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Статья посвящена определению фрактальной размерности пористой поверхности и 
дальнейшего нахождения связи фрактальной размерности с пористостью ячеистого бетона. 
Выполнен численный эксперимент, направленный на определение фрактальной размерности 
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структуры ячеистых бетонов с целью выяснения связи последней с его пористой структурой. 
Разработан подход к оценке свойств ячеистого бетона на основании анализа его изображения.

Ключевые слова: фрактальная размерность, ячеистый бетон, структурно-имитационное 
моделирование, пористость.

Introduction
Improving energy efficiency and energy saving of buildings and structures is a priority in the 

energy policy of Uzbekistan. In this regard, the production on an industrial scale of energy-efficient, 
inexpensive and environmentally friendly structurally-insulating building materials is one of the 
urgent problems of construction science [1-3].

Successful implementation of such tasks in the field of civil engineering urgently requires the 
development of a new methodological approach to the creation of building materials for external 
enclosing structures with specified sets of properties. To develop a technique for modeling properties, 
a material was chosen that has a developed porous structure – cellular concrete, represented by 
various types of pores: capillary, large, conditionally closed, and gel. When implementing this task, an 
assumption was introduced that cellular concrete is represented as a quasi-homogeneous medium, as a 
set of packed particles and with integral physical characteristics [4-6].

 The properties of building materials, including heat insulating materials, are determined both 
by the state of the structure of substances from which they are produced and by the macrostructure 
formed as a result of technological conversion. According to [7], the optimal structure corresponds 
to the complex of the most favorable indicators of the building and operational properties of the 
conglomerate. On this basis, the optimal structures of cellular concrete include those that are 
characterized by maximum values of porosity with a uniform distribution of pores and aggregate by 
volume [8, 9].

In the study of the properties of cellular concrete being developed, the main objects are a 
quasi-homogeneous medium, as an aggregate of a multitude of packed particles and its integral 
physical characteristics [10, 11]. Theoretically, any set of particles can be quite fully described 
by the corresponding matrix consisting of elements in the form of descriptions of the individual 
properties of each of the particles, including their individual phase coordinates – the physical 
parameters of the state. The defining elements of such a matrix are the parameters of the 
macrostructure of cellular concrete, which characterize the connection with their strength and 
heat engineering properties.

The search for the optimal structure of thermal insulation materials was carried out by 
A.P. Merkin, Yu.P. Gorlov, A.A. Brushkov [12, 13]. Questions of complex studies of the structure of 
materials are considered in the fundamental and fundamental works of V.A. Pinsker [14], as well as 
A.N. Kharkhardin [15], in which the main focus was on studying the mechanism of formation of the 
diameter of cellular pores and the formation of interpore partitions.

The theoretical rationale for the relationship between the macrostructure of cellular concrete and 
their strength was studied by G.I. Loginov and A.P. Filin [16, 17]. The researchers, on the basis of 
mathematical models characterizing the occupancy of a unit of volume by spherical bodies, derived 
fairly strict regularities describing the “ideal” structure of cellular concrete.
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Analysis of research materials [1-17] showed that for the formation of the necessary strength and 
thermal characteristics of aerated concrete, it is necessary to implement a multifunctional task by 
varying a large number of variable factors.

Experimental studies of the cellular concrete macrostructure

Taking into account the geometric features of the structure of cellular concrete, which is 
distinguished by high porosity, the theory of fractal geometry was adopted as a mathematical tool for 
the analytical description of the structure of cellular concrete [18].

In accordance with the methodology for the formation of fractal objects, a numerical experiment 
was carried out aimed at determining the fractal dimension of the structure of cellular concrete to 
determine the relationship of the latter with its porous structure. For this, the first step was to build a 
physical model of cellular concrete with hexagonal, cubic and rhombic packages.

