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Operation is devoted a problem of identification of dynamic system of the volume hydraulic actuator 
of the running gear of a vibrating roller. The mathematical model of control process by speed of 
driving of a vibrating roller taking into account dynamics of hydrostatic transmission and a moment 
of resistance to roller driving is observed. Assay values of dynamic responses, a frequency analysis of 
a model of a guidance system are resulted by speed of driving of a vibrating roller.
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Introduction
Most common in modern technologies of road construction in the final compaction of Hot Mix 

Asphalt (HMA) were vibrating road rollers. The need to improve the compaction asphalt concrete 
pavement process is the development of automated control vibrating roller on the basis of modern 
science and technology [1].

The purpose of research is to develop a model of the process speed control vibrating roller and 
analysis of the dynamic responses in preparation for the task of system synthesis control modes of 
compaction.

The original mathematical description  
of the system and the formulation of the problem

Roller is a machine, which consists of: engine, the front and back frames, the cabin, the mechanism 
of asphalt concrete edging. The working body of the roller is smooth metal drum with vibrations [2].

The hydraulic actuator of a driving of the vibration road roller with two power-driven rollers, 
Fig. 1, includes the variable capacity pump of the course drive and in parallel joint two hydromotors. 
The hydraulic actuator of the roller as control system, it is possible to present in the form of two 
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subsystems: the hydraulic and the hydromechanical. The state variable characterising a hydraulic 
subsystem, magnitude of hydraulic pressure P(t) of a stream of the operating fluid, created by the 
pump concerning pressure in a drain forecastle is. The state variable characterising a hydromechanical 
subsystem, magnitude ωm(t) of speed of twirl of the hydromotor, under the pressure influence of a fluid 
stream is.

The volume hydrostatic transmission (VHT) the drive of a driving of a running roller (Fig. 1) 
switches on the variable capacity pump 16 and two noncontrollable hydromotors 17 connected in 
parallel to a hydraulic line.
As a result of transformations the mathematical model in terms of state-space presenting work-
ing process of system of automatic control by speed of driving of a vibrational running roller [3] is 
gained.

Analytical transformation of transfer functions

For the purpose of reduction of gained models transfer functions [3] to the shape of the most 
matching to conditions of computer (imitative) simulation of processes in the volume hydraulic actuator 
of the road roller following analytical transformations are executed.

Transfer functions [3] be presented two types of transfer functions W1(s) or W2(s):

For the purpose of reduction of gained models transfer functions [3] to the shape of the most 

matching to conditions of computer (imitative) simulation of processes in the volume hydraulic 

actuator of the road roller following analytical transformations are executed. 

Transfer functions [3] be presented two types of transfer functions 1( )W s  or 2 ( )W s : 
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Here 1K , 2K  – factors; α, β, γ – the real positive numbers. Numbers α and β define the real 

and imaginary parts of poles, and γ – value of null of a matching transfer function. 

Impulse response 1( )k t  and step response 1( )h t  performances for 1( )W s  are defined by an 

inverse transformation method of Laplace (transition from images to originals): 
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From expressions for time responses follows, that value α defines fading, and value β – an 

angular frequency of dynamic processes. 

Through factors of the state- space equation [3] express as follows: 
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Here K1, K2 – factors; α, β, γ – the real positive numbers. Numbers α and β define the real and 
imaginary parts of poles, and γ – value of null of a matching transfer function.

Fig. 1. Hydraulic circuit design VHT of the drive of the mechanism of movement [2]: 1, 2, 3, 5, 6 – back-pressure 
valves; 4, 13 – relief valves; 7, 11 – the spool-type allocator; 8, 10 – a cooler; 9 – the pump; 12 – an actuator; 14 – 
the feed pump; 15 – a release valve; 16 – the variable capacity pump; 17 – noncontrollable hydromotors
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Impulse response k1(t) and step response h1(t) performances for W1(s) are defined by an inverse 
transformation method of Laplace (transition from images to originals):
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Here ( )puW s  – a transfer function defining change of pressure concerning change of control 

action; ( )pmW s  – a transfer function defining change of pressure concerning change of dithering 
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Here Wpu(s) – a transfer function defining change of pressure concerning change of control action; 
Wpm(s) – a transfer function defining change of pressure concerning change of dithering impact; 
Wωu(s)  – a transfer function defining change of an angular velocity of twirl of rollers concerning 
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change of control action; Wωm(s) – a transfer function defining change of an angular velocity of twirl 
of rollers concerning change of dithering impact; Kpu, Kpm, Kωu, Kωm – factors; α, β, γpu, γωm – the real 
positive numbers. Numbers α and β define the real and imaginary parts of poles, and γpu, γωm – value of 
null of a matching transfer function.
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Computing Experiment

For check of gained models (3), (4), (5), (6) time dynamic characteristics of matching transfer 
functions are defined.

Type of road roller DU-96 [2] Open Joint Stock Company «Raskat» (Rybinsk, URL: http://www.
raskat.yaroslavl.ru): vibrational with two power-driven rollers. Running roller mass: mk1 – operation, 
mk2 – constructive: mk1 = 7200 kg; mk2 = 6600 kg.

