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1. Introduction and preliminaries

All graphs considered in this paper are finite undirected graphs without loops or multiple
edges. If G is a graph, then V (G) and E(G) (or V and E in short) will denote its vertex-set
and its edge-set, respectively. The set of all neighbours of a subset S ⊆ V (G) is denoted by
NG(S) (or N(S) in short). Further, for W ⊆ V (G) the set W ∩ NG(S) is denoted by NW (S).
If S = {v}, then N(S) and NW (S) are denoted shortly by N(v) and NW (v), respectively. For a
vertex v ∈ V (G), the degree of v (resp., the degree of v with respect to W ), denoted by deg(v)
(resp., degW (v)), is |NG(v)| (resp., |NW (v)|). The subgraph of G induced by W ⊆ V (G) is
denoted by G[W ]. The independent sets and complete graphs of order n are denoted by On and
Kn, respectively. Unless otherwise indicated, our graph-theoretic terminology will follow [1].

A graph G = (V,E) is called r-partite graph if V admits a partition into r classes V =
= V1 ∪V2 ∪ . . .∪Vr such that the subgraphs of G induced by Vi, i = 1, . . . , r, is independent set.
An r-partite graph in which every two vertices from different partition classes are adjacent is
called complete r-partite graph and is denoted by K|V1|,|V2|,...,|Vr| . The complete r-partite graph
K|V1|,|V2|,...,|Vr| with |V1| = |V2| = . . . = |Vr| = s is denoted by Kr

s

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Their union
G = G1 ∪ G2 has, as expected, V (G) = V1 ∪ V2 and E(G) = E1 ∪ E2. Their join defined is
denoted G1 +G2 and consists of G1 ∪G2 and all edges joining V1 with V2.

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs. We call G1 and G2 isomorphic, and write
G1

∼= G2, if there exists a bijection f : V1 → V2 with uv ∈ E1 if and only if f(u)f(v) ∈ E2 for
all u, v ∈ V1.

Let G = (V,E) be a graph and λ is a positive integer.
A λ-coloring of G is a bijection f : V (G) → {1, 2, . . . , λ} such that f(u) ̸= f(v) for any

adjacent vertices u, v ∈ V (G). The smallest positive integer λ such that G has a λ-coloring is
called the chromatic number of G and is denoted by χ(G). We say that a graph G is n-chromatic
if n = χ(G).
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Let V (G) = {v1, v2, . . . , vn}, two λ-colorings f and g are considered different if and only if
f(vk) ̸= g(vk) for some k = 1, 2, . . . , n. Let P (G,λ) (or simply P (G) if there is no danger of
confusion) denote the number of distinct λ-colorings of G. It is well-known that for any graph
G, P (G,λ) is a polynomial in λ, called the chromatic polynomial of G. The notion of chromatic
polynomials was first introduced by Birkhoff [3] in 1912 as a quantitative approach to tackle
the four-color problem. Two graphs G and H are called chromatically equivalent or in short
χ-equivalent, and we write in notation G ∼ H, if P (G,λ) = P (H,λ). A graph G is called
chromatically unique or in short χ-unique if G′ ∼= G (i.e., G′ is isomorphic to G) for any graph
G′ such that G′ ∼ G. For examples, all cycles are χ-unique [8]. The notion of χ-unique graphs
was first introduced and studied by Chao and Whitehead [4] in 1978. The readers can see the
surveys [8,9] and [12] for more informations about χ-unique graphs. Recently, Ngo Dac Tan and
Le Xuan Hung characterized chromatically unique split graphs [12] (A graph G = (V,E) is called
a split graph if there exists a partition V = I ∪ K such that the subgraphs of G induced by I
and K are independent sets and complete graphs, respectively).

Let (Lv)v∈V be a family of sets. We call a coloring f of G with f(v) ∈ Lv for all v ∈ V is a
list coloring from the lists Lv. We will refer to such a coloring as an L-coloring. The graph G is
called λ-list-colorable, or λ-choosable, if for every family (Lv)v∈V with |Lv| = λ for all v, there is
a coloring of G from the lists Lv. The smallest positive integer λ such that G has a λ-choosable
is called the list-chromatic number, or choice number of G and is denoted by ch(G). In [7], we
characterized list-chromatic number for split graphs, we have proved that if G is a split graphs
then ch(G) = χ(G).

Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a
list of k colors Lv, such that there exists a unique L-coloring for G, then G is called a uniquely
k-list colorable graph or a UkLC graph for short. The idea of uniquely colorable graph was
introduced independently by Dinitz and Martin [6] and by Mahmoodian and Mahdian [10]
(Mahmoodian and Mahdian have obtained some results on the uniquely k-list colorable com-
plete multipartite graphs, for example, they proved that graph G = Om + Kn is U3LC when
(m,n) ∈ {(4, 6), (5, 5), (6, 4)}).

Finding a general result for the problems raised above is a difficult task, requiring a lot of
time and effort for mathematicians. There have been many interesting and insightful research
results on these issues for different graph classes. However, these are still issues that have not
been resolved thoroughly, so much more attention is needed. In this paper, we shall characterize
chromatically unique, determine list-chromatic number and characterize uniquely list colorability
of the graph G = Km

2 +Kn. Namely, we shall prove that G is χ-unique (Section 2), ch(G) = m+n
(Section 3), G is U3LC if and only if 2m+n > 7 and m > 2 (Section 4). These results contribute
to solving the coloring problem for a complete multipartite graph.

2. Chromatic uniqueness
We need the following Lemmas 1–4 to prove our results.

Lemma 1 ([2]). If Kn is a complete graph on n vertices then χ(Kn) = n.

Lemma 2. If G = Kn1,n2,...,nr
is a complete r-partite graph then χ(G) = r.

Lemma 3 ([11]). Let G and H be two χ-equivalent graphs. Then
(i) |V (G)| = |V (H)|;
(ii) |E(G)| = |E(H)|;
(iii) χ(G) = χ(H);
(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected.
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Lemma 4. Let G = (V1 ∪ V2 ∪ . . . ∪ Vm+n, E) be a (m + n)-partite graph with m > 1, n > 1,
|V1| > |V2| > . . . > |Vm+n| and |V1|+ |V2|+ . . .+ |Vm+n| = 2m+ n. Then

|E| 6 (2m+ n)2 − 4m− n

2
.

In particular,

|E| = (2m+ n)2 − 4m− n

2

if and only if G is a complete (m+ n)-partite graph K|V1|,|V2|,...,|Vm+n| with

|V1| = |V2| = . . . = |Vm| = 2, |Vm+1| = |Vm+2| = . . . = |Vm+n| = 1.

Proof. We prove the lemma by induction on t = m+n. For t = 2 the assertion holds, so let t > 2
and assume the assertion for smaller values of t. If |Vm+n| > 2 then |V1|+ |V2|+ . . .+ |Vm+n| >
2m+2n > 2m+n, a contradiction. So, |Vm+n| = 1. If |Vm| > 3 then |V1|+ |V2|+ . . .+ |Vm+n| >
3m+ n > 2m+ n, a contradiction. Therefore, |Vm| 6 2. Now we consider separately two cases.
Case 1: There exists i ∈ {1, 2, . . . ,m} such that |Vi| = 2.

Set G′ = G− Vi. It is clear that G′ is a (m+ n− 1)-partite graph

(V1 ∪ V2 ∪ . . . ∪ Vi−1 ∪ Vi+1 ∪ . . . ∪ Vm+n, E
′).

By the induction hypothesis,

|E′| 6 (2(m− 1) + n)2 − 4(m− 1)− n

2
.

We have

|E| 6 |E′|+ |Vi|(|V1|+ . . .+ |Vi−1|+ |Vi+1|+ . . .+ |Vm+n|) 6

6 (2(m− 1) + n)2 − 4(m− 1)− n

2
+ 2(2m+ n− 2) =

=
(2m+ n)2 − 4m− n

2
.

It is not difficult to see that

|E| = (2m+ n)2 − 4m− n

2

if and only if G is a complete (m+ n)-partite graph K|V1|,|V2|,...,|Vm+n| with

|V1| = |V2| = . . . = |Vm| = 2, |Vm+1| = |Vm+2| = . . . = |Vm+n| = 1.

