Journal of Siberian Federal University. Mathematics & Physics 2020, 13(3), 275-284

DOI: 10.17516/1997-1397-2020-13-3-275-284
VIIK 519.21

On Limit Theorem for the Number of Vertices of the Convex
Hulls in a Unit Disk

Isakjan M. Khamdamov*
Tashkent University of Information Technologies
Tashkent, Uzbekistan

Received 12.02.2020, received in revised form 06.03.2020, accepted 03.04.2020

Abstract. This paper is devoted to further investigation of the property of a number of vertices of
convex hulls generated by independent observations of a two-dimensional random vector with regular
distributions near the boundary of support when it is a unit disk. Following P. Groeneboom [4], the
Binomial point process is approximated by the Poisson point process near the boundary of support and
vertex processes of convex hulls are constructed. The properties of strong mixing and martingality of
vertex processes are investigated. Using these properties, asymptotic expressions are obtained for the
expectations and variance of the vertex processes that correspond to the results previously obtained
by H.Carnal [2]. Further, using the properties of strong mixing of vertex processes, the central limit
theorem for a number of vertices of a convex hull is proved.
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Introduction

The functionals of convex hulls are complex objects in analytical aspect. Therefore, studying
the properties of even the simplest functionals of convex hulls such as the number of vertices or
the area, has for a long time remained a difficult task. This explains the fact that such well-
known researchers as in [2, 3, 15] and others, limited their interests to studying the average value
of the number of vertices, the area, and the perimeter of a random polygon. For many years, due
to the lack of valid research methods, the attempts to develop this area have not been successful.

In paper [4] has made a significant progress in this field. He managed for the first time to
obtain the limit distribution for the number of vertices of a convex hull in the case when the
support of initial uniform distribution is either a convex polygon or an ellipse. His research
method is based on the original idea of using the Poisson approximations of a binomial point
process near the boundary of the support of initial distribution. Then he applied powerful
methods such as martingales, mixing of stationary processes and others. Based on this method,
in [1] have established the limiting distribution for the area of the convex hull when the support
of initial distribution is a convex polygon. In [6] proved the limit theorems for the area outside
a convex hull when the support is a unit disk. These results in a more general form, for the
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joint distribution of the vertex number, area, and perimeter, were obtained by [12] using the idea
of [4] on Poisson approximations of a binomial point process near a polygon boundary. In [7]
has developed this problem for the case when the convex hull is generated by distributions with
exponential tails, including, in particular, the normal distribution.

The approach used in this paper is a modification of the methods proposed by [4,5, 12] and
adapted to a wider class of initial distributions.

1. Statement of the problem and results formulation

Let the support of initial distribution A be a unit disk with a center at a point(0,1).
Suppose that random points (r;, «;) are given in the polar coordinate system (with pole (0, 1))
in a disk A, where r; and «; are independent and «;is uniformly distributed in [, 7] and

1
P(ri>1—m):x'@L<),0<x<17ﬁ>17 (1)
x

where L(z) is the slowly varying function in the Karamata sense given by

L(u) :exp{/lu E(t)dt}, () 0, t— o0

t

Next, assume that X; = r;sinay, 1 — Y; = r; cos a; and denote by C,, the convex hull generated
by random points (X1,Y7), (X2,Y2),...,(X,,Y,), and denote by v,, s, and [,, the number of
vertices, the area and the perimeter of the C),, respectively.

Denoting the largest root of the equation by b,

nz~(BT3) () = 1. (2)

In this case, in [2] obtained asymptotic expressions for the expectations of Ev,, Es, and El,.
In the one-dimensional case, in [13] studied the role of the extreme summands in the sums, when
the tail of the distribution of the initial random variable is (1) regularly varying. This paper is a
continuation of [9,10,13] in the multidimensional case. According to P. Groeneboom’s remark,
we consider v, for the case when L(z) = 1. Then from (2) we get

2

by = n7e. (3)

The basic theorem of the present paper is given.

Theorem 1. Let the conditions At n — oo the following ratio is true
1
Un — al(ﬁv n)bfl

1

a2 (63 n)b;%

Here 2% means the weak convergence, N(0,1) denotes the standard normal distribution with pa-
rameters (0,1), a1(B8,n), az(B,n) are positive constants determined from relations (12) and (13).

