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Abstract (246 words) 62 

Silver fir (Abies alba Mill.) is widespread in Central, Eastern and Southern Europe. In Southern 63 

Europe, its distribution has increased overall during the 20th century due to land-use change and 64 

recolonization from refugial, over-logged populations. During recent decades, its distribution 65 

has decreased in most of its distributional range, mainly due to extreme temperature events, 66 

forest management practices and ungulate browsing. To forecast its future distribution and 67 

survival, it is important to investigate the genetic basis of its adaptation to environmental 68 

change, notably extreme events. Here, we provide a first draft genome assembly and annotation 69 

of the silver fir genome. DNA obtained from haploid megagametophyte and diploid needle 70 

tissue was used to construct and sequence Illumina paired-end (PE) and mate-pair (MP) 71 

libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for 72 

over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite 73 

the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally 74 

annotated in the nuclear genome. The chloroplast genome was also assembled into a single 75 

scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica 76 

complete chloroplast genomes. This first genome assembly of silver fir is an important genomic 77 

resource that is now publicly available in support of a new generation of research. By genome-78 

enabling this important conifer, this resource will be opening the gate for new experiments and 79 

more precise genetic monitoring of European silver fir forests. 80 

 81 

Keywords: Abies alba, annotation, conifer genome, genome assembly, genomic resource 82 

Word counts excluding references 7,060 83 
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 84 

1. INTRODUCTION  85 

 86 

Conifers represent the dominant trees in some temperate and all boreal ecosystems and have 87 

important economic value, especially in timber production. They are also facing the effect of 88 

the current climate change, with an increase in temperature and lower precipitation particularly 89 

in Southern Europe, and increased frequency of extreme events, to which some species may be 90 

unable to adapt at sufficient pace. Silver fir (Abies alba Mill.) is a keystone conifer of European 91 

montane forest ecosystems, which is dominant in cool areas of the temperate zone (Ellenberg, 92 

2009). It can live up to 500–600 years, mark late stages of forest succession and reach up to 60 93 

m in height (Wolf, 2003). It grows on different soil types, but requires high soil moisture during 94 

the growing season, preferring places with a mean annual precipitation ranging from 700 to 95 

1800 mm (Tinner et al., 2013). Its distribution ranges from the Pyrenees (up to 2100 m a.s.l.), 96 

to the Alps (300-1800 m a.s.l.) and the Carpathians where it reaches its easternmost range edge 97 

(100-1500 m a.s.l.; Fig. S1 Supplemental Information). Growing interest in silver fir has 98 

emerged because of its potential vulnerability to climate change, which could change conditions 99 

for sustainable use and economic value of the species. In turn, this species is more drought-100 

resistant than other economically important species for timber production, such as Norway 101 

spruce (Vitali, Büntgen, & Bauhus, 2017), at least in parts of its range, which could turn out to 102 

be beneficial under the expected increase in extended future drought periods. During the mid-103 

1970s, several stands in Central Europe showed crown dieback and declining tree growth that 104 

were mainly due to air pollution (Kandler & Innes, 1995) that also increased the species' drought 105 

susceptibility (Elling, 2009). Currently several stands in southern parts of the silver fir 106 

distribution have shown symptoms of crown die back (Cailleret, Nourtier, Amm, Durand-107 
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Gillmann, & Davi, 2014), which were due to drought and heat waves. The species' sensitivity 108 

to extreme events was confirmed in mixed temperate forests in southern Europe (Lebourgeois, 109 

Rathgeber, & Ulrich 2010). As a consequence of climate change, a shift toward higher elevation 110 

and northern latitude is expected as well as die back at lower elevations (Cailleret & Davi, 2011, 111 

Cailleret et al., 2014; Tinner et al., 2013; Büntgen et al., 2014). While the species is not 112 

endangered, its distribution has decreased over the last century. In the Mediterranean area, the 113 

distribution of silver fir is highly fragmented, resulting in small stands, which are the forests of 114 

priority for conservation according to the European Habitat Directive (92/43/CEE Habitat). 115 

Several studies investigated the environmental effect on silver fir genetic diversity across the 116 

Italian Alps, showing the association between silver fir genetic diversity and seasonal minimum 117 

temperature (Mosca et al., 2012) as well as between genetic diversity and both temperature and 118 

soil type (Mosca, Gonzáles-Martínez, & Neale, 2014). Recent studies confirmed the 119 

environmental effect local adaptation of silver fir, which was shaped by winter drought in 120 

marginal silver fir populations (Roschanski et al., 2016). Local adaptation was also investigated 121 

combining genetic data and common gardens, showing selection on height driven by thermal 122 

stability and on growth phenology driven by precipitation seasonality (Csilléry, Sperisen, 123 

Ovaskainen, Widmer, & Gugerli, 2018). Another study investigated the association between 124 

genetic diversity and dendro-phenotypic information (Heer et al., 2018), while Piotti et al. 125 

(2017) confirmed the importance of the Apennines as a refugium of genetic diversity of the 126 

species. However, all these studies were based on a modest number of genetic markers (several 127 

hundreds of single-nucleotide polymorphisms, SNPs, or tens of simple sequence repeats, SSRs) 128 

due to the lack of genomic resources. 129 

Conifer genomes are often very large (mean 17.4 ± 7.5 G bp), ranging from 4 to 35 giga 130 

base pairs (Gb) as taken from KEW Database in August 2018 (Bennett & Leitch, 2012; 131 
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Grotkoppet, Rejmánek, Sanderson, & Rost, 2004; Zonneveld, 2012), but their gene content is 132 

similar to that of other vascular plants (Leitch, Soltis, Soltis, & Bennett, 2005). Conifer genomic 133 

resources have grown in recent years due to the application of Next Generation Sequencing 134 

technologies. To date, only a few conifer genomes have been fully sequenced, including: Picea 135 

abies (L.) Karst (Nystedt et al., 2013), Picea glauca (Moench) Voss (Birol et al., 2013), Pinus 136 

taeda L. (Neale et al., 2014), Pinus lambertiana Dougl. (Stevens et al., 2016), Pseudotsuga 137 

menziesii (Mirb.) Franco (Neale et al., 2017), and Larix sibirica Ledeb. (Kuzmin et al., 2018). 138 

Until now, Abies species have lacked a whole reference genome. This is understandable, as the 139 

sequencing of conifer genomes is still a challenge due to their large size, the presence of 140 

interspersed repetitive sequences, the high frequency of genome duplication events and Long 141 

