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Abstract. A numerical simulation of the penetration of the turbulent layer in a stably stratified fluid
under the action of tangential stress was performed. For the coefficient of vertical turbulent exchange, the
Prandtl–Obukhov formula is used. The results of the calculations are consistent with known experimental
data and calculations by other authors.
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Introduction

In most cases, real geophysical environments are stratified. If stratification is stable, then
it prevents the development of turbulence. Unstable stratification provokes the development

of turbulence. The stratification is stable at
∂ρ

∂z
> 0 for an incompressible fluid (the vertical

distribution of fluid density is determined by the function ρ(z), the z-axis is directed vertically

downwards), and the stratification is unstable at
∂ρ

∂z
< 0. A measure of sustainability of stratified

fluid is the Vaisal-Brent frequency : N2 =
g

ρ

∂ρ

∂z
(c−2), (g = 981 cm/c2 is gravity acceleration).

If N2 is positive, the medium is stable; if N2 is negative, it is unstable.
An example of a flow where vertical turbulent exchange plays a decisive role is the flow occurs

when a turbulent liquid layer deepens in a stably stratified reservoir at the action of wind. Many
works are devoted to its study (see, for example, references in [1–8]). The classical e− ε –model
of turbulence and its modifications are used to describe the process of the mixed layer deepening
in the stratified fluid.

In this paper, the Prandtl-Obukhov formula is used to determine the coefficients of vertical
turbulent exchange [9, 10].
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1. Problem statement

1.1. Statement of the problem without considering Coriolis force

The flow in a linearly stratified medium under constant shear stress is considered. Stratifica-
tion is due to changes in salinity.

In the study of the process of the turbulent layer deepening simplifications are made, as
a result the averaged horizontal homogeneous motion is described by a system of differential
equations [2–4]:

∂U

∂t
=

∂

∂z

[
ν
∂U

∂z
− ⟨u′w′⟩

]
,

∂S

∂t
=

∂

∂z

[
χ
∂S

∂z
− ⟨S′w′⟩

]
.

(1)

Here U is a horizontal component of the averaged velocity, S is the averaged salinity, strokes mark
pulsation components: ⟨u′w′⟩ is Reynolds shear stress, ⟨S′w′⟩ is the vertical vector component
of flows; ν, χρ are molecular viscosity and diffusion coefficients; t is time, z is vertical coordinate
(directed down), t is time. In the case of a fluid linearly stratified at the initial instant of time, the
dependence of the average fluid density ρ on salinity is given by the relation ρ(S) = ρ∗+β(S−S∗).

Here ρ∗ is the initial value of the density on the water surface, S∗ is the initial value of the salinity
of the water on the surface, β = const.

The system (1) is not closed. For its closure, semi-empirical models of turbulence are used
[2–4]. In this paper, it is proposed to parameterize the ratios of vertical turbulent exchange to
use the Prandtl-Obukhov formula derived from stationary equations of balance of turbulence
energy and its dissipation rate [10].

According to Bussinesk hypothesis the values ⟨u′w′⟩, ⟨S′w′⟩ are presented in the form of:

−⟨u′w′⟩ = Kuz
∂U

∂z
, −⟨S′w′⟩ = KSz

∂S

∂z
,

Kuz is the coefficient of turbulent viscosity, KSz is the turbulent diffusion coefficient.
The Prandtl-Obukhov formula takes into account the shear mixing mechanism and stratifi-

cation [9, 10]:

Kz =

{
(0.05 h1)

2
√
B + kmin, B > 0,

kmin, B 6 0,
(2)

g

ρ∗
∂ρ

∂z
= β

g

ρ∗
∂S

∂z
, B =

(
∂U

∂z

)2

− g

ρ∗
∂ρ

∂z
,

where h1 is the depth of the quasi-homogeneous (mixed) layer, determined by the first calculation
point from the surface where the condition is satisfied

(0.05 zk)
2
√
B|z=zk

< kmin,

kmin is the minimum value of turbulent viscosity. The deepening of the turbulent layer of liquid
in a reservoir by the wind influence was determined as follows:

hn+1 = hn if h1 < hn; hn+1 = h1 if h1 > hn,

where hn
1 = h1(tn) is the quasihomogeneous layer depth in the Prandtl-Obukhov formula ,

hn = h(tn) is the depth of the turbulent layer.
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It is assumed that the coefficients of vertical turbulent exchange are proportional to Kz:

Kuz = αuKz, KSz = αSKz, αu = const, αS = const.