4 N(0,1).

In particular, if 5 =1 Groeneboom’s result [4] follows.

Corollary. If condition (3) is satisfied, then

Yn — AP )0n Cl(@bg 4 N(0,1),
ca(B)bn

where ¢1(8), ca(B) have an explicit form, and ¢1(1),c2(1) coincide with the corresponding con-
stants in the [4].
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2. Preliminaries

In this section we give a modification of the key approach by [4,12] on the Poisson ap-
proximation of binomial point process (b.p.p.) B,(:) generated by n random sample from the
distribution (1) in the unit disk.

Assume that

S.={@y) 1-e<Var -y <1},

Ap(A) = P((X1,Y1) € A).

(4)
Consider a convex hull C/ generated by a nonhomogeneous Poisson point process (n.h.p.p.p.)
I1,,(S.) with intensity of nAg (-).

Lemma 1. Let B, (S:) be the n.h.b.p.p. with parameter(n,Ag (-)). Then there is the n.h.p.p.p.
I1,, (S:) with intensitynAg (-) such that

P (Bn (Se) #, (Se)) < 2M(S:), P (Cn #Cy) =0,
atn — oo, € = 0.

To formulate Lemma 2, we need some notation.

2
Lt 1(9) = {(e.0) sy <1 1- G < /EF T 9P < 1,

X
1_y‘<tg5},
2 2 2
w6 = {w: el <6 S <y S DL

2
where § = 0,, = c\/logn/b,.

For any set of forms

introduce a measure

Then assume that
A(B)=0, at BC {(z,y): 2®+ (1 —y)* > 1}.

Lemma 2. There is I} (S:) the n.h.p.p.p. with intensityAl (-) such that for any e >0

logﬁ t2n
by ©

P (IT;(S.) # TI(S.)) = (

We denote by C? the convex hull generated by the realization of n.h.p.p.p. I} (D), where

2

T % {,C2 {E2

N
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Then assume that

Introduce the following measure

1 22\?7!
N S dzdy, A C Ry,
A%(A) = 27v/bn é/ (y 2 ) B
0

, at AZ R,.
Then denoting by IL,(-) n.h.p.p.p. with intensityA9(-) it is easy to see that
d s g

Now the whole circle is divided by m,,parts, where m,, = \/bn/ log n. Each section is 2w/b,, logn
long, with central angle 27 logn / Vby,. Disk section corresponding to the circumference section

(ﬂ\/a(log n)(2k — 1), 7/, (log n)(2k + 1))

is denoted by Iy n,(k=0,1, ...,m, —1).

From Lemma 2, Poisson’s processes II* (b, !:) and II9(-) are almost similar. So consider
Poisson’s process I12(-) in I ,only.

Following [4], consider the statement of Poisson point process in each sector I, separately.

The vertex process Wy, (a) = (X, (a),Y,(a)) for any a € (a—,ay) is such a point (X, V)
of n.h.p.p.p. realization 1Y (-), for which Yy — aX}, takes the minimum value, where a_ =
= —mlogn/\by, ay =mlogn/v/by,.

It is easy to understand from the definition that, W, (a) is a non-stationary Markov jump
process.

The following lemma gives the types of distributions W, (a) which correspond to various
situations.

Lemma 3. Let s =y —azx + azbn/Q.
Then

1)P (W, (0) € (da, dy)) b {yM;B (5+1;;)} (y x2>ﬁ_1dxdy;

o, P Var
2P (W, (0) € (dr, dy)) = —2 {—S“éB(ﬁH;l)}(y—xz)ﬂ_ldmy;

T o, P T Vo 2
3)P (Wy(a) = Wn(0)/W,(0) = (z,y)) =

1 V2b,s ’LL2 B V2bny ’LL2 B
=e — s§—— | du — — dy ¢ .
P 2m \% bn r—aby, ( 2bn ) /w (y 2b7l > Y
Proof. Let v = a(u — z) + y be a straight line passing through points (x,y) with angular
coefficient a, A(a,x,y) is the set of points in the domain bounded by lines v = a(u — x) + y and

v=u?/(2b,).
It is easy to see that if w; and us are the roots of equation

u?/ (2bn) = a(u —z) +y,

then uy 2 = ab, + v/2b,s.
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Calculate AY (A(a,x,y)) (see (5)). Considering

u? ab,  (u—aby,)? (u— aby,)?
y—i—a(u—x)—m—y—ax—k ST =5— %%,

we get

u [3 B
AO(A(axy)):$ y+a(ufx)fu—2 du:$ / sfu—2 du =
" T 27/ by, S, 2by, 2m+/b,, 2b,