Terminal Repeats (LTR) retrotransposon bursts (Stevens et al., 2016).  142 

In contrast to most of these sequenced conifers, silver fir, as a late successional species, 143 

has a peculiar life-history strategy. Saplings of silver fir are able to survive long periods of 144 

shading in the understory, and then to grow quickly when light conditions are favorable. Once 145 

available, the whole-genome sequence of silver fir offers the opportunity to study genes 146 

underlying traits like shade tolerance and regeneration capacity that are characteristic of silver 147 

fir. The elucidation of the genomic basis of these traits in silver fir has the potential to make a 148 

large impact on conifer ecological research. The silver fir genome sequence can also be used to 149 

assist genomic selection (Grattapaglia et al., 2018), as well as forest management and 150 

conservation strategies through well-selected source stands for assisted migration. Furthermore, 151 

the development of this genetic resource could help to characterize and certify the origin of 152 

forest reproductive material (FRM) used in reforestation, and to effectively conserve genetic 153 

resources in natural forests. Selecting FRM from the northern edge of the distribution range 154 
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depends on late-frost tolerant material, while at the southern edge, drought tolerance becomes 155 

important. 156 

The aim of this project was to sequence and assemble the silver fir genome and to compare 157 

this resource with other conifer genomes (Nystedt et al., 2013; Birol et al., 2013; Neale et al., 158 

2014; Stevens et al., 2016; Neale et al., 2017; Kuzmin et al., 2018). This study also provides 159 

more information on the Abies chloroplast genome in relation to closely related taxa. A long-160 

term perspective related to other Abies taxa is to identify gene regions involved in drought 161 

resistance and late flushing, which are traits found in Mediterranean firs that hybridize with A. 162 

alba in both natural forests at range margins and in plantations (George et al., 2015). 163 

 164 

2. MATERIALS AND METHODS 165 

 166 

2.1 Reference tree for genome sequencing 167 

Tissue samples for sequencing were obtained from an adult silver fir tree (AA_WSL01) located 168 

in a public forest next to the institute of WSL Birmensdorf, Switzerland (47.3624°N, 8.4536°E; 169 

Supplemental Information). Seeds were collected directly from the selected tree in November 170 

2016, dried at ambient temperature and stored at -5°C. Fresh needles were harvested shortly 171 

after flushing in May 2017. A multilocus SNP analysis across the species range in Switzerland 172 

placed the sampled tree mainly within the genetic cluster of the Swiss plateau (Fig. S2 173 

Supplemental Information), with ancestry proportions similar to populations of the Jura 174 

Mountains and Central Alps. This was confirmed using nuclear microsatellites (C. Rellstab, 175 

personal communication). 176 

 177 
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2.2 DNA preparation 178 

2.2.1 Haploid megagametophyte DNA isolation for paired-end (PE) sequencing 179 

Seeds of the reference tree were incubated in tap water for 24 h at room temperature. Seeds 180 

were dissected in a sterile 0.9% sodium-chloride solution under a stereo lens in an environment 181 

cleaned with bleach, using micro scissors and forceps. The embryo and all seed skins were 182 

carefully removed. The retained megagametophyte tissue was rinsed with fresh sterile 0.9% 183 

sodium-chloride solution, immediately transferred to a 2 mL Eppendorf tube and stored at -184 

80°C. Megagametophyte tissue was lyophilized for 16 h prior to extraction and homogenized 185 

for 30 s using a mixer mill (Retsch MM 300, Haan, Germany). DNA extraction was performed 186 

with a customized sbeadex kit (LGC Genomics, Berlin, Germany), which included all used 187 

chemicals and reagents as mentioned below. 500 µL LP-PVP, 5 µL Protease, 1 µL RNAse and 188 

20 µL debris capture beads were added as lysis buffer to the ground tissue and the mix was 189 

incubated at 50°C and 350 rounds per minute (rpm) in a heating block for 30 min. After brief 190 

centrifugation, 400 µL cleared lysate was added to 400 µL binding buffer SB and 10 µL sbeadex 191 

beads. After 15 min binding at room temperature with shaking at 850 rpm, magnetic beads were 192 

collected on a magnetic stand for 2 min, and the supernatant was discarded completely. Beads 193 

were successively washed with the following buffers: 400 µL BN1, 400 µL TN1, 400 µL TN2, 194 

and 400 µL PN2. Washing time was 7 min for all four steps, with shaking at 850 rpm, followed 195 

by a short spin, 2 min of bead collection on a magnetic stand, and careful discarding of wash 196 

buffer. DNA was finally eluted in 100 µL elution buffer AMP at 60°C and 850 rpm on a heating 197 

block for 10 min. After a short spin and 3 min of magnetic bead collection on a magnetic stand, 198 

DNA was transferred into a new tube, centrifuged at 21,000 x g for 2 min, and transferred 199 

without pellet into a new tube. 200 
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DNA concentration was measured using the QuantiFluor dsDNA System (Promega, 201 

Madison, WI, USA). 260/280 and 260/230 ratios were measured using a Nanodrop 1000 202 

(Thermo Fisher Scientific, Waltham, MA, USA; Table S1 Supplemental Information), and 203 

DNA integrity was visualized by running 5 µL of DNA on a 1% agarose gel. Nuclear and 204 

chloroplast microsatellites were used to exclude the contamination of the haploid maternal 205 

DNA with diploid DNA deriving from the surrounding tissue and to confirm the presence of 206 

only one maternal haplotype (C. Rellstab, personal communication). Because different 207 

megagametophytes from the same tree represent different haplotypes, only one DNA sample 208 

with high DNA quality and quantity was chosen for PE sequencing. DNA from a single 209 

megagametophyte (3.6 µg at 40 ng/µL; Table S1) was transferred to CNAG-CRG for PE library 210 

preparation and sequencing. 211 

 212 

2.2.2 Diploid needle DNA isolation for mate-pair (MP) sequencing 213 

Young, bright green needles of the reference tree were collected, frozen at -80 °C and 214 

lyophilized for 24 h. For DNA extraction, 25 mg of tissue were ground in a 2 mL Eppendorf 215 

tube with two steel balls (d = 3.1 mm) for 1.5 min, using a mixer mill MM300 (Retsch). DNA 216 

was extracted with the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), starting with 600 217 

µL AP1, 1 µL RNAse and 1 µL DX reagent. Then, DNA extraction was carried out according 218 

to the manufacturer’s protocol, with an additional washing step with washing buffer AW2. 219 

DNA was eluted in 2x 100 µL nuclease-free water. DNA concentration was measured using 220 

QuantiFluor dsDNA System (Promega), 260/280 and 260/230 ratios were measured using a 221 

Nanodrop 1000 (ThermoFisher), and DNA integrity was visualized by running 0.6 µL of DNA 222 

on a 1 % agarose gel. DNA samples were verified using nuclear and chloroplast microsatellite 223 

markers as mentioned above, in order to exclude contamination (C. Rellstab, personal 224 
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communication), and one sample (24.5µg at 136 ng/µL; Table S1) was used to prepare for MP 225 

sequencing. 226 

 227 

2.3 Sequencing 228 

2.3.1 Whole-genome sequencing (WGS) library preparation and sequencing 229 

Haploid DNA material from the single megagametophyte was used to construct three 300 bp-230 

insert paired-end libraries at the CNAG-CRG Sequencing Unit. The short-insert PE libraries 231 

for the whole-genome sequencing were prepared with KAPA HyperPrep kit (Roche-Kapa 232 

Biosystems) with some modifications. In short, 1.0 µg of genomic DNA was sheared on a 233 

Covaris™ LE220 (Covaris Woburn, Massachusetts, USA) in order to reach fragment sizes of 234 

~500 bp. The fragmented DNA was further size-selected for fragment sizes of 220-550 bp with 235 