This physical model involves the formation of a spatial framework as a result of successive filling 
of the volume with pores of a given size [1, 7-11]. At the same time, extremely tight pore laying is 
achieved due to spontaneous spatial restructuring of the lattice and its compaction with a stepwise 
increase in the total porosity. Capillary and air-entrained pores form a given (hexagonal, cubic or 
rhombic) interporous material lattice.

The mathematical model of the physical organization of the porous structure of cellular concrete 
presented above was built on the basis of the prescribed laws of probability density distribution of 
pores along their section radii for all the above types of packaging so that the porosity of the lattice 
with the thickness of partitions of 20-60 μm varied from 10% to 90%.

Then, a method based on image analysis of a cellular concrete sample obtained using an 
Neophot-21 optical microscope was developed to determine the fractal dimension of the porous 
surface and further determine the relationship between the fractal dimension and the porosity of 
cellular concrete (Fig. 1).

Image processing was carried out according to a specially developed algorithm, on the basis of 
which a software package was built, including image input, determining the type of packaging (its 
proximity to one of three types – hexagonal, cubic or rhombic), searching for boundaries between the 
pore space and the material (matrix, various types of inclusions, etc.). In addition, one of the main 

Fig. 1. General view of the optical microscope "Neophot-21"

This physical model involves the formation of a spatial framework as a result of successive 

filling of the volume with pores of a given size [1, 7-11]. At the same time, extremely tight pore laying 

is achieved due to spontaneous spatial restructuring of the lattice and its compaction with a stepwise 

increase in the total porosity. Capillary and air-entrained pores form a given (hexagonal, cubic or 

rhombic) interporous material lattice. 

The mathematical model of the physical organization of the porous structure of cellular 

concrete presented above was built on the basis of the prescribed laws of probability density 

distribution of pores along their section radii for all the above types of packaging so that the porosity of 

the lattice with the thickness of partitions of 20-60 μm varied from 10% to 90%. 

Then, a method based on image analysis of a cellular concrete sample obtained using an 

Neophot-21 optical microscope was developed to determine the fractal dimension of the porous surface 

and further determine the relationship between the fractal dimension and the porosity of cellular 

concrete (Fig. 1). 

 
Fig. 1. General view of the optical microscope "Neophot-21" 

 
Image processing was carried out according to a specially developed algorithm, on the basis of 

which a software package was built, including image input, determining the type of packaging (its 

proximity to one of three types – hexagonal, cubic or rhombic), searching for boundaries between the 

pore space and the material (matrix, various types of inclusions, etc.). In addition, one of the main 

blocks in the program is a block of “quantizing” an image into a given number of levels with the 

construction for each level of a histogram of the sample’s probability density distribution by brightness 

levels. The last level represents the binary distribution (black – material, white – porosity). To clearly 

represent the objects subjected to machine image analysis in Fig. 2 shows a micrograph of a fragment 

of the structure of cellular concrete. 
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blocks in the program is a block of “quantizing” an image into a given number of levels with the 
construction for each level of a histogram of the sample’s probability density distribution by brightness 
levels. The last level represents the binary distribution (black – material, white – porosity). To clearly 
represent the objects subjected to machine image analysis in Fig. 2 shows a micrograph of a fragment 
of the structure of cellular concrete.

Before proceeding directly to the definition of the fractal dimension of the structure of cellular 
concrete, consider the possibilities of studying its properties based on image processing. For this we 
turn to Fig. 3, which shows the results of quantization of the original image of the structure of cellular 
concrete into 8 levels and the corresponding histograms. Let’s start with the original image (Fig. 3a) 
and its histograms.