9¢8+3 1 p+1 1
_\m/@u?)ﬁdu_s 23<ﬂ+1;>.
™ 0 7'('\/5 2

Next, let d = \/(Az)* + (Ay)?, v = au+c_, v = au+ c; be two straight lines parallel to
v =a(u — ) + y and passing at distanced from below and above, respectively.
By A; (a,z,y) and A} (a,z,y)denote the sets bounded by lines v = au+c_, v =u?/(2b,)
and v =au+cy, v= u2/ (2b,,) respectively. Assume that A, , = [z,z + Az] X [y, y + Ay].
It follows from the definition W,,(a) that if 7(A) is the number of points in A realization of
n.h.p.p.p. IL,(+), then

P (Wy(a) € Ayy) < P (T(Asy) 21, T (A7 (a,2,y)) =0). (7)
On the other hand, it is easy to see that
P (Wy(a) € Apy) = P (T(Asy) =1, T (Af (a,2,y) — Ay y) =0). (8)

Considering the property of the Poisson process (the independence of increments) and from
inequalities (7) and (8), using (5) at d — 0 we obtain the first relation of the lemma.
Similarly, the other relations of the lemma are obtained.
Assume that
X7 (a) | R7(a)

2by, + 2b,

Obviously that T,,(0) = W,,(0) a.s. and therefore

R, (a) = X, (a) — ab,, Sp(a) =Y, (a)

P (T,(0) € (dr,ds)) = P (W,(0) € (dr,ds)).
Lemma 3 leads to the following lemma.

Lemma 4. T,(a) is a stationary Markov jump process and

B sPts 1 r? A1
1) P(T,(0) € (dr,ds)) = b exp < — Tor B ([3 +1; 2) (s - 2()) drds;

2) P(Tw(a) = (r1,51)/T0(0) = (r0, 50)) =

1 11 1t
=exp| = sf+2/ (1—t2)6dt—sg+2/ (1—)"dt| 3,
2rL (bn) Ve Weome

where vy = rg — ab,, $1 = Sg — arg + a2bn/2;

3) P(Tn(a) € (dri,ds1)/T,(0) = (ro,50)) = P (Tn(a) € (dr1,ds1)),
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if aby, —/2b,81 > v/2b,S0;
4) P (T, (a) € (dra,ds2)/Tn(0) = (r1,81)) =

1
1 L | s+1 / 2\ 8
= - 1—?)" dt—
2w+/by, exp{ Vor l82 ( )

s1—s9 abp

ay /2bn52 /2bn so

1 ! r B-1
- S’f—’_i / (1 — t2 ] } So — 2b2> dTQdSQ.

s1—59 + aby

ay/2bns1 | \/2bnsi

Here assume that

(riys:) € D= {(r,s) D s> (7“2) /(an)}, ab,, — \/m < m,
S9 + (aan) /2 +arg = 81 = 89 — (azbn) /2+ar1.
Consider the following o-algebras generated by process T, (a):
) =0 {Ty(c): c <0}, %" =0 {Th(c):c>a}.
From Lemmas 3 and 4 it is easy to prove the properties of strong mixing of the process T, (a)

Lemma 5. For any A € SY and B € 3¢+ |P (AN B) — P(A)P(B)| < 7n(a), where

n

B+3
Tn(a) < dexp {_\/lﬁﬂ- (a28bn> B <B—|— 1; ;) } :

Lemma 6. If a > (aycl) /by, then under the conditions of Lemma 5 we have Y. (1n(a))” < oo

n=1
for any T > 0, where a,, = \/2b, logn, &} = (logn)_% , 0<d< 1.
Proof. If a > (anel) /by, then from Lemma 5 we get
Tn(a) < dexp {—c (logn)H%} .
This immediately implies the statement of Lemma 6. d