AMPure XP beads (Agencourt, Beckman Coulter). The size-selected genomic DNA fragments 236 

were end-repaired, adenylated and ligated to Illumina sequencing compatible indexed paired-237 

end adaptors (NEXTflex® DNA Barcodes). The adaptor-modified end library was size selected 238 

and purified with AMPure XP beads to eliminate any not ligated adapters. The ligation product 239 

was split into three samples and in three separate reactions enriched with 12 PCR cycles and 240 

then validated on an Agilent 2100 Bioanalyzer with the DNA 7500 assay (Agilent) for size and 241 

quantity. The resulting libraries had estimated fragment sizes of 304 bp, 307 bp and 311 bp. 242 

These are referred to as PE300-1, PE300-2, and PE300-3 in Table 1. 243 

All three libraries were sequenced in equal proportions on HiSeq 4000 (Illumina, Inc, San 244 

Diego, California, USA) in paired-end mode with a read length of 2 × 151 bp using a HiSeq 245 

4000 PE Cluster kit sequencing flow cell, following the manufacturer’s protocol. Image 246 

analysis, base calling and quality scoring of the run were processed using the manufacturer’s 247 
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software Real Time Analysis (RTA 2.7.6) and followed by generation of FASTQ sequence files 248 

by CASAVA. 249 

 250 

2.3.2 Mate-pair library preparation and sequencing 251 

DNA extracted from the diploid needle material was used to build three mate-pair (MP) libraries 252 

of increasing insert size: 1,500 bp (MP1500), 3,000 bp (MP3000) and 8,000 bp (MP8000). 253 

Libraries were prepared using the Nextera Mate Pair Library Prep Kit (Illumina) using the gel-254 

plus protocol selecting for three different distribution sizes according to the manufacturer's 255 

instructions. After fragmentation, bands of 1.5, 3 and 8 Kb were selected for circularization. 256 

The following amounts of size-selected DNA were used for the circularization reaction: 270 ng 257 

(1.5 kb), 285 ng (3 kb), and 97.4 ng (8 kb). 258 

All three MP libraries were sequenced on HiSeq2000 (Illumina, Inc) in paired-end mode 259 

with a read length of 2 × 101 bp using TruSeq SBS Kit v4. Image analysis, base calling and 260 

quality scoring of the run were processed using the manufacturer’s software Real Time Analysis 261 

(RTA 1.18.66.3) and followed by generation of FASTQ sequence files by CASAVA. 262 

 263 

2.4 Assembly 264 

2.4.1 Genome assembly 265 

Given the nearly equivalent estimated fragments sizes, the reads from the three paired-end 266 

libraries (PE300-1, PE300-2, and PE300-3) were joined into one library for assembly and 267 

collectively referred to as PE300. Before assembling the genome, its size and its complexity 268 

were evaluated using k-mer analyses. Jellyfish v2.2.0 (Marçais & Kingsford, 2011) was run on 269 

the sequence reads of this PE library to obtain the distribution of 17 k-mers. SGA preqc 270 
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(Simpson & Durbin, 2011; Simpson, 2014) was then used to estimate the mean fragment size 271 

and standard deviation of the PE300 library. 272 

First, an initial assembly of the PE300 reads was performed with MaSuRCA v3.2.2 (Zimin, 273 

Marçais, Puiu, Roberts, Salzberg, & Yorke, 2013). MaSuRCA was run using default 274 

parameters, choosing SOAPdenovo for faster contig and light scaffold assembly. A k-mer of 275 

105 was chosen by MaSuRCA for de Bruijn graph construction. The initial assembly was run 276 

for 33 days on a single 48-core node (4 Intel(R) Xeon(R) CPU E7-4830 v3 at 2.10GHz and 277 

2TB of RAM) and with a maximum memory usage of 1.22 TB. 278 

Second, the PE300 and the three MP libraries (MP1500, MP3000 and MP8000) were used 279 

to scaffold the initial assembly with BESSTv2.5.5 (Sahlin, Vezzi, Nystedt, Lundeberg, & 280 

Arvestad, 2014). It was run with options --separate_repeats, -K=105 -281 

max_contig_overlap=115 and –k=466. Briefly, –K specifies the k-mer size used in the de Bruijn 282 

graph for the input assembly to be scaffolded. As 90 % of the input “contigs” were longer than 283 

115 bp, this length was selected, instead of the default value of 200 bp, as the maximum 284 

identical overlap to search (k). Given the fragmented input assembly, the idea was to avoid 285 

using contigs smaller than the original genomic fragment. Therefore, the contig size threshold 286 

for scaffolding was set to 466 bp, 10 bp greater than the mean (294) plus two times the standard 287 

deviation (81) of the PE300 fragment size as estimated by mapping. The scaffolded genome 288 

assembly is referred to as ABAL 1.0. Moreover, an analysis of the spectra copy number (KAT; 289 

Mapleson, Garcia Accinelli, Kettleborough, Wright, & Clavijo,  2016) of the assemblies was 290 

done before and after scaffolding using the PE300 library.  291 

 292 
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2.4.2 Chloroplast genome assembly and annotation 293 

All of the 100 bp reads from the MP1500 library (the library with the tightest size distribution 294 

and highest complexity) were mapped to the closest complete reference chloroplast sequence 295 

available in NCBI, i.e. from Abies koreana (NC_026892.1, Yi et al., 2015), using BWAmem 296 

(Li & Durbin, 2010) in paired mode and option –M to discard short split mappings. The mapped 297 

reads were then extracted from the alignment using BAM2FASTQ v1.1.0 (Alpha GSLaH). 298 

Both the linker sequence and the Nextera adapters present in the MP sequences were removed 299 

with Cutadapt (Martin, 2011). Finally, they were reversed-complemented in order to obtain an 300 

artificial PE library with insert size of 1,387 ±327 bp.  301 

The FAST-PLAST pipeline was run producing SPAdes (Bankevich et al., 2012) assemblies 302 

using a range of k-mers (55, 69, 87). Afterwards, Ragout (Kolmogorov, Raney, Paten, & Pham, 303 

2014) was used to obtain a reference-assisted assembly. In this case, A. sibirica (NC_035067.1) 304 

was used as chloroplast reference to place and orient all the A. alba contigs. Finally, Gapfiller 305 

(Boetzer & Pirovano, 2012) was used to close gaps in the chloroplast genome. DNA diff module 306 

- from MUMMER 3.22 package (Kurtz et al., 2004) - was run to compare the intermediate 307 

SPases assembly with the A. koreana (NC_026892.1) and A. sibirica (NC_035067.1) complete 308 

chloroplast sequences. Finally, the annotation of the chloroplast was carried out with DOGMA 309 

(Wyman, Jansen, & Boore 2004). 310 

 311 

2.4.3 Genome quality assessment 312 

The final nuclear assembly was evaluated for gene completeness using CEGMA v2.5 (Parra et 313 

al., 2007), which searches for 248 ultra-conserved core eukaryotic genes (CEGs), and BUSCO 314 

v3.0.2 (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov 2015), using 956 single-copy 315 

orthologues from plants (BUSCO v1 plantae database). 316 



15 
 

To obtain a more comprehensive estimate of genes present in the genome assembly, the STAR 317 

software package (Domin & Gingeras, 2015) was used to map the genome assembly with the 318 

silver fir RNA-seq produced by Roschanski et al. (2013) (GenBank accession numbers 319 