Case 2: |Vi| ̸= 2 for every i = 1, 2, . . . ,m.
In this case, |V1| > 3. Let h ∈ {1, 2, . . . ,m} such that |Vh| = 1 and |Vh−1| > 3. Let G1 =

= Kp1,p2,...,pm+n
be a complete (m+n)-partite graph such that ph= |Vh|+1 = 2, ph−1= |Vh−1|−1

and pi = |Vi| for every i ∈ {1, 2, . . . ,m+ n} \ {h− 1, h}. By Case 1,

|E(G1)| 6
(2m+ n)2 − 4m− n

2
.

We have

|E(G1)| =
∑

16i<j6m+n

pipj =
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=
∑

i,j∈{1,...,m+n}\{h−1,h}

pipj +
∑

i∈{1,...,m+n}\{h−1,h}

piph−1 +

+
∑

i∈{1,...,m+n}\{h−1,h}

piph + ph−1ph =

=
∑

i,j∈{1,...,m+n}\{h−1,h}

|Vi||Vj |+
∑

i∈{1,...,m+n}\{h−1,h}

|Vi|(|Vh−1| − 1) +

+
∑

i∈{1,...,m+n}\{h−1,h}

|Vi|(|Vh|+ 1) + (|Vh−1| − 1)(|Vh|+ 1) =

=
∑

16i<j6m+n

|Vi||Vj |+ |Vh−1| − |Vh| − 1 >

> |E|+ 1.

It follows that

|E| < (2m+ n)2 − 4m− n

2
.

2

Now we characterize chromatically unique for the graph G = Km
2 +Kn.

Theorem 5. The graph G = Km
2 +Kn is χ-unique.

Proof. It is clear that G is a complete (m+ n)-partite graph Kp1,p2,...,pm+n with

p1 = p2 = . . . = pm = 2, pm+1 = pm+2 = . . . = pm+n = 1.

Let G′ = (V ′, E′) is a graph such that G′ ∼ G. Since Lemma 2 and (iii) of Lemma 3 we have

χ(G′) = χ(G) = m+ n.

Let G′ has a coloring f using m+ n colors 1, 2, . . . ,m+ n. Set

V ′
i = {u ∈ V ′ | f(u) = i}.

for every i = 1, 2, . . . ,m+n. It follows that G′ is a (m+n)-partite graph (V ′
1∪V ′

2∪. . .∪V ′
m+n, E

′).
By (i) and (ii) of Lemma 3 we have

|V (G′)| = |V (G)| = 2m+ n, |E(G′)| = |E(G)| = (2m+ n)2 − 4m− n

2
.

Without loss of generality we may

|V ′
1 | > |V ′

2 | > . . . > |V ′
m+n|.

By Lemma 4, we have

|V ′
1 | = |V ′

2 | = . . . = |V ′
m| = 2, |V ′

m+1| = |V ′
m+2| = . . . = |Vm+n|′ = 1.

It follows that G′ ∼= G. Thus G is χ-unique.

3. List-chromatic number
We need the following Lemmas 6–8 to prove our results.

Lemma 6 ([5]). If G is a graph then ch(G) > χ(G).
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Lemma 7 ([5]). If G1 is a subgraph of G2 then ch(G1) 6 ch(G2).

We determine list-chromatic number for complete graphs.

Lemma 8. If Kn is a complete graph on n vertices then ch(Kn) = n.

Now we determine list-chromatic number for the graph G = Kr
2 .

Theorem 9. List-chromatic number of G = Kr
2 is

ch(G) = r.

Proof. By Lemma 2 and Lemma 6, we have ch(G) > r. Now we prove ch(G) 6 r by induction
on r. For r = 1 the assertion holds, so let r > 1 and assume the assertion for smaller values of r.

Let V (G) = V1 ∪ V2 ∪ . . .∪ Vr is a partition of V (G) such that for every i = 1, . . . , r, |Vi| = 2
and the subgraphs of G induced by Vi, is independent set. Set

Vi = {vi1, vi2}

for every i = 1, . . . , r. Let Lvij
be the lists of colors of vij such that |Lvij | = r for every

i = 1, 2, . . . , r; j = 1, 2. Now we consider separately two cases.
Case 1: There exists i ∈ {1, 2, . . . , r} such that Lvi1 ∩ Lvi2 ̸= ∅.

