the interior field method and the null field method to
solve the considered elliptic equations and to compare these methods with the BEM.

The study was funded by RFBR (research project no. 20-07-00407) and by RFBR and MOST
(research project no. 20-51-S52003.
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О построении решений задачи со свободной границей
для нелинейного уравнения теплопроводности

Александр Л. Казаков
Институт динамики систем и теории управления имени В.М. Матросова СО РАН

Иркутск, Российская Федерация
Лев Ф. Спевак

Институт машиноведения УрО РАН
Екатеринбург, Российская Федерация

Минг-Гонг Ли
Университет Чунг Хуа

Город Синьчжу, Тайвань

Аннотация. В статье обсуждается построение решений задачи со свободной границей для нели-
нейного уравнения теплопроводности, которые имеют тип тепловой волны. Особенностью таких
решений является то, что уравнение имеет вырождение на фронте тепловой волны, который раз-
деляет область положительных значений искомой функции и холодный (нулевой) фон. Предло-
жен численный алгоритм решения указанной проблемы на основе метода граничных элементов.
Поскольку доказать сходимость алгоритма не удается из-за нелинейности задач и наличия вы-
рождения, в качестве метода верификации расчетов выбрано сравнение с точными решениями,
построение которых сводится к интегрированию задачи Коши для ОДУ. Проведено качественное
исследование последних. Выполнены иллюстрирующие расчеты, на основании которых с исполь-
зованием результатов качественного анализа сделаны содержательные выводы.

Ключевые слова: нелинейное уравнение теплопроводности, тепловая волна, метод граничных
элементов, приближенное решение, точное решение, теорема существования.
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