JV134525– JV157085) as well as 12 transcriptomes originating from Mont Ventoux (France) 320 

and the Black Forest (District Oberharmersbach, Germany), as reported in Roschanski et al. 321 

(2013) and available in the Dryad Digital Repository (Roschanski et al., 2015; 2016). In 322 

addition, the transcripts from P. taeda were aligned to the genome using GMAP with default 323 

options (Wu, Reeder, Lawrence, Becker, & Brauer 2016). 324 

 325 

2.5 Annotation 326 

2.5.1 Protein-coding gene annotation 327 

Repeats were identified, annotated and masked in the silver fir genome assembly following 328 

three sequential steps. First, RepeatMasker (http://www.repeatmasker.org) v4.0.6 was run using 329 

the Pinaceae-specific repeat library included in the RepeatMasker release. Then, repeats 330 

annotated in P. taeda and P. menziesii were used in a second run of RepeatMasker. Finally, 331 

Abies alba-specific repeats were detected with RepeatModeler and masked with RepeatMasker. 332 

An annotation of the genes present in the assembly was further obtained by combining transcript 333 

alignments, protein alignments and ab initio gene predictions as follows. 334 

The RNAseq reads mentioned above (JV134525– JV157085 in Roschanski et al., 2013; 2015; 335 

2016) were aligned to the genome using STAR v2.5.4a (Dobin et al., 2013) with default options 336 

and then transcript models were generated from Stringtie (Pertea et al., 2015) also with default 337 

options. The resulting models were given to PASA (Haas et al., 2008) v2.2.0 together with 338 

2,806 A. alba Expressed Sequence Tags (ESTs) downloaded from NCBI on January 31st, 2018. 339 

Next, the TransDecoder program, which is part of the PASA package, was used to detect coding 340 

http://www.repeatmasker.org/
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regions in the PASA assemblies. A BLASTp (Altschul, Gish, Miller, Myers, & Lipman, 1990) 341 

search was performed on the Transdecoder predictions against the Swiss-Prot database (The 342 

UniProt Consortium, 2017). Sequences with a complete Open Reading Frame (ORF), a BLAST 343 

hit against Swiss-Prot (E-value < 1e-9), and not hitting any repeat were considered as potential 344 

candidates to train gene predictors. Of this list, the 500 sequences whose length differed the 345 

least from the length of their BLAST target were selected as the best candidate genes and used 346 

to train the parameters for three gene predictors: GeneID (Parra, Blanco, & Guigo, 2000) v1.4, 347 

Augustus (Stankeet, Schoffmann, Morgenstern, & Waack, 2006) v3.2.3 and Glimmer (Majors, 348 

Pertea, & Salzberg, 2004). These three gene predictors as well as GeneMark v2.3e (Lomsadze, 349 

Burns, & Borodovsky, 2014), which runs in a self-trained mode, were then run on the repeat-350 

masked ABAL 1.0 assembly. Finally, an extra run of each GeneID, Augustus and GeneMark 351 

was performed using intron data extracted from the RNAseq mappings.  352 

The complete Pinaceae protein sets present in PLAZA 353 

(https://bioinformatics.psb.ugent.be/plaza/versions/gymno-plaza/) in January 2018, were 354 

aligned to the repeat-masked genome using exonerate v2.4.7 (Slater & Birney, 2005). 355 

Moreover, all the data described above were provided as input to Evidence Modeler v1.1.1 356 

(Haas et al., 2008) and combined into consensus coding sequence (CDS) models. These models 357 

were then updated with UTRs and alternative splice isoforms with two rounds of PASA 358 

updates. 359 

To remove the potential presence of some bacterial genes in the genome annotation, a 360 

protein-based bacterial decontamination procedure was performed on the assembly and 361 

annotation. This process utilizes a BLASTp search of the annotated proteins against the 362 

bacterial non-redundant protein database from NCBI to detect genes likely to belong to bacteria. 363 

All the scaffolds containing more than 50% of bacterial genes and without conifer-specific 364 
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repeats and RNAseq mappings were removed from the assembly, resulting in the final assembly 365 

ABAL 1.1.  366 

Finally, to check for the presence of the chloroplast genome in the nuclear genome 367 

assembly, the chloroplast assembly was mapped to ABAL 1.1 using Minimap2 (Li, 2018) with 368 

the parameter --asm10.  Sixty-six unique mappings longer than 1 kb were found in the assembly 369 

(the longest being 18.49 kb) but they did not meet the threshold of at least 70% matches. 370 

Therefore, these regions were considered as nuclear sequence homologous to chloroplast and 371 

were kept in the ABAL_1.1 assembly. 372 

The proteins resulting from the structural annotation process described above were 373 

functionally annotated using the Blast2GO v4.1 (Conesa et al., 2005) pipeline with default 374 

parameters. The annotated proteins were first scanned for InterProScan patterns and profiles. 375 

Next, a BLASTp search against the NCBI RefSeq database (Uniprot and Swissprot databases) 376 

was performed, inheriting the functional annotations of the top-20 BLAST hits with an e-value 377 

< 1e-06. Finally, Blast2GO produced a consensus annotation.  378 

In addition, the software CateGOrize (Zhi-Liang, Bao, & Reecy, 2008) was run to assign 379 

all genes to the main Gene Ontology (GO) categories. The software provides the count and 380 

percentage of the GO term assigned in each category. Two classification lists (slim2 and 381 

myclass2) were used in the analysis. The slim2 list is a subset of gene ontology terms 382 

(http://www.geneontology.org/GO.slims.shtml). Myclass2 classification list is based on slim2 383 

with 50 additional GO term categories (Table S2 Supplemental Information). The percentages 384 

across the two classification lists were visualised using the geom_col function of the “ggplot” 385 

package in R CRAN. 386 

 387 
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2.5.2 Comparison with other conifers 388 

The summary statistics on the annotated genes were computed using a custom python script 389 

(available upon request). The same script was applied to calculate the length of exons, introns 390 

and genes in other conifer assemblies, such as P. abies v1.0, P. glauca v3.0, P. lambertiana 391 

v1.5, P. taeda v2.0 and P. menziesii v1.5. The distributions of the exon, intron, gene and 392 

transcript lengths across the genome were visualized using the violinBy function of the “psych” 393 

package in R CRAN (R version 3.3.3; 2017-03-06). 394 

 395 

3. RESULTS 396 

3.1 Genome sequencing and genome size estimation 397 

PE and MP sequencing produced a total of 1,880,827 and 765,104 Mb, respectively (Table 1). 398 

The mean fragment size of the PE300 estimated using SGA preqc was 294 bp with a standard 399 

deviation of 81 bp. 400 

The estimate of the silver fir genome size, using the distribution of 17-mers (Figure 1) is 401 