Without loss of generality we may assume that Lv11 ∩ Lv12 ≠ ∅ and a ∈ Lv11 ∩ Lv12 . set
G′ = G− V1. It is clear that G′ is a graph Kr−1

2 . Again set

L′
vij ⊆ Lvij \ {a}

such that |L′
vij | = r − 1 for every i = 2, 3, . . . , r; j = 1, 2.

By the induction hypothesis, there exists (r−1)-choosable g of G′ with the lists of colors L′
vij

for every i = 2, 3, . . . , r; j = 1, 2.
Let f be the coloring of G such that

f(vij) = g(vij) for every i = 2, 3, . . . , r; j = 1, 2,
f(v1j) = a for every j = 1, 2.

Then f is a r-choosable for G, ie., ch(G) 6 r.
Case 2: Lvi1 ∩ Lvi2 = ∅ for every i = 1, 2, . . . , r.

Let b ∈ Lv11 . Set G′ = G− V1 = Kr−1
2 and

L′
vij ⊆ Lvij

\ {b}

such that |L′
vij | = r − 1 for every i = 2, 3, . . . , r; j = 1, 2.

By the induction hypothesis, there exists (r−1)-choosable g of G′ with the lists of colors L′
vij

for every i = 2, 3, . . . , r; j = 1, 2. Since |Lv11 ∪ Lv12 | = 2r and |V (G′| = 2(r − 1), it follows that

|(Lv11 ∪ Lv12) \ g(V (G′))| > 2.

We again divide this case into two subcases.
Subcase 2.1: ((Lv11 ∪ Lv12) \ g(V (G′))) ∩ Lv12 ̸= ∅.

Let c ∈ ((Lv11 ∪ Lv12) \ g(V (G′))) ∩ Lv12 . Let f be the coloring of G such that
f(vij) = g(vij) for every i = 2, 3, . . . , r; j = 1, 2,
f(v11) = b, f(v12) = c.

Then f is a r-choosable for G, ie., ch(G) 6 r.
Subcase 2.2: ((Lv11 ∪ Lv12) \ g(V (G′))) ∩ Lv12 = ∅.

By |(Lv11 ∪ Lv12) \ g(V (G′))| > 2, there exists d ∈ (Lv11 ∪ Lv12
) \ g(V (G′)), d ̸= b. It is clear

that b, d ∈ Lv11 . Since |Lv12 | = r and |g(V (G′))| 6 2(r − 1), there exists i ∈ {2, 3, . . . , r} such
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that g(vi1), g(vi2) ∈ Lv12 . Without loss of generality we may assume that g(v21), g(v22) ∈ Lv12 .
Let e ∈ (Lv21 ∪ Lv22) \ g(V (G′)). First assume that e ∈ Lv21 . If e ̸= b then coloring f of G such
that

f(vij) = g(vij) for every i = 3, 4, . . . , r; j = 1, 2,
f(v22) = g(v22), f(v21) = e,
f(v11) = b, f(v12) = g(v21).

is a r-choosable for G. If e = b then coloring f of G such that
f(vij) = g(vij) for every i = 3, 4, . . . , r; j = 1, 2,
f(v22) = g(v22), f(v21) = e,
f(v11) = d, f(v12) = g(v21).

is a r-choosable for G. By symmetry, we can show that ch(G) 6 r if e ∈ Lv22 .

Theorem 10. List-chromatic number of G = Km
2 +Kn is

ch(G) = m+ n.

Proof. It is clear that G = Km
2 + Kn is a complete (m + n)-partite graph. By Lemma 2 and

Lemma 6, we have ch(G) > m+n. Now we prove ch(G) 6 m+n. It is not difficult to see that G
is a subgraph of Km+n

2 . By Lemma 7 and Theorem 9, ch(G) 6 m+n. Thus, ch(G) = m+n.

4. Uniquely list colorability
If a graph G is not uniquely k-list colorable, we also say that G has property M(k). So G

has the property M(k) if and only if for any collection of lists assigned to its vertices, each of
size k, either there is no list coloring for G or there exist at least two list colorings. The least
integer k such that G has the property M(k) is called the m-number of G, denoted by m(G).
This conception was originally introduced by Mahmoodian and Mahdian in [10].