We obtained a closed system of equations for calculating U(t, z), S(t, z), h(t), ρ(t):

∂U

∂t
=

∂

∂z

[
(ν +Kuz)

∂U

∂z

]
,

∂S

∂t
=

∂

∂z

[
(χρ +KSz

∂S

∂z

]
.

(3)

Boundary conditions for the system (3) are: on the surface (z = 0)

(ν +Kuz)
∂U

∂z
= −τw

ρ∗
,

∂S

∂z
= 0, (4)

τw is shear stress caused to wind load;
at the bottom (z = H)

U = 0, S = SH = S∗ +
∂S0

∂z
H. (5)

Initial conditions are:

U(z) = 0, S(z) = S∗ +
∂S0

∂z
z. (6)

The initial salinity distribution corresponds to a linear density distribution,
(
∂S0

∂z

)
=

1

β

∂ρ0

∂z
.

The given relations contain empirical coefficients Kmin, αu, αS determined by numerical exper-
iments.

1.2. Statement of the problem taking into account Coriolis force

Drift currents are formed in the upper layer of the reservoir under the influence of wind. The
solution of the problem of steady drift current for a deep sea of uniform density was constructed
by Ekman [11]:

Ue = U0 exp(−αz) cos(
π

4
− αz), V e = V0 exp(−αz) sin(

π

4
− αz),

Here Ue, V e are horizontal components of water flow velocity vector, f = 2 Ω sin(φ) is the

Coriolis parameter, Ω is angular velocity of the Earth rotation, φ is latitude, α =

√
f

2Kz
,

V0 =
τy√

2ρ0Kzα
, wind is directed along the coordinate y (τx = 0, τy ̸= 0,). The speed of the

wind current decreases exponentially with depth. Below the horizon of z = D the flow velocity
is small, D = π

√
2Kz/f is the friction depth. The main part of the kinetic energy of the drift

flow is concentrated in the friction layer from 0 to D. The influence of the parameter f can be
neglected for H < D (H is a reservoir depth). Similarly, in the problem of deepening a turbulent
layer for sufficiently large depths (H > D), the influence of the Coriolis forces is manifested.
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The averaged horizontal homogeneous motion is described by a system of differential equa-
tions:

∂U

∂t
=

∂

∂z

[
(ν +Kuz)

∂U

∂z

]
+ fV,

∂V

∂t
=

∂

∂z

[
(ν +Kuz)

∂V

∂z

]
− fU,

∂S

∂t
=

∂

∂z

[
(χS +KSz

∂S

∂z

]
.

(7)

Here U , V are horizontal components of the averaged velocity vector. The system (7) is closed
by the Prandtl-Obukhov formula:

Kz =

{
(0.05 h1)

2
√
B1 + kmin, B1 > 0,

kmin, B1 6 0,
(2a)

B1 =

(
∂U

∂z

)2

+

(
∂V

∂z

)2

− g

ρ∗
∂ρ

∂z
.

Boundary conditions for the system(7) are: on the surface (z = 0)

(ν +Kuz)
∂U

∂z
= −τwx

ρ∗
, (ν +Kuz)

∂V

∂z
= −τwy

ρ∗
,

∂S

∂z
= 0, (8)

τwx, τwy are the components of wind friction stress;
at the bottom (z = H)

U = 0, V = 0, S = SH = S∗ +
∂S0

∂z
H. (9)

Initial conditions are:

U(z) = 0, V (z) = 0, S(z) = S∗ +
∂S0

∂z
z. (10)

Two mathematical models are constructed to describe the processes of vertical turbulent
exchange in a stably stratified reservoir:
– Model 1 does not consider the Coriolis force (2)–(6);
– Model 2 takes into account the Coriolis force (7)–(10).

2. Numerical modeling of turbulent mixing in the upper
layer of a linearly stratified fluid. Results of numerical
experiments

2.1. Numerical algorithm

The numerical solution of initial-boundary value problems (2)–(6), (7)–(10) are based on an
explicit scheme of the first-order accuracy.