17.36 Gb. The plot of all 17-mers present in the PE300 aggregated library that were counted 402 

and the number of distinct 17-mers (k-mer species) for each depth from 1 to 600 shows the 403 

existence of a considerable amount of two-, three- and four-copy repeats (17-mers) in this large 404 

genome (Figure 1). The main peak at depth 91X corresponds to unique haploid sequences, while 405 

the right-most peaks at depths 182, 273, and 364 correspond to considerable fractions of multi-406 

copy repeat sequences (Figure 1). 407 

 408 

3.2 Genome assembly and quality assessment 409 

The silver fir genome sequence presented here accounts for 18.17 Gb, with 37 million scaffolds 410 

characterized by an N50 of 14.05 kb (Table 2). The scaffold size ranges between 106 bp and 411 
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297,427 bp with a mean size of 489.5 bp. The gaps constitute a total of 236.7 Mb and are 412 

relatively small on average (29.3 ± 46.8 bp). The assembly size is slightly higher than the C-413 

value of 16.19 Gb (Roth, Ebert, & Schmidt, 1997) or the k-mer-based estimate of 17.36 Gb 414 

(Figure 1). However, a comparison of k-mer frequency in the PE300 reads and their 415 

corresponding copy number in the final assembly using KAT (Figure 2) indicates that most of 416 

the homozygous k-mers belonging to the haploid peak were assembled. The analysis also 417 

reveals only minor collapsing of 2-copy repeats and correct assembly of the remaining multi-418 

copy repeats that are resolvable by this method. 419 

Genome completeness was estimated with three methods based on the presence of 420 

conserved genes. CEGMA estimated 81.5% completeness using 248 conserved eukaryotic 421 

genes. Using larger gene sets, BUSCO estimated a completeness of 49%, whereas mapping to 422 

the P. taeda transcriptome resulted in a completeness estimate of 69%. The contiguity of the 423 

silver fir assembly was also compared to those of other available conifer genome assemblies 424 

(Tree Gene Database; https://treegenesdb.org/). The scaffold N50 (scfN50) of the silver fir 425 

assembly was 14.05 kb, almost double that of the 5.21 kb scfN50 of the latest P. abies assembly 426 

(Paab1.0b) and the 6.44 kb of the L. sibirica assembly (Table 3). However, it is still far below 427 

those of P. lambertiana (2,509.9 kb), P. glauca (110.56 kb), P. taeda (2,108.3 kb) and P. 428 

menziesii (372.39 kb; Table 3). 429 

 430 

3.3 Chloroplast assembly 431 

De novo assembly, using SPADes and the A. koreana complete chloroplast sequence as a 432 

reference for mapping, gave an assembly totaling 123,546 bp and contig N50 of 9,211 bp. The 433 

second reference-assisted assembly with Ragout using A. sibirica and Gapfiller produced a 434 

single scaffold of 120,908 bp, comprised of eleven contigs (Table 2). The estimated contig N50 435 

https://treegenesdb.org/
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was 15.8 kb. Using the DNAdiff module for genome alignment, a high collinearity was 436 

observed with the A. koreana and A. sibirica complete chloroplast sequences except for a region 437 

of~45 kb that align in the opposite direction to A. koreana due the presence of inverted repeats 438 

(Fig. S3 Supplemental Information). The size of the chloroplast assembly of silver fir was not 439 

only close to those of A. sibirica and A. koreana, as expected, but also to the 124 kb estimated 440 

in P. abies (Nystedt et al., 2013), the 121.3 kb in Abies nephrolepis (Yi et al., 2015) and 122.6 441 

kb in L. sibirica (Bondar, Putintseva, Oreshkova, Krutovsky, 2018). By using Dogma 85 protein 442 

coding genes, four rRNA genes and 39 tRNA genes have been annotated. With respect to the 443 

A. koreana and A. sibirica chloroplast genomes, the A. alba chloroplast assembly has four 444 

duplicated tRNAs (trnA-UGC, trnI-GAU, trnL-UAA and trnV-UAC) and trnS-UGA has been 445 

replaced by trnS-CGA. 446 

 447 

3.4 Annotation 448 

3.4.1 Protein-coding gene annotation 449 

According to the repeat annotation performed, 78% (14.25 Gb) of the genome assembly 450 

correspond to repeats. In the non-repetitive fraction, 94,205 genes were annotated, whose 451 

98,227 transcripts encode 97,750 proteins (Table 4). Of the 97,750 protein sequences, 39,420 452 

(35.8%) were assigned to functional labels, while the rest (58,327 proteins) were analyzed with 453 

BLAST, but failed to return significant hits against the RefSeq database. In total, 21,612 of the 454 

proteins with complete ORFs were functionally annotated successfully. The number of distinct 455 

genes is inflated because many partial genes have been annotated due to the large fragmentation 456 

of the assembly. Supporting this assessment, the median gene length was 558 bp, half of the 457 

genes were mono-exonic and 47% of the genes had a partial CDS. Actually, approximately half 458 
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of the annotated proteins (44,646) contained only partial open reading frames (ORFs); they 459 

were missing a start or stop codon. 460 

Two types of gene models were used to calculate the genome annotation statistics: the 461 

protein-coding genes and the full-length genes, respectively. The coding GC content was 46.4% 462 

in the protein coding genes and 45.2% in the full-length genes. While the number of exons for 463 

the protein-coding genes was 187,740 with a mean length of 327 bp, the number of introns was 464 

89,618 (mean length: 320 bp). The number of full-length genes was 50,757 with a median gene 465 

length of 804 bp. The number of exons was 118,168 with mean length of 352 bp, the number 466 

of introns was 64,728 (mean length: 330 bp) (Table 4, Table S4 Supplemental Information). 467 

The distributions of the transcript, intron and exon lengths across the silver fir genome 468 

were similar in the protein coding genes and full-length genes (Figures 3A and S4 Supplemental 469 

Information). The violin plot showed a different length distribution in the low part of the violin 470 

between the two gene models, due to the lower number of short genes in the full-length gene 471 

model than in all genes.  472 

 473 

3.4.2 Comparison with other conifers 474 

The comparison of silver fir genome metrics with other conifer species showed a genome size 475 

similar to P. menziesii and P. abies. Moreover, the gene numbers (94,205) without filtering for 476 

quality and completeness were similar to what was found in P. abies (70,968), P. lambertiana 477 

(71,117), and P. glauca (102,915), but higher than in P. menziesii (54,830), P. taeda (47,602), 478 

and L. sibirica (49,521). When applying a quality filter, more full-length genes (50,757) were 479 

found in silver fir than high-confidence genes in P. lambertiana (13,936), P. glauca (16,386), 480 

P. abies (28,354), and P. menziesii (20,616). The mean and maximum intron lengths were lower 481 
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than in the other conifers, while mean exon size was similar to that in P. taeda, P. glauca, P. 482 

abies and L. sibirica (Table 3). 483 

While the distributions of gene length across the genome were similar between silver fir 484 

and P. glauca (Figure 3B), the mean length in P. menziesii, P. taeda and P. lambertiana was 485 

higher than in the other conifers (Table 3). In P. abies, the mean gene length was close to that 486 

in silver fir, whereas its distribution range was wider (Figure S5A Supplemental Information). 487 