Now introduce notations

(k)( 2 VEms k u? \ 77
MW" (t; R?) = (u—r)*|s—— du =
QT\F/ < 2bn>
V2bps—r 2\ A-1
(5 _ (U+7">) du,

27rf
where t = (1, s).
Lemma 7. Processes N
- / MW (T(b); R?) db
and i

N2%(a) — /a [2N(b) + 1] MY (T(b); R?) db
0

are martingales with respect to o-algebra 39 = 0 {T(c): 0 < c<a}.
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Proof. We have
E{N(a+h)—N(a)/Sp,q} = E{N(a+h)— N(a)/T(a)}
Hence, due to stationary nature of the process T'(a)
E{N(a+h) = N(a)/T(a) = (r;5)} = E{N(h) = N(0)/T(0) = (r,s)} ~
~ ET(A"(hir,5)) ~ A% (A" (hs 7, s))
where T(A*(h;r, s)) is defined in the previous paragraph and
A*(hirys) = A%(h;mys) | J A (hi ).

Further, by the definition A°(-)of a measure (see (5)), it is easy to show that at small h
A% (A°(h;r,s)) = o(h) and
bby++/2by, 51
A?z (A(l)(a,lL ff(),y())> < Czh’g_a / du=0 (h6+1_5) . (9)
abn++/2b, 50

From the latter, again using definition (5) at small h, we have
AL (A*(hyr,8)) = A (A°(h;r, 5)) + o(h) = hMW (t; R?) + o(h). (10)

By virtue of (9) and (10), we obtain the proof of the first statement of the lemma. Proceed to
the proof of the second statement of Lemma 6.

We have
E{N?*(a+h)— N*(a)/T(a) ,8)} =
:E{(N(a+h)*N(a))(N(a+h)*N()+2N(a))/T(a) (r,s)} =
= B{(N(a+h) = N(@))*/T(a) = (r5) } + 2N(@E{N(a + h) = N(a)/ = T(a) = (r, )} =

= E{N(a+ h) = N(a)/T(a) = (r,s)} +o(h) +2N(a E{N a+h)— N(a ) T(a) = (r,s)} =
= (2N(a) + 1) E{N(a+h) — N(a)/T(a) = (r,s)} + o(h
= (2N(a) + 1) kMW (¢, R?) + o(h).
So, Lemma 7 is completely proved. (Il

Using these Lemmas, calculate the asymptotic behavior of the moments N(a) and N?(a)at
fixed a and at n — ooc.

Let N
o= (B (2041 )/”)(%) r(s- 550

where B(-, -) and I'( - ) are the known beta and gamma functions, respectively.

Lemma 8. We have
a) = aAV\/b,, DN(a)=aX?\/b,, as n — o,

where AP = % +o(1), A =+ o(1).
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Proof. We use Lemma 7. Since the process T'(-) is stationary, we have
a) :E/ MM (T(b); R?) db = aEM™ (T(0); R?). (11)
0

By definition of M) (t; RQ), after some identical transformations we have

V2b,s—r - (U+T)2 B—1 i
27r\/7 2b,, -

B Vst (w+r)2\" |
_2W¢EE{/0 “(3_ 2, ) =

\/2b,, 32 o0 B 1,1 ) .
— 2bn 8 {/ exp | — (IBJF 72)55"‘2‘| sw_zds}x

EMW (T(0); R?) =

2772 \/§7T
1 1—r 5-1 (12)
1—p2)p-t 1— 2" d }d =
x/l{( r?) /0 u(l—(u+r)?) u o dr
48+1
VR var \7 -r(z—l )
S 2m2(4+1) \ B(B+ 1;3) 268 +1
1 1—r
1- 1)1 1- 277 .
x/_l( r°) 7"/0 u( (u—l—r)) U
It is easy to calculate that
1 1—r 1 426+1 1
_2v8-1 B oNB-1 1 [TtFTdt B (28, 3)
/71(1 r?) dr/o u(l—(u+r)?) du_ﬁ A= (13)

From relations (11)—(13), the proof of the statement of the first part of Lemma 8 follows.
The second part of Lemma 8 is easy to prove, using Lemma 7 and the first part of Lemma 8,
and Lemma 2.6 considering in [4]. O

3. Proof of the theorem

Assume that Ny, is the number of vertices of the convex hull in [}~ — "big block" and
Nj 7, is the number of vertices of the convex hull in I}, = — "small block", where sectors Iy -
and I - correspond to

(w\/a(logn)(zk — 1) + &, my/bn (log ) (2K + 1) — gn)
and
(7 V/ballogn) 2k + 1) — €, 7/ba(logm) (2K + 1) + £,
of the part of disk, respectively and
€n = m\/bn(logn)' =%, 0<d<1/[2(268+1)].