We will show an example of the problem for velocity U(t, z). For internal nodes (j =

= 2, 3, . . . , jj − 1):

Un+1
j = Un

j +∆t
Kj+1/2(U

n
j+1 − Un

j )−Kj−1/2(U
n
j − Un

j−1)

(∆z)2
,
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on the water surface (j = 1), taking into account the boundary condition, we have:

Un+1
1 = Un

1 + 2∆t
K3/2(U

n
2 − Un

1 ) + ∆z τw/ρ
∗

(∆z)2
,

at the bottom Ujj = 0. Here Un+1
j = U(tn+1, zj), tn+1 = tn+∆t, ∆z = H/(jj−1), K = ν+Kuz,

Kj+1/2 = 0.5(Kj +Kj+1). For the model equation K = K0 = const stability condition [12] is

∆t 6 (∆z)2/(2K0).

Parameters of variants for numerical experiments shows in Tab. 1.

Table 1. Parameters of variants

Nomber of
variant

∂ρ0

∂z
, [g/ cm4] τw, [g/(cm c2)] H, [cm] u∗, [cm/c] N0, [c−1]

1 1.92 · 10−3 0.995 30 0.9975 1.3721

2 3.84 · 10−3 2.13 30 1.459 1.94

3 1.0 · 10−7 1 4000 1 1.0 · 10−2

4 1.0 · 10−6 1 4000 1 3.13 · 10−2

5 1.0 · 10−8 1 4000 1 3.13 · 10−3

6 1.0 · 10−7 1 1500 1 1.0 · 10−2

7 1.0 · 10−7 1 1000 1 1.0 · 10−2

8 1.0 · 10−7 2 1500 1.414 1.0 · 10−2

A variant of the flow obtained by transferring the results of laboratory experiments [7] to
sea conditions with a depth of H=40 m is considered in [8]. An approximation of experimental
dependence is proposed

ĥ = (15 · t̂ )1/3, (11)

where ĥ = N0h/u
∗ is dimensionless depth of the mixed layer, t̂ = N0t is dimensionless time,

Ĥ = N0H/u∗ is dimensionless reservoir depth , u∗ =

√
τw
ρ∗

is friction speed, N0 =

√
g

ρ0

∂ρ0
∂z

. At

the same time, according to the authors [8], the flow parameters took values for variant 3 from
Tab. 1.

2.2. Results of numerical experiments

Values of empirical coefficients are determined by numerical experiments for variants 1, 2:
αu = 0.638− 0.0885 · τw, αS = 0.45 for N0 ∼ 1 and αS = 1.67 for N0 ≪ 1.

The first series of numerical experiments refers to variant 2. The calculations were performed
on uniform grids with the number of nodes from 120 to 250, time steps from 0.01 to 0.03 s.
Fig. 1 illustrates the vertical distributions of the main flow parameters U/Umax, Kuz, ρ(z) at the
time of 240 s. The calculation results of ρ(z) according to model 1 are in good agreement with
the calculations using second-order turbulence models [2]. The calculation results of U/Umax,
Kuz according to model 1 are in qualitative agreement with the calculations according to the
second-order turbulence models from [2].
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Fig. 1. Vertical distributions of the main flow characteristics for variant 2 at the time 240 s:
e− ε-model (dashed line), improved model from work [2] (solid line), models 1,2 (yellow lines)

The process of deepening the upper mixed layer is shown in Fig. 2, where the dynamics of the
dimensionless depth ĥ = N0h/u

∗ as a function of the dimensionless time t̂ = N0t for variant 2
presents. The proposed method gives a less intense expansion of the turbulent layer at N0t < 360

in comparison with the experiment, and at N0t > 360 the model 1 calculations approach the
experiment. The calculations of variant 2 for model 2 (taking into account the Coriolis force)
almost coincided with the results obtained for model 1. A more intensive expansion of the
turbulent layer in comparison with the experiment was obtained by the classical e − ε-model.
The calculations for the advanced model [2] are in good agreement with the experiment.