The density plot using violin visualization confirmed these differences among species. In 488 

particular, the shape of this plot showed the distribution of the genes according to their lengths 489 

and highlighted the higher number of short genes in P. abies, P. glauca and silver fir than in 490 

the other conifers (Figure 3B). 491 

The distribution of exon and intron lengths across the silver fir genome was also compared 492 

with those found in the other fully sequenced conifers. The exon distribution was similar across 493 

species (Figure S5B Supplemental Information), with P. menziesii and P. glauca showing a 494 

slightly lower mean value (Table 3). This was due to the short exons in P. menziesii, as it is 495 

visualized in the density plot (Figure 3C). The distribution of intron lengths was similar across 496 

all species (Figure 3D), with silver fir showing a narrower distribution range than the other 497 

conifer species (Figure S5C Supplemental Information). 498 

Silver fir intron and exon statistics were compared to P. menziesii, which was 499 

sequenced, assembled and annotated using a similar approach (Table S4 Supplemental 500 

Information). For P. menziesii, the genes were classified into two categories that were based on 501 

gene quality and completeness (high-quality and high-quality full-length) and the counts were 502 

calculated for both categories. While the numbers of exons and their means were similar in the 503 

two species (187,740 for the protein-coding gene model in silver fir and 181,475 for the high-504 

quality gene model in P. menziesii), a lower number of introns with a lower mean size was 505 
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found in silver fir than in P. menziesii (89,618 and 145,595, respectively). Moreover, a lower 506 

number of exons and introns per gene was found in silver fir (1.99 and 0.95) than in P. menziesii 507 

(2.33 and 4.25). 508 

 509 

3.4.3 Functional annotation  510 

The input file accounted for 462,216 GO terms that were mapped to the slim2 classification list 511 

categories. The total count (Table S5A Supplemental Information) was 27,723 terms 512 

corresponding to 32,272 genes, of which 12,221 unique terms belonged to at least one of the 513 

110 slim2 classes. The rest of 1,313 odd terms were not assigned. The 462,216 GO terms were 514 

mapped to the myclass2 classification list categories. The total count (Table S5B Supplemental 515 

Information) was 31,839 terms corresponding to 32,275 genes, of which 12,361 unique terms 516 

belonged to at least one of the 162 myclass2 classes. The rest of 1,173 odd terms were not 517 

assigned. 518 

In both classification lists, the main categories were metabolism (11.1% and 9.7% for slim2 519 

and myclass2, respectively), catalytic activity (7.7%, 6.7%), cell (4.7%, 4.1%) and cell 520 

organization (4.3%, 3.7%; Table S5 Supplemental Information). 521 

In general, a low percentage of GO terms was assigned to each class. The most abundant 522 

(with percentage higher than 0.2%) GO term categories were 61 for the slim2 classification list 523 

and 71 for myclass2 (Figure S6A Supplemental Information) and myclass2 classification list 524 

(Figure S6B Supplemental Information).  525 

 526 

4. DISCUSSION 527 

Here, we present the first Abies species whole-genome draft sequence, assembly and 528 

annotation. The sequencing strategy used in this project combined Illumina PE and MP libraries 529 
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following a protocol similar to that used to sequence other conifer genomes (Neale et al., 2017). 530 

The genome size using k-mers was estimated to be 17.36 Gb, slightly higher than previous 531 

empirical estimates of the haploid C-value of 16.19 Gb (Roth et al., 1997). The assembly 532 

comprises over 37 million scaffolds with a total length of 18.16 Gb. Its contiguity is 533 

characterized by a contig N50 of 2,477 bp and scaffold N50 of 14kb, and its completeness is 534 

estimated to be high with 81.5% of the Core Eukaryotic Genes and at least 69% P. taeda 535 

transcripts present in the assembly. While this first draft of the silver fir genome is highly 536 

fragmented, as were earlier conifer genome assemblies, it represents a very valuable reference 537 

resource to the community and can be used immediately to facilitate a broad spectrum of genetic 538 

and genomic studies in a demographic, evolutionary, and ecological context.  539 

Given the size and complexity of the silver fir genome, the low contiguity of the assembly 540 

obtained with this sequencing approach was not surprising. However, a comparison of the k-541 

mer spectra of the reads used to assemble contigs (from haploid material) with their copy 542 

number in the final assembly shows that we have obtained a fairly complete assembly. In fact, 543 

the majority of the k-mers belonging to the main haploid peak are contained in the assembly 544 

once and only once, while the peaks of double and triple k-mer depth are almost purely 2-copy 545 

and three-copy repeats. Only minor collapsing of repeats is observed. Given the haploid nature 546 

of the sample (conifer megagamethophyte), we consider these repeat tails to be real and they 547 

might contain repeated genes. Therefore, these regions were not removed from the assembly.  548 

The comparison of the distribution lengths of the genes, exons and introns estimated in 549 

silver fir with the values found in the assemblies of other conifers showed some interesting 550 

results. First, the genes of silver fir were on average shorter than in the other conifer species, 551 

except for P. glauca (1,190 bp vs 1,330 bp; Warren et al., 2015) and L. sibirica (982 bp). 552 

However, this might be an effect of the sequencing strategy used and the presence of many 553 
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short scaffolds in the silver fir assembly, and it will require confirmation with future 554 

improvements to the genome sequence. Second, the comparison of the silver fir exons in the 555 

current study with those in the other conifers showed similar values for the number, mean length 556 

and maximum length of exons, as well as the total amount of exonic sequence (63.7 Mb versus 557 

the mean of 50.8 Mb for all compared annotations). This result confirmed that the number and 558 

the length of exons are well conserved across species (Sena et al., 2014). The average number 559 

of exons per gene was less conserved and the smallest in silver fir (1.92) compared to all other 560 

conifers (2.26-8.80). The mean number of exons per gene averaged for all seven species was 561 

4.08, which is very close to the value of 3.66 predicted for species such as conifers (Table 2 in 562 

Koralewski & Krutovsky, 2011). Given that the average amount of exonic sequence in the 563 

conifer genomes analyzed here is only 50.8 Mb, the differences in genome size among conifers 564 

are presumably due in large part to the large fraction of repetitive sequences they contain 565 

(Morse et al., 2009; Wegrzyn et al., 2013, 2014). Moreover, one of the major components of 566 

plant genomes are the transposable elements, which may also affect the evolution of the intron 567 

size (Kumar & Bennetzen, 1999). 568 

Although intron size has been positively correlated with genome size across eukaryotes 569 

(Vinogradov, 1999), this trend is not a rule for seed plants (Wan et al., 2018). Previous studies 570 

have reported larger intron sizes in conifers than in angiosperms (Nystedt et al., 2013; Neale et 571 

al., 2014; Guan et al., 2016; Sena et al., 2014). This difference is probably related to the high 572 

percentage of repetitive sequences, which are the major component of all gymnosperm genomes 573 

sequenced to date. Across gymnosperms, Ginkgo biloba has longer introns (Guan et al., 2016) 574 

than P. taeda, but a smaller genome. When comparing the distribution of intron lengths across 575 

genomes in several conifers, we found a similar distribution and average between silver fir and 576 