Diameter Db smooth вальца: Db = 1,07 m. 
Width вальца Lb (width of an obturated strip): Lb = 1,5 m.
Linear pressure smooth вальца accordingly P1b – fast-head, P2b – back:
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P1b = 23000 Nm–1; P2b = 24000 Nm–1. 

Factors and their values for the state-space equation of a hydraulic subsystem (the hydraulic 
pump, the drive of rollers and a transmitting hydraulic line): Kel – factor of pressure of a 
transmitting hydraulic line, Kel = 3·10–11m3Pa–1; Kloss – the factor considering pressure losses 
in a hydraulic line, Kloss = 9,843·10–11m3Pa–1s–1; ωe – a propeller angular velocity, ωe = 293,2 s–1;  
qp – the maximum swept volume of the pump, qp = 35,8·10–6m3; qm – the maximum swept volume 
of a hydraulic engine of the drive roller, qm = 287·10–6m3; Jb – a running roller moment of inertia, 
Jb = 2058 kg m2.

Factors of mathematical model [2] vibrational running rollers ДУ-96 counted on the basis of 
specifications:

for the first state-space equation 

For check of gained models (3), (4), (5), (6) time dynamic characteristics of matching 

transfer functions are defined. 

Type of road roller DU-96 [2] Open Joint Stock Company «Raskat» (Rybinsk, URL: 

http://www.raskat.yaroslavl.ru): vibrational with two power-driven rollers. Running roller mass: 

1km  – operation, 2km  – constructive: 1 27200 ; 6600 .k km kg m kg= =  

Diameter bD smooth вальца : 1,07 .bD m=   

Width вальца bL  (width of an obturated strip): 1,5 .bL m=  

Linear pressure smooth вальца accordingly 1bP  – fast-head, 2bP  – back: 

1 1
1 223000 ; 24000 .b bP N m P N m− −= =  

Factors and their values for the state-space equation of a hydraulic subsystem (the hydraulic 

pump, the drive of rollers and a transmitting hydraulic line): elK  – factor of pressure of a 

transmitting hydraulic line, 11 3 13 10elK m Pa− −= ⋅ ; lossK  – the factor considering pressure losses in 

a hydraulic line, 11 3 1 19,843 10lossK m Pa s− − −= ⋅ ; ωe  – a propeller angular velocity, 

1ω 293,2e s−= ; pq  – the maximum swept volume of the pump, 6 335,8 10 ;pq m−= ⋅  mq  – the 
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Computing experiment with following initial data is put: 

time range (s) process 0...6 / αt =  , a time step1/100 s ; 

1 1 1 1
ω

8 3 3 2
3

3 4 2 1
ω ω

α = 2,14 ; β = 2, 009 ; γ 1, 0 ; γ 3, 281 ;
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Calculations are executed with application of mathematical program MathCAD. 

Graphs of the time responses are presented in fig. 2, 3, 4, 5. 

Calculation of time responses of change of pressure as operating and disturbing affecting 
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The time responses of changes of pressure to controlling and to disturbing affecting are 

presented in fig. 2. 
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Fig. 2. The time responses of changes of pressure to controlling and to disturbing affecting
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Calculation of time responses of change of an angular velocity to controlling and disturbing 

affecting at 3
max ( ) 14 10 .nM t N m= ⋅ ⋅  
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The time responses of change of an angular velocity to controlling and disturbing affecting 
are presented in fig. 3. 

 

 

 
 

Fig. 3. The time responses of change of an angular velocity to controlling and disturbing affecting 

 

Let's define system frequency responses on the channel of speed concerning control action. 

We will make change of a variable ωs i= ⋅ . As a result of transformations, we will gain: 

 

)ω 2( (ω)ω
97,59 97,59; .2 ω 4,28 ω 8,624,28 8,62

suW W
is

u
s

=
−

=
− ⋅ ⋅ −+ ⋅ +
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Fig. 3. The time responses of change of an angular velocity to controlling and disturbing affecting

Calculation of time responses of change of an angular velocity to controlling and disturbing 
affecting at Mnmax(t) = 14·103 N · m
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The time responses of change of an angular velocity to controlling and disturbing affecting are 

presented in Fig. 3.
Let's define system frequency responses on the channel of speed concerning control action. We 

will make change of a variable s = i · ω. As a result of transformations, we will gain:
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We build a logarithmic amplitude–frequency response (LАFR) and a logarithmic phase frequency 
response (LPFR): frequency varies over the range ω = 0,1 – 100 s–1
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Vibration frequency of asphalt running rollers usually makes from 1 30f Hz=  to 

2 70f Hz=  [4]. At a speed control of driving of a running roller vibration is a handicap. Values 

LАFR for this frequency range have made: ω 1(2π ) 5 , 21 ;uL f dB=−  ω 2(2π ) 6 ,95 .uL f dB= −  

 

        . .ogωl uc f  

 
 

Fig. 4. Logarithmic frequency responses of system for the channel of control action – speed 
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Fig. 4. Logarithmic frequency responses of system for the channel of control action – speed

Logarithmic frequency responses of dynamic system for the channel of control action – velocity 
are displayed on Fig. 4.