Fig. 2. Dynamics of the mixed layer depth for variant 2: advanced model (curve 1), e− ε-model
(curve 2) from [2], model 1 (dotted line), experimental data [7] (dots)
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The second series of numerical calculations relates to variant 3. The calculations were per-
formed on uniform grids with the number of nodes from 120 to 250, time steps from 0.1 to 1.0 s.
Fig. 3 shows the calculations results of the depth of the mixed layer up to the time t̂ = 1100,
obtained by the improved model [2] (curve 1), by model 1 (dotted line), experimental dependence
(11) (dashed line). The calculations results by model 1 at t̂ < 600 are underestimated compared
to (11), at t̂ > 600 they approach to the experimental dependence.

Fig. 3. Dynamics of the mixed layer depth for variant 3 at large times: improved model (curve 1),
experimental data approximation (11) (dashed line) [2], model 1 (blue line), model 2 (orange
line)

The Coriolis force has a significant effect on the deepening turbulent layer in a deep body of
water (H = 40 m). The dynamics of the deepening turbulent layer by model 2 in Fig. 3 is shown
by the orange line.

Numerical experiments were performed for variants 4–8. The results of numerical experiments
on calculating the dynamics of a mixed turbulent layer deepening in a stably stratified reservoir
using the constructed mathematical models are presented in the Figs. 4–8. The main parameters
affecting the dynamics of the turbulent layer deepening in a stratified fluid are wind stress τw,

reservoir depth H, vertical density gradient
∂ρ

∂z
, the Coriolis force f . Two modes are implemented

for different combinations of these parameters. I — vertical mixing reaches the bottom, the results
of calculations on models 1 and 2 are almost the same (Fig. 7, 8), therefore, we can restrict
ourselves to model 1. II — the results of calculations for models 1 and 2 differ significantly:
according to model 1, mixing reaches the bottom; according to model 2, the deepening of the
bottom does not reach. In this case, when the Coriolis force is taken into account, the reservoir
does not mix to the bottom and a quasistationary regime is realized h < H (Fig. 4, 5). In variant
6 the solution of the problem according to model 1 and to model 2 one differs little (Fig. 6).

Thus, using simple models 1 and 2, it is possible to determine the effect of the Coriolis force
on the process of deepening the turbulent layer in a stratified reservoir and to specify options
when it is possible to be limited to model 1.
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Fig. 4. Dynamics of the mixed layer depth for variant 4: model 1 (blue line), model 2 (orange
line)

Fig. 5. Dynamics of the mixed layer depth for variant 5: model 1 (blue line), model 2 (orange
line)

Conclusion

Numerical algorithms for describing the processes of vertical turbulent exchange in a stably
stratified reservoir under constant shear stress are considered. These algorithms are based on the
application of the Prandtl-Obukhov formula for the coefficients of vertical turbulent exchange.
The Prandtl-Obukhov formula takes into account the shear mixing mechanism and stable strat-
ification. The results of calculations of the vertical distributions of flow velocities, water density,
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Fig. 6. Dynamics of the mixed layer depth for variant 6: model 1 (blue line), model 2 (orange
line)

Fig. 7. Dynamics of the mixed layer depth for variant 7: model 1 (blue line), model 2 (orange
line)

vertical turbulent exchange coefficients, and the dynamics of the deepening of the mixed layer
according to the proposed models are consistent with experimental data and with calculations
based on the e− ε model and its modifications.

Using the constructed models of the dynamics of the turbulent layer deepening in a stably
stratified fluid, it is possible to determine problems where the Coriolis force can be ignored.
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Fig. 8. Dynamics of the mixed layer depth for variant 8: model 1 (blue line), model 2 (orange
line)
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О применении формулы Прандтля-Обухова в численной
модели динамики заглубления турбулентного слоя

Виктор М. Белолипецкий
Светлана Н. Генова

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Аннотация. Выполнено численное моделирование заглубления турбулентного слоя в устойчиво
стратифицированной жидкости под действием касательного напряжения. Для коэффициента вер-
тикального турбулентного обмена используется формула Прандтля–Обухова. Результаты расчетов
согласуются с известными экспериментальными данными и расчетами других авторов.

Ключевые слова: математическое моделирование, турбулентность, стратифицированная жид-
кость.
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