P. glauca (311 bp vs 511 bp), with the genome size of the latter being almost double (33 Gb) 577 
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that of silver fir. In contrast, in P. taeda and P. menziesii the correlation between intron size 578 

and genome size was supported by our results, since the intron size was bigger in P. taeda 579 

(3,004 bp vs 2,301 bp) and also its genome is bigger (20 Mb vs 16 Mb). Moreover, the highest 580 

mean intron length across these six species was measured in P. lambertiana (10,164 bp) that 581 

had a genome size similar to that in P. glauca (31 Mb and 32 Mb, respectively), and the smallest 582 

both mean and maximum intron lengths were observed in A. alba and L. sibirica that have also 583 

the smallest genome sizes, 16.19 Gb (Roth et al., 1997) and 12.03 Gb (Ohri & Khoshoo, 1986), 584 

respectively. 585 

Another aspect related to intron length is the suggestion that the expansion of introns 586 

occurred early in conifer evolution (Nystedt et al., 2013). This hypothesis was confirmed by the 587 

comparison between orthologous introns of P. taeda and G. biloba that showed a high content 588 

of repeats in long introns in both species (Wan et al., 2018). In addition, our analysis showed 589 

that the maximum intron length corresponds to P. taeda and P. lambertiana, and their mean 590 

intron length was higher than in other conifer species. The geological timescale calculated for 591 

the Pinaceae showed that Pinus is the older genus across the Pinaceae, since its presence was 592 

confirmed starting from the Early Cretaceous (Wang et al., 2000). The genus Abies should be 593 

closer to Pseudotsuga than to Picea and Pinus (Wang et al., 2000). Nevertheless, likely due to 594 

the high fragmentation of the silver fir genome sequence reported here, the estimated maximum 595 

intron length in A. alba was only half of that estimated for P. menziesii. 596 

The assembly of the silver fir chloroplast genome resulted in a single scaffold of 120,908 597 

bp that comprised 11 contigs. Each chloroplast has its own genome (cpDNA) that for most 598 

plants is formed by four parts: two large inverted repeats, one large single-copy and one small 599 

single-copy region. Pinaceae chloroplast genomes lack the inverted repeats. Moreover, the 600 

chloroplast genomes in Pinaceae are characterized by the presence of many small repeats and 601 
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are known to vary in organization (Hipkins, Krutovskii, & Strauss, 1994). The cpDNA 602 

organization in Pinaceae was investigated using the Cedrus cpDNA as reference, showing the 603 

presence of at least three organization types: one similar to Cedrus and also found in Picea, 604 

another similar to Pseudotsuga, and another similar to Larix (Wu et al., 2011). In addition to 605 

Cedrus/Picea, Pseudotsuga and Larix organizations, another form of organization was 606 

recognized in Abies (Tsumura, Suyama, & Yoshimura, 2000). In the current study, we only 607 

showed that the chloroplast sequence of silver fir is highly similar and collinear to two other 608 

Abies species. In addition, the length of the silver fir chloroplast genome is also similar to the 609 

other Abies chloroplast genome assemblies (Semerikova & Semerikov, 2007; Yi et al., 2015) 610 

as well as to that of the P. abies chloroplast genome.  611 

 612 

5. CONCLUSION AND PERSPECTIVES 613 

Here, we present a draft version of the silver fir genome, which represents a first step towards 614 

the full deciphering of this giga-genome in its full complexity. This research is part of the Silver 615 

Fir Genome Project, which is a community effort within the Alpine Forest Genomics Network 616 

(AForGeN, IUFRO WP 2.04.11; Neale et al., 2013a). The genome sequencing was financed by 617 

a bottom-up approach among partners, and the first result is the draft genome sequence 618 

presented here (ABAL 1.1)—possibly a profitable strategy for many (plant) genome 619 

sequencing initiatives in the future (Twyford, 2018). Long-read sequencing and other 620 

approaches for improving the scaffolding are the next steps to be undertaken. Recent advances 621 

in genome research have shown that very large and complex genomes may be described in high 622 

detail (i.e. Nowoshilow et al., 2018; International Wheat Genome Sequencing Consortium, 623 

2018). Therefore, we foresee to improve the genome assembly through additional sequencing 624 

approaches complementary to the available Illumina PE and MP reads, such as Bionano optical 625 
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mapping and PacBio or Oxford Nanopore long-read sequencing, to overcome stretches of 626 

repetitive sequences during assembly. Further development of this study could include 627 

comparative genomic research exploring phylogenies and evolution in conifer species. 628 

Moreover, future research projects could utilize the draft silver fir genome as a reference to re-629 

sequence a diverse panel of trees from contrasting environments and to develop a genotyping 630 

array with thousands of single-nucleotide polymorphisms (SNP). Such SNP resources will be 631 

useful in many types of demographic studies and, along with the gene annotation presented 632 

here, will enable genomic studies and experiments aimed at discovering those genes that are 633 

relevant for particular traits (e.g. related to growth) and adaptive responses (e.g. drought 634 

tolerance).  635 
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Figure captions  906 

 907 

FIGURE 1. Distribution of 17-mers in the whole-genome sequence of Abies alba using raw 908 
paired-end (PE) 2 × 151 bp reads generated from the PE300 library with 300 bp long fragment 909 

inserts and estimated with Jellyfish 2.2.0 (Marçais & Kingsford, 2011). The high peak at very 910 
low depths is caused by sequencing errors. 911 
 912 

FIGURE 2. Spectra Copy Number in the Abies alba genome ABAL 1.1. Comparison between 913 
the k-mer (k=27) spectra of paired-end (PE) 300 2 x 151 bp reads generated from the PE300 914 

library with 300 bp long fragment inserts and the ABAL 1.1 assembly. This stacked histogram 915 
was produced with KAT (Mapleson et al., 2016) that shows the spectra copy number classes 916 
along the assembly. 917 

 918 

FIGURE 3. Violin plot of the distribution length of the genes, transcripts, exons and introns 919 

across the Abies alba (Abies_al) high-quality genes and full-length genes (indicated as “full”; 920 

A). The length was log10 transformed. Violin plot of the distribution lengths of genes (B), 921 
exons (C) and introns (D) across the Abies alba (A_alba) high-quality genes and full-length 922 
genes, Pseudotsuga menziesii (Ps_menz), Picea abies (P_abies), Picea glauca (P_glauca), 923 

Pinus taeda (P_taeda), Pinus lambertiana (P_lamb). 924 

 925 

 926 
  927 
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List of supplementary material 928 
 929 

TABLE S1. Estimation of DNA concentration, 260/280 and 260/230 ratios and DNA integrity 930 

in the two sample types (megagametophyte and needle) used for DNA extraction in A. alba. 931 
 932 
TABLE S2. Gene ontology (GO) term categories used to count the GO terms of A. alba. 933 
GO_slim2 is an option in CateGOrize software and myclass2 accounts for 50 additional 934 

categories. 935 
 936 

TABLE S3. A. alba genome annotation statistics considering two types of gene models (protein 937 
coding genes and full-length genes). 938 
 939 