As can be seen from the histogram, which shows the features of the structure of cellular concrete, 
the frequency distribution of brightness levels has a two-modal character: the first mode is associated 
with the matrix and various inclusions (material), the second mode – with porosity. Based on the 
presented histogram, we estimate the degree of sample porosity using the formula:

 
 

Fig. 2. Micrograph of cellular concrete ( a – light color – air bubbles; black color – matrix; gray color – 
placeholder; b – the same image in binary form (quantized into two levels) 
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Fig. 3. Results of processing the image of the structure of cellular concrete: a – the original image of cellular 
concrete and its histogram (right); b – quantized images from the 1st to the 8th levels and their histograms 
(bottom) for the corresponding level (numbers from 1 to 8)

 
Fig. 3. Results of processing the image of the structure of cellular concrete (a – the original image of 
cellular concrete and its histogram (right); b – quantized images from the 1st to the 8th levels and their 
histograms (bottom) for the corresponding level (numbers from 1 to 8) 
 

In other words, this procedure allows you to bring the image to some average standard 

conditions. In essence, the number of task levels can be arbitrary, but a necessary condition is the task 

of the last level, as a binary one. This condition is necessary because, ultimately, we are interested in 

two objects – the material and the pores. In the language of image processing, these are two gradations 

(in our case, black and white). In Fig. 3b shows the results of quantization of the image shown in 

Fig. 3a. It turned out that the filtering, which leads to the image of some average shooting conditions, 

performs an extremely important function related to the characteristic of the structure of the sample as a 

whole (Fig. 3b). It is seen that the latter shows the geometry of the formation of the structure of the 

the task of the last level, as a binary one. This condition is necessary because, ultimately, we are 
interested in two objects – the material and the pores. In the language of image processing, these 
are two gradations (in our case, black and white). In Fig. 3b shows the results of quantization of the 
image shown in Fig. 3a. It turned out that the filtering, which leads to the image of some average 
shooting conditions, performs an extremely important function related to the characteristic of the 
structure of the sample as a whole (Fig. 3b). It is seen that the latter shows the geometry of the 
formation of the structure of the sample as a whole, which is anisotropic in nature, determined 
by the orientation of the macrostructure in the preferred direction. Moreover, with an increase 
in the level of quantization, this feature of the macrostructure is manifested to a greater degree. 
The above explains where the magnified image of the binary level is shown (Fig. 3b-8) with the 
predominant direction of the formed macrostructure as a whole (the direction is indicated by the 
arrow).
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Algorithm for constructing the image of cellular concrete  
of a given structure and its fractal dimension

Let m * n be the given matrix (base) of a sample of cellular concrete, where m is the width, n 
is the height of the matrix, respectively. This area will be packed with spherical pores (a circle on a 
plane), using two types of packaging – hexagonal and cubic. These two types of packaging are chosen, 
generally speaking, from obvious prerequisites, since the greatest value of porosity with a spherical 
shape of pores is achieved in the conditions of their geometrically correct packing (packing), to which, 
cubic and hexagonal belong.

 Further, we denote the matrix and the components of concrete with black color of the image, 
and the pores with white. Then, the description of the structure of cellular concrete in terms of the 
formation of its image will be expressed in the form of pixels (the minimum element of the raster 
image) of black and white color – a binary image. Thus, the minimum unit of the pore radius is a 
pixel uniquely determined by the metric system of units in fractions of a centimeter. As a result, 
specifying the type of styling by building a system of polygons of a given type, place the pores 
(white pixels) at the vertices of this polygon. Then, algorithmically recognizing the “material – 
pores” border on an image is reduced to a simple procedure for determining the brightness level: 
black is material, white is pores. This is the main goal of the image quantization method introduced 
in the work to the i-th number of levels, of which the last, binary level, in fact, automatically 
determines the border of porosity in the sample. Now it remains only to calculate the percentage 
occupied by white pixels of the total area of the image, and we obtain the degree of porosity 
of the sample. On the basis of the developed method, the reverse formulation of the problem is 
also possible: on the basis of a given percentage of material porosity, obtain the most optimal 
pore arrangement (type of packaging) that meets the specified parameters of strength and thermal 
conductivity of cellular concrete. Having a specific type of image of cellular concrete, obtained 
as a result of modeling, otherwise, a specific type of package of pores of certain dimensions that 
meets the required (specified) parameters, further, we can set the technological task of obtaining 
it. Here it is necessary to note the following: the method described in this article is focused on a 
flat image, that is, a volume projection of the sample onto the plane is considered. Since we, when 
building the optical model of the image of cellular concrete, we operate with circles with given radii 
displayed on the plane, distortions about its three-dimensional image when calculating the porosity 
of the model “flat” image, for obvious reasons, occur. However, the application of the method 
to real samples showed that the magnitude of the errors does not exceed 3%. Moreover, in our 
opinion, there are no principal difficulties in applying the proposed method to volume realization, 
for example, the consideration of stereographic or holographic images.