Crossover frequency: 

Calculation of time responses of change of an angular velocity to controlling and disturbing 
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are presented in fig. 3. 

 

 

 
 

Fig. 3. The time responses of change of an angular velocity to controlling and disturbing affecting 

 

Let's define system frequency responses on the channel of speed concerning control action. 

We will make change of a variable ωs i= ⋅ . As a result of transformations, we will gain: 

 

)ω 2( (ω)ω
97,59 97,59; .2 ω 4,28 ω 8,624,28 8,62

suW W
is

u
s

=
−

=
− ⋅ ⋅ −+ ⋅ +

 
 

 

We build a logarithmic amplitude–frequency response (LАFR) and a logarithmic phase 

frequency response (LPFR): frequency varies over the range 10,1 1 0ω 0 s−= −  

 

( )(ω)ω ω (ω)ω ω(ω) 20log , φ (ω) arg ( .180)
πu u uL W Wu= =  

 

 

Logarithmic frequency responses of dynamic system for the channel of control action – 

velocity are displayed on fig. 4. 

Crossover frequency: 0,992
. . . .ω 0,992; ωlog 10 9,83 /s.uc f uc f rad= = =   

0 1 2 3
10−

5−

0

5

10

15

kω t( )

hω t( )

0

tt, s 

kω(t), s-2 
 

hω(t), s-1 

 
Vibration frequency of asphalt running rollers usually makes from f1 = 30 Hz to f2 = 70 Hz [4]. At 

a speed control of driving of a running roller vibration is a handicap. Values LАFR for this frequency 
range have made: 
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At frequencies over the range from 30 Hz to 70 Hz influence of control action on speed is relaxed 
in hundreds and thousand times in relation to influence in crossover frequency.

Let’s define system frequency responses on the channel of speed concerning disturbing affecting, 
having made of a variable s = i · ω

Vibration frequency of asphalt running rollers usually makes from 1 30f Hz=  to 

2 70f Hz=  [4]. At a speed control of driving of a running roller vibration is a handicap. Values 

LАFR for this frequency range have made: ω 1(2π ) 5 , 21 ;uL f dB=−  ω 2(2π ) 6 ,95 .uL f dB= −  
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We construct a logarithmic amplitude and phase frequency responses: frequency ranges 
ω = 0,1 – 100 s–1

Vibration frequency of asphalt running rollers usually makes from 1 30f Hz=  to 

2 70f Hz=  [4]. At a speed control of driving of a running roller vibration is a handicap. Values 

LАFR for this frequency range have made: ω 1(2π ) 5 , 21 ;uL f dB=−  ω 2(2π ) 6 ,95 .uL f dB= −  
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Fig. 4. Logarithmic frequency responses of system for the channel of control action – speed 
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Logarithmic frequency responses of system on the channel disturbing affecting – velocity are 
presented in Fig. 5.

Crossover frequency: 

Logarithmic frequency responses of system on the channel disturbing affecting – velocity 
are presented in fig. 5. 
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At vibration frequencies over the range from 30 Hz to 70 Hz moment influence vibration for the 
velocity is relaxed in tens and hundreds times in relation to influence of this moment in crossover 
frequency.

Conclusions

The problem of construction of mathematical model of control process by velocity of movement 
of an asphalt roller, taking into account dynamic responses of system of the volume hydraulic drive 
of transmission and a roller movement resistance on a rigid pavement is solved. Analytical methods 
of working out of mathematical model of a control system are applied. Results of research of the 
time responses and frequency responses on channels are gained: control action – velocity of motion; 
disturbing influence – velocity of motion.

At frequencies over the range from 30 Hz to 70 Hz that is characteristic for systems vibration 
running rollers, influence of control action on speed is relaxed in hundreds and thousand times in 
relation to influence in crossover frequency.

At vibration frequencies over the range from 30 Hz to 70 Hz moment influence vibration for 
the speed is relaxed in tens and hundreds times in relation to influence of this moment in crossover 
frequency.

The gained transfer functions can be used for research of dynamic responses of systems of the 
drive of a motion of the road roller and automatic-control system model building by working process 
of the vibration roller.

Logarithmic frequency responses of system on the channel disturbing affecting – velocity 
are presented in fig. 5. 
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Аналитическое решение  
и динамические характеристики модели  
системы управления скоростью движения  
вибрационного катка

А.П. Прокопьев,  
В.И. Иванчура, Р.Т. Емельянов

Сибирский федеральный университет,  
Россия, 660041, Красноярск, пр. Свободный, 79

Работа посвящена задаче идентификации динамической системы объёмного гидравлического 
привода ходовой части вибрационного катка. Рассмотрена математическая модель процесса 
управления скоростью движения вибрационного катка с учетом динамики гидрообъёмной 
трансмиссии и момента сопротивления движению катка. Приведены результаты анализа 
динамических характеристик, частотный анализ модели системы управления скоростью 
движения вибрационного катка.

Ключевые слова: вибрационный каток, гидрообъемная трансмиссия, математическая модель, 
пространство состояний, динамические характеристики, частотный анализ.