We need the following Lemmas 11–16 to prove our results.

Lemma 11 ([10]). A connected graph G has the property M(2) if and only if every block of G
is either a cycle, a complete graph, or a complete bipartite graph.

Lemma 12 ([10]). For every graph G we have m(G) 6 |E(G)|+ 2.

Lemma 13 ([10]). Every UkLC graph has at least 3k − 2 vertices.

Lemma 14. If 2m+ n = 7 and m > 2 then G = Km
2 +Kn is U3LC.

Proof. It is clear that G = Km
2 +Kn is a complete (m+n)-partite graph. Let V (G) = V1 ∪V2 ∪

. . . ∪ Vm+n is a partition of V (G) such that |V1| = |V2| = . . . = |Vm| = 2, |Vm+1| = |Vm+2| =

. . . = |Vm+n| = 1 and for every i = 1, . . . ,m the subgraphs of G induced by Vi, is independent
set. Set Vi = {ui1, ui2} for every i = 1, . . . ,m and Vm+i = {vi} for every i = 1, . . . , n. Now we
consider separately two cases.
Case 1: m = 2 and n = 3.

We assign the following lists for the vertices of this graph:

Lu11 = {1, 2, 3}, Lu12 = {1, 4, 5}, Lu21 = {1, 2, 3}, Lu22 = {2, 4, 5},

Lv1 = {1, 2, 5}, Lv2 = {1, 2, 4}, Lv3 = {1, 2, 3}.

A unique coloring f exists from the assigned lists:

f(u11) = 1, f(u12) = 1, f(u21) = 2, f(u22) = 2,
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f(v1) = 5, f(v2) = 4, f(v3) = 3.

Case 2: m = 3 and n = 1.
We assign the following lists for the vertices of this graph:

Lu11 = {1, 4, 5}, Lu12 = {2, 4, 5}, Lu21 = {1, 2, 3}, Lu22 = {3, 4, 5},

Lu31 = {1, 2, 4}, Lu32 = {3, 4, 5}, Lv1 = {3, 4, 5}.

A unique coloring f exists from the assigned lists:

f(u11) = 1, f(u12) = 2, f(u21) = 3, f(u22) = 3,

f(u31) = 4, f(u32) = 4, f(v1) = 5.

Lemma 15. If m = 2 and n > 3 then G = Km
2 +Kn is U3LC.

Proof. We prove G is U3LC by induction on n. If n = 3 then by Lemma 14, G is U3LC. So let
n > 3 and assume the assertion for smaller values of n.

Let V (G) = V1∪V2∪ . . .∪Vn+2 is a partition of V (G) such that |V1| = |V2| = 2, |V3| = |V4| =
= . . . = |Vn+2| = 1 and for every i = 1, 2 the subgraphs of G induced by Vi, is independent set.
Set Vi = {ui1, ui2} for every i = 1, 2 and Vi+2 = {vi} for every i = 1, . . . , n. Set G′ = G − vn.
By the induction hypothesis, for each vertex v in G′, there exists a list of 3 colors L′

v, such that
there exists a unique f ′ for G′.

We assign the following lists for the vertices of G:

Lu11 = L′
u11

, Lu12 = L′
u12

, Lu21 = L′
u21

, Lu22 = L′
u22

,

Lv1 = L′
v1 , . . . , Lvn−1 = L′

vn−1
, Lvn = {f ′(v1), f

′(v2), t},

with t /∈ L′
u11

∪ L′
u12

∪ L′
u21

∪ L′
u22

∪ L′
v1 ∪ . . . ∪ L′

vn−1
.

A unique coloring f of G exists from the assigned lists: f(v)= f ′(v) if v ∈ V (G′), f(vn) = t.

Lemma 16. If m = 3 and n > 1 then G = Km
2 +Kn is U3LC.

Proof. We prove G is U3LC by induction on n. If n = 1 then by Lemma 14, G is U3LC. So let
n > 1 and assume the assertion for smaller values of n.