TABLE S4. Intron and exon statistics for silver fir (A. alba) and Douglas-fir (Pseudotsuga 940 

menziesii) gene models.  941 
 942 

TABLE S5. Count and percentage (fraction) of the GO terms assigned in each category using 943 
the two classification lists (A: slim2 and B: myclass2) to be complemented.  944 

 945 
FIGURE S1. Distribution map of A. alba natural stand, compiled by the EUFORGEN Network 946 
members (EUFORGEN 2009).  947 
 948 

FIGURE S2. (A) Location of the 19 sampled Swiss populations and tree AA_WSL01. 949 
Modified after Csilléry et al. (2018). (B) The log-likelihood from Structure runs with K = 2 to 950 

K=10. (C) Ancestry proportions of AA_WSL01 and the 19 genotyped Swiss populations for 951 
K=3 and K=4. 952 
 953 
FIGURE S3. Plot produced with DNAdiff for the comparison between A. alba and A. sibirica 954 

chloroplasts (A) and A. alba and A. koreana chloroplasts (B).  955 

 956 
FIGURE S4. Boxplots of the distribution lengths of the genes, transcripts, exons and introns 957 
across the A. alba high-quality genes and full-length genes (indicated as “full”). The distribution 958 

is log10 transformed. 959 
 960 

FIGURE S5. Boxplots of the distribution lengths of the genes (A), exons (B), and introns (C) 961 
across the Abies alba (A_alba) high-quality genes and full-length genes (indicated as “full”), 962 
Pseudotsuga menziesii (Ps_menz), Picea abies (P_abies), Picea glauca (P_glauca), Pinus taeda 963 
(P_taeda), Pinus lambertiana (P_lamb).  964 
 965 

FIGURE S6. Distribution of the most abundant Gene Ontology (GO) terms assigned to the A. 966 
alba genome using slim2 categories (A) and myclass2 categories (B). The percentage (fraction) 967 

of the term assigned in each category is represented only for values > 0.2%. All categories are 968 
given in Table S2, all count and percentages in Table S5. 969 
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 970 

TABLE 1 Summary of the raw data for Illumina paired-end (PE) and mate-pair (MP) libraries for whole-genome sequencing of Abies alba.  971 
 972 

Library 

Read 

length 

(bp) 

Insert 

size (kb) 

Mean 

fragment 

size (bp) 

Read Pairs 

(million) 
Yield (Mb) Coverage 

Avg. Phix Error 

R1 (%) 

Avg. Phix Error 

R2 (%) 

PE300-1 2 x 151 - 304 3,274 989,029 57.103 0.646 0.908 

PE300-2 2 x 151 - 307 1,886 569,617 32.888 0.883 1.126 

PE300-3 2 x 151 - 312 1,066 322,181 18.602 0.768 1.081 

MP1500 2 x 101 1.5  - 1,255 253,529 14.638 0.214 0.32 

MP3000 2 x 101 3  - 1,277 257,985 14.895 0.214 0.32 

MP8000 2 x 101 8  - 1,255 253,590 14.641 0.214 0.32 

Total PE    6,226 1,880,827 108.593   

Total MP    3,787 765,104 44.175   

973 



38 
 

TABLE 2 Summary statistics for the Abies alba whole-genome assembly version 1.1 (ABAL 974 
1.1) and chloroplast assembly. 975 

 976 
Genome Feature  

Nuclear  Number of contigs 45,280,944 

 Number of scaffolds 37,192,295 

 Mean GC% 39.34 

 Total length (Mb) 18,167 

 Minimum scaffold length (bp) 106 

 Maximum scaffold length (bp) 297,427 

 Mean scaffold length (bp) 488.50 

 Median scaffold length (bp) 115 

 Contig N50 (bp) 2,477 

 Scaffold N50 (bp) 14,051 

Chloroplast Total length (bp) 120,908 

 Number of contigs 11 

 Number of scaffolds 1 

 Contig N50 (bp) 15,758 

  977 
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TABLE 3 Comparison of genome summary metrics from A. alba and other sequenced conifer 978 
genomes (version numbers in parentheses).  979 

 980 
Genome summary metric Abies 

alba 

(1.0) 

Pseudotsuga 

menziesii 

(1.5) 

Pinus 

taeda 

(2.0) 

Pinus 

lambertiana 

(1.5) 

Picea 

glauca 

(3.0) 

Picea 

abies 

(1.0) 

Larix 

sibirica 

(1.0)* 

Total length (Mb) 18,167 15,700 20,613 31,000 32,795 19,600 12,340 

N50 scaffold (Kb) 14.05 372.39  2,108.3  2,509.9 110.56 

34.40§  

5.21  6.44 

N of genes 94,205 54,830 47,602 71,117¶ 102,915 70,968 49,521 

N of full-length genes 50,757 20,616 NA 13,936¶ 16,386§ 28,354ø 32,482 

N of exons 181,168 181,475 166,465 153,111 232,182 178,049 151,838 

N of introns 64,728 145,595 108,809 121,858 124,951 107,313 101,675 

Mean gene length (bp) 1,190 10,510 9,066 40,820 1,330 2,427 982 

Mean exon length (bp) 352 231 320 241 320 312 324 

Mean intron length (bp) 311 2,301 3,004 10,164 511 1,017 353 

Maximum exon length (bp) 6,300 8,037 4,946 8,003 9,568 6,068 10,268 

Maximum intron length (bp) 36,015 182,831 408,800 805,500 44,116 68,269 10,154 

Exons per gene 1.92 8.80 3.50 5.25 2.26 3.78 3.03 

Total exonic length 6.4x106 4.2x106 5.3x106 1.8x106 7.4x106 5.6x106 4.9x106 

For the gene annotation and the definition of the “full-length genes” different approches were 981 
used across species. The scaffold N50 (scfN50) was calculated on the unshuffled assemblies 982 
and discarding scaffolds shorter than 200 bp. 983 

 984 
*Kuzmin et al., 2018; K.V. Krutovsky, personal communication  985 
§ high confidence set (Warren et al., 2015; PG29 v3) and scaffold N50 calculated using sequences >= 986 
500 bp: N50 is 71.5 kb if considering both clones (WS77111) 987 
¶ low-quality and high quality gene models from Pinus lambertiana v.1 (Stevens et al., 2016), the other 988 
were calculated on Pinus lambertiana v1.5 (Crepeau et al., 2017), 989 
ø high confidence (Nystedt et al., 2013) 990 
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TABLE 4 Genome annotation statistics for A. alba considering two types of gene models 992 
(protein coding genes and full-length genes). All statistics are given in Table S3.  993 

 994 
 Features Protein-coding 

genes 

Full-length genes 

Number of genes  94,205 50,757 

Median gene length (bp) 558 804 

Number of transcripts  98,227  53,487 

Median transcript length (bp) 445  597  

Number of exons  187,740  181,168  

Coding GC content  46.4% 45.15% 

Median exon length (bp) 224  237 

Number of introns 89,618  64,728  

Median intron length (bp)  146  145  

Exons/transcript  2.00  2.32  

Transcripts/gene  1.04 1.05 

 995 