Further, using formula (3), we calculate D – the parameter of the fractal dimension of the structure 
of cellular concrete using the modified Peano algorithm – the “Box Counting” method [19]. According 
to this method of calculating the fractal dimension D is determined by the expression:
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0,4 
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Table 2. Connection of porosity of cellular concrete with various types of laying with its fractal dimension

P, %
Type of laying

Hexagonal Cubic «Random»
D D D

10
20
30
40
50
60
70
80
85
90

1,283
1,525
1,775
1,817
1,833
1,847
1,852
1,638
1,541
1,431

1,321
1,407
1,497
1,511
1,523
1,541
1,582
1,525
1,461
1,432

1,546
1,587
1,632
1,659
1,671
1,682
1,694
1,546
1,482
1,383

One can see the presence of three sections: with an increase in porosity in the range of ≈10–35%, 
the fractal dimension linearly increases; in the range of ≈ 30–70%, the linear growth of the fractal 
dimension is insignificant; in the range of ≈ 68–90%, the fractal dimension linearly decreases. At 
the same time, the rates of growth and reduction of the fractal dimension of the structure of cellular 
concrete are different for the types of laying considered. So, for hexagonal type of laying:

	on the interval of 10-33%, a noticeable increase is approximated by a straight line

D = 0,02498 P + 1,0166; 

	in the range of 33-70% slight growth – direct

D = 0,00144 P + 1,777; 

	in the range of 70-90% linear reduction – direct

D = –0,02236 P + 3,444. 
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For cubic styling we have:
	on the interval of 10-30%, a noticeable growth is approximated by a straight line

D = 0,0893 P + 1,2277; 

	in the range of 30-70% slight growth – direct

D = 0,00195 P + 1,454; 

	in the range of 70-90% linear reduction – direct

D = –0,00786 P + 2,128. 

As can be seen from the presented results, the changes in the fractal dimension described by 
a straight line at the corresponding intervals are unequal for the hexagonal and cubic packings: 
the slope  of the straight line, which characterizes the rate of increase (decrease) of the function, 
for the hexagonal pack has larger values than for the cubic one. These two types of ideal structure 
of cellular concrete can be considered as limiting types of packages from the point of view of the 
upper and lower limits of the rate of change of the fractal dimension of the structure of a porous 
material.

A rather nontrivial change in the fractal dimension of the structure of cellular concrete, associated 
with the nature of the change in the pore structure, directly indicates the features of the organization 
of the structure of cellular concrete itself, namely:

	the first interval (≈10–35%) – is the transition of the pore structure from isolated spherical 
pores to interconnected pore clusters, where the spherical pores merge and form pore clusters with 
branched boundaries, which causes an increase in fractal dimension;

Fig. 5. The relationship between the fractal dimension D and the porosity P (%) in cellular concrete with hex-
agonal (1), cubic (3) and random (using a random number generator) types of laying (2) with a given percentage 
of porosity
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concrete are different for the types of laying considered. So, for hexagonal type of laying: 



– 925 –

Said S. Shaumarov and Anvar I. Adilhodjayev. Analytical and Experimental Research of Structural Organization…

	in the second interval (≈30–70%) with an increase in the pore space, where the fractal 
dimension changes (increases) slightly (slope coefficient – k ≈ 10 – 4), the geometrical configuration of 
the pore boundaries does not change, but only their length;

	in the third interval (≈70–90%), in which the fractal dimension decreases, very large pores 
formed, as a result of which the boundaries are geometrically smooth, and their irregularity decreases, 
which determines the decrease in the fractal dimension.