Let V (G) = V1 ∪ V2 ∪ V3 ∪ . . . ∪ Vn+3 is a partition of V (G) such that |V1| = |V2| = |V3| = 2,
|V4| = |V5| = . . . = |Vn+3| = 1 and for every i = 1, 2, 3 the subgraphs of G induced by Vi, is
independent set. Set Vi = {ui1, ui2} for every i = 1, 2, 3 and Vi+3 = {vi} for every i = 1, . . . , n.
Set G′ = G − vn. By the induction hypothesis, for each vertex v in G′, there exists a list of 3
colors L′

v, such that there exists a unique f ′ for G′.
We assign the following lists for the vertices of G:

Lu11
= L′

u11
, Lu12

= L′
u12

, Lu21
= L′

u21
, Lu22

= L′
u22

, Lu31
= L′

u31
, Lu32

= L′
u32

Lv1 = L′
v1 , . . . , Lvn−1 = L′

vn−1
, Lvn = {f ′(v1), f

′(v2), t},

with t /∈ L′
u11

∪ L′
u12

∪ L′
u21

∪ L′
u22

∪ L′
u31

∪ L′
u32

∪ L′
v1 ∪ . . . ∪ L′

vn−1
.

A unique coloring f of G exists from the assigned lists: f(v)= f ′(v) if v ∈ V (G′), f(vn) = t.

Theorem 17. G = Km
2 +Kn is U3LC if and only if 2m+ n > 7 and m > 2.
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Proof. Firrst we prove the necessity. Suppose that G = Km
2 + Kn is U3LC. By Lemma 13,

|V (G)| = 2m + n > 7. If m = 1 then |E(G)| = 1, by Lemma 12, m(G) 6 |E(G)| + 2 = 3, a
contradiction. Therefore, m > 2.

Now we prove the sufficiency. We prove G is U3LC by induction on m. If m = 2 then by
Lemma 15, G is U3LC. If m = 3 then by Lemma 16, G is U3LC. So let m > 3 and assume the
assertion for smaller values of m.

Let V (G) = V1 ∪ V2 ∪ V3 ∪ . . . ∪ Vm+n is a partition of V (G) such that |V1| = |V2| = . . . =
= |Vm| = 2, |Vm+1| = |Vm+2| = . . . = |Vm+n| = 1 and for every i = 1, 2, . . . ,m the subgraphs of
G induced by Vi, is independent set. Set Vi = {ui1, ui2} for every i = 1, . . . ,m and G′ = G−Vm.
By the induction hypothesis, for each vertex v in G′, there exists a list of 3 colors L′

v, such that
there exists a unique f ′ for G′.

We assign the following lists for the vertices of G: Lum1
= Lum2

= {f ′(u11), f
′(u21), t} with

t /∈ f ′(G′), Lv = L′
v if v ∈ V (G′).

A unique coloring f of G exists from the assigned lists: f(um1) = f(um2) = t, f(v) = f ′(v)
if v ∈ V (G′).

5. Conclusion

The coloring problem, including the list coloring problem, has always been much researched
in graph theory because it has many applications in computer science. The list coloring model
can be used in the channel assignment. The fixed channel allocation scheme leads to low channel
utilization across the whole channel. It requires a more effective channel assignment and man-
agement policy, which allows unused parts of channel to become available temporarily for other
usages so that the scarcity of the channel can be largely mitigated [13]. It is a discrete optimiza-
tion problem. A model for channel availability observed by the secondary users is introduced
in [13]. The research of list coloring consists of two parts: the choosability and the unique list
colorability.

The main results of the paper have identified the list-chromatic number (Theorem 10), char-
acterized chromatically unique (Theorem 5) and characterized uniquely list colorability (Theo-
rem 17) of the graph G = Km

2 +Kn. The desire in the future will achieve deeper results on the
issues raised in this article.
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Раскраски графа Km
2 +Kn
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Ханой, Вьетнам

Аннотация. В этой статье мы характеризуем хроматически уникальное хроматическое число в
списке и однозначно характеризуем окрашиваемость графа списка Km

2 +Kn. Мы докажем, что G
χ единственно, ch(G) = m + n, G является однозначным трехцветным графом раскраски тогда и
только тогда, когда 2m+ n > 7 и m > 2.

Ключевые слова: хроматическое число, хроматический номер списка, хроматически уникальный
граф, однозначный список раскрашиваемого графа, полный r-раздельный граф.
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