Hence
My —1 myp—1

Vp = ZNkmn_FZ kmn
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By the principle of construction of sectors I kom,, and L% NG s insignificant relative to
Ny, - Further, from Lemmas 5 and Theorem 17.2.2 in [8], we can apply the classical central
limit theorem for the summs of random variables N, + Ny, +---+NJ and Ng7, +

+N{,, + -+ Nyt 4, - Therefore, we get that

1,my

n—1,mn

Vn —mn(EN} .+ ENSL ) 1 Mel Ny, —EN;,.

k,mp o Z
* m *
/m.DN} . Ve = /DN;,.
My —1 ATsx ok DN**
1 o~ Niom, — ENgL kymny

+ +o(1) =
Vifin kZ:o VEPNEm,  \/PNem,
my,—1 my,—1
1 n N*m _ EN*m 1 n N**;n _ EN*»;n
— Z k7 n ka n + Z k7 n k; no, 0(1) +O(1)$N(O,1).
vIiTin 2o DNy ... VI 20 /DN

The theorem is proved.
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O npeneabHO TeopeMe i 9MCJIa BEPIIUH BBIMYKJIBIX
000JI09€eK B €JIMHUTHOM KpyTe

Ncak>xkan M. XamgaMoB
TammkenTckuit yHuBEpCUTET UHMOOPMAIIMOHHBIX TEXHOJIOTHI
Tamkent, Y30ekucran

Awnunoranusi. /lannasi crarbs HOCBAINEHA JaJIbHEHIIEMy HCCJIEIOBAHNIO CBONCTBA Psijia BEPIIUH BbI-
IYKJIBIX ODOJIOYEK, TOPOXKIEHHBIX HE3aBUCUMBIMU HAOJIIOJACHUSMHU JIBYMEPHOTO CIYyYalHOTO BEKTOpA C
PEryJIsSpHBIMU paCHpeseIeHUSIMU BOIU3U FPAHUIIBI HOCUTEJIs, KOT/Ia OH SIBJISETCH €IMHUYIHBIM JHUCKOM.
Cuenys I1. I'peneGymy [4], 6GMHOMUAIBHBIN TOYEUHBLH IPOIECC ANIIPOKCHUMHUPYEM IIyACCOHOBCKUM TOYeY-
HBIM MIPOIECCOM BOJIM3U T'PAHUIIBI OTIOPBI M CTPOUM BEPIIMMHHBIE ITPOIECCH BBIMYKJIBIX 000104ek. Vcce-
JIOBaHBI CBOMCTBA CUJIBHOIO IIEPEMENINBAHUA U MAaPTUHIAJIBHOCTUA BEPIIMHHBIX MPOIECcOB. Vcmomb3ys
9TU CBOMCTBA, MOJIyYaeM ACUMIITOTUYECKHUE BBIPAXKEHU IS OXKUJAHUN U JUCHEPCUU BEPIINHHBIX IIPO-
IIECCOB, KOTOPBbIE COOTBETCTBYIOT pe3yibraraM, panee nonydenabivm H. Kaprama [2]. Hdamee, nconnsys
CBOICTBa CHUJILHOI'O IlepeMelINBaHus BEPIIMHHBIX IIPOIECCOB, JOKa3blBaeM IEHTPAJbHYIO HPeAebHYIO
TeopeMy JJIsl Psifia BEPINUH BBILYKJION OOOJIOUKH.

KuaroueBrbie cioBa: BbIykias 00009YKa, TyACCOHOBCKHII TOYEUHBIN MPOIECC, CKAYKOOOPA3HBIN Map-
KOBCKHI IIPOIIECC, MAPTUHIAJIbHOCTD, IIEHTPAJIbHAA IIPeJeIbHas TeopeMa.
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