It seems to us that this behavior of the fractal dimension is related to the percolation thresholds 
known in porous materials [22, 23].

Thus, on the basis of the developed method for analyzing the surface of the porous structure of 
cellular concrete, it was possible, in addition to its fractal nature itself, to obtain a correlation with 
known features in the behavior of porous materials. However, these results were obtained on simulated 
samples with an ideal structure, which cannot be obtained technologically in practical production 
work. 

Therefore, it is to be expected that, when applying the appropriate technologies, only to one degree 
or another can approach the model obtained in this article and possibly occupy an intermediate position 
in terms of their fractal characteristics. In this connection, a numerical experiment was performed in 
which the structure of cellular concrete was modeled to conditions close to real samples. To do this, 
using a random number generator for specified ranges of sizes of spherical pores and a given percentage 
of porosity, the structure of cellular concrete was modeled. The simulation results were analyzed on 
the basis of the constructed histograms for a given pore content in the entire considered range (from 
10 to 90%). The results of model calculations were approximated by Gauss curves (the normal law of 
probability distribution) and Cauchy – Lorentz curves [24, 25].

In Fig. 6, as an example, a histogram of the model calculation of the structure of cellular concrete 
using a random number generator for a pore space of 50% in the range of pore sizes with a radius of 
0,2 to 2 mm, approximated by the Gauss function:
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where ïR  – is the radius of pores, is the average value from the specified range, b is the scale 

parameter of half-width at half-height. The Gaussian function modeled the distribution function 

describes very roughly, while the Cauchy-Lorentz function describes it with sufficient accuracy 

(Fig. 6). 

Conclusion 

The results of calculations of the fractal dimension for the structure of cellular concrete 

modeled in a “random” manner are shown in Fig. 6 (curve 2). As was to be expected, the position of 

this fractal curve, or straight lines in three sections, occupies some intermediate position between the 

fractal curves with perfect hexagonal and cubic layouts. It is important that the ranges of variability 

practically coincide with those calculated by the model with ideal packaging. Therefore, the obtained 

conclusions based on the analysis of the fractal structure of cellular concrete with theoretically ideal 

packaging fully apply to the model, which in its structural organization approaches the real, that is, 

technologically secured. 

Based on the proposed simulation technique, a quantitative assessment of the fractal dimension 

of the cellular concrete structure was made, which describes the mechanical, thermal and geometric 

properties of porous materials, correlated with such important parameters as bulk density, strength, 

porosity, and thermal conductivity. As a result, the responses of the system (matrix-components-pores) 

to variations in the geometry of the structure were obtained and their analysis was performed. On the 

basis of a rational combination of probabilistic and deterministic descriptions of the studied structures 

of cellular concrete, the connection of the structure with the properties of the composite material is 

obtained. 
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where Rп – is the radius of pores, is the average value from the specified range, b is the scale parameter 
of half-width at half-height. The Gaussian function modeled the distribution function describes very 
roughly, while the Cauchy-Lorentz function describes it with sufficient accuracy (Fig. 6).
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packaging fully apply to the model, which in its structural organization approaches the real, that is, 
technologically secured.

Based on the proposed simulation technique, a quantitative assessment of the fractal dimension 
of the cellular concrete structure was made, which describes the mechanical, thermal and geometric 
properties of porous materials, correlated with such important parameters as bulk density, strength, 
porosity, and thermal conductivity. As a result, the responses of the system (matrix-components-pores) 
to variations in the geometry of the structure were obtained and their analysis was performed. On the 
basis of a rational combination of probabilistic and deterministic descriptions of the studied structures 
of cellular concrete, the connection of the structure with the properties of the composite material is 
obtained.

It has been established that the anisotropy of the macrostructure of cellular concrete reduces the 
average strength of cellular concrete depending on the angle of inclination of the vector of the preferred 
organization of the structure to the horizontal axis.
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