VJK 512.541 On Determinability of a Quotient Divisible Abelian Group of Rank 1 by Its Automorphism Group

Vadim K. Vildanov^{*}

Lobachevsky State University of Nizhni Novgorod Gagarina, 23, Nizhni Novgorod, 603950 Russia

Egor A. Timoshenko^{\dagger}

Tomsk State University Lenina, 36, Tomsk, 634050 Russia

Received 13.02.2019, received in revised form 22.07.2019, accepted 20.09.2019

A criterion for determinability of a quotient divisible Abelian group of rank 1 by its automorphism group in the class of quotient divisible Abelian groups of rank 1 is considered in the paper.

Keywords: determinability, quotient divisible group, automorphism group. DOI: 10.17516/1997-1397-2019-12-6-699-704.

The word "group" will mean an Abelian group. As usual, A is a torsion group (a torsion-free group) if t(A) = A (t(A) = 0), where t(A) is the subgroup of all elements of finite order in A. A nonzero group A is a torsion-free group of rank 1 if it is isomorphic to a subgroup of \mathbb{Q} ; we say that this group is a rank 1 torsion-free group of idempotent type if A is isomorphic to the additive group of some subring of \mathbb{Q} .

Let $A \in \mathbf{X}$, where \mathbf{X} is some class of groups. We say that A is determined by its automorphism group in the class \mathbf{X} if Aut $A \cong$ Aut B implies $A \cong B$ for every $B \in \mathbf{X}$.

It was proved that a p-group is determined by its automorphism group in the class of all p-groups for $p \ge 5$ [1]. Similar result was obtained for p = 3 [2]. Rank 1 torsion-free groups are not determined by their automorphism groups, but for direct sums of torsion-free groups of rank 1 (i.e., for *completely decomposable torsion-free groups*) necessary and sufficient conditions for determinability of a group by its automorphism group in some classes were found (see [3, 4]). Among other things, the question of determinability of a group by its automorphism group was considered in the class of completely decomposable torsion-free groups whose direct summands of rank 1 have idempotent types [3]. In particular it was shown that a torsion-free group A of rank 1 and of idempotent type is determined by its automorphism group in the class of rank 1 torsion-free groups of rank 1 which are torsion-free.

Let us denote the set of all primes by \mathbb{P} . Recall (for example, see [5]) that a group A is *p*-divisible if the set $pA = \{pa \mid a \in A\}$ coincides with A; a divisible group is a group which is *p*-divisible for all $p \in \mathbb{P}$.

^{*}kadirovi4@gmail.com

 $^{^{\}dagger}$ tea471@mail.tsu.ru

[©] Siberian Federal University. All rights reserved

Definition. Suppose that a group A does not contain nonzero divisible torsion subgroups and there is an element $x \in A$ of infinite order such that $A/\langle x \rangle$ is a divisible torsion group. Then A is called the quotient divisible group of rank 1 and x is called the basis element of this group.

For an arbitrary quotient divisible group A of rank 1 we define a characteristic $\chi = (m_p)_{p \in \mathbb{P}}$ by taking m_p to be the smallest number $m \ge 0$ for which $p^m x$ is in $p^n A$ for all n > 0 (if there are no such numbers, we set $m_p = \infty$). We say that χ is the *cocharacteristic of the element* x. The cocharacteristic of a basis element of the group A is uniquely determined by A [6] and it is called the *cocharacteristic of the group* A.

The class of all quotient divisible groups of rank 1 is denoted by \mathcal{QD}_1 . Let us recall the structure of quotient divisible groups of rank 1 (see [6,7]). Let $\chi = (m_p)_{p \in \mathbb{P}}$ be an arbitrary characteristic and L be the set of all $p \in \mathbb{P}$ for which $0 < m_p < \infty$. We denote the direct product of all rings $\mathbb{Z}/p^{m_p}\mathbb{Z}$ with $p \in L$ by K^{χ} and we also denote the subring of the field \mathbb{Q} generated by the elements $\frac{1}{p}$ such that $m_p < \infty$ by \mathbb{Q}^{χ} (if all m_p are infinite then $\mathbb{Q}^{\chi} = \mathbb{Z}$). If L is a finite set, we define $R^{\chi} = \mathbb{Q}^{\chi} \times K^{\chi}$.

If the set L is infinite then R^{χ} is the ring of all elements $b = (b_p)_{p \in L} \in K^{\chi}$ such that for some fraction $\frac{u}{v} \in \mathbb{Q}^{\chi}$ the equality $ue_p = vb_p$ holds for almost all $p \in L$, where e_p is the identity of the ring $\mathbb{Z}/p^{m_p}\mathbb{Z}$). The mapping π that assigns to every such element b the number $\frac{u}{v}$ is an epimorphism of R^{χ} onto \mathbb{Q}^{χ} . Its kernel Ker π coincides with the direct sum $t(R^{\chi})$ of all $\mathbb{Z}/p^{m_p}\mathbb{Z}$ with $p \in L$.

It can be checked directly that for any characteristic χ the additive group of the ring R^{χ} is a quotient divisible group of rank 1, while the identity of the ring is the basis element of this group and it has χ as its cocharacteristic. It follows that any quotient divisible group of rank 1 with cocharacteristic χ is isomorphic to the additive group of the ring R^{χ} [6]. In particular, if $A \in \mathcal{QD}_1$ then the factor group of A with respect to its torsion part t(A) is a rank 1 group of idempotent type which is p-divisible for every $p \in \mathbb{P}$ such that the p-component A_p is nonzero.

The symbol \prod denotes a restricted direct product of groups. This analogue of the notion of a direct sum is used for multiplicatively written groups.

Proposition 1. If A is a quotient divisible group of rank 1, then

$$\operatorname{Aut} A \cong \operatorname{Aut}(A/\operatorname{t}(A)) \times \prod_{p \in L} \operatorname{Aut} A_p, \qquad (*)$$

where L is the set of all $p \in \mathbb{P}$ for which $A_p \neq 0$.

Proof. We may assume that A coincides with one of the rings R^{χ} . If L is finite then A is the direct sum of the p-components A_p with $p \in L$ and of the group $\mathbb{Q}^{\chi} \cong A/t(A)$ which is p-divisible for every $p \in L$. Since each of these direct summands is fully invariant in A, we arrive at the isomorphism (*).

Now let the set L be infinite. It is known that any endomorphism of the additive group of the ring $A = R^{\chi}$ is a multiplication by some element of A [6,7]. From this we obtain Aut $A \cong A^*$, where A^* is the group of invertible elements of the ring A. It is easy to verify that the restriction ρ of the epimorphism $\pi: A \to \mathbb{Q}^{\chi}$ to the group A^* has the group $(\mathbb{Q}^{\chi})^*$ as its image. Its kernel Ker ρ is the set of elements $b = (b_p)_{p \in L} \in A^*$ such that $b_p = e_p$ for almost all $p \in L$.

Let us show that Ker ρ is a pure subgroup of A^* . Suppose that $b = (b_p)_{p \in L}$ is an element of the group A^* such that $b^n \in \text{Ker } \rho$ (for some natural n). Let us define the element $c = (c_p)_{p \in L} \in A^*$

by setting $c_p = b_p$ if $(b_p)^n \neq e_p$ and $c_p = e_p$ otherwise. Obviously $c^n = b^n$ and $c \in \text{Ker } \rho$ as desired.

Im $\rho = (\mathbb{Q}^{\chi})^*$ is a restricted direct product of cyclic groups. Using Theorem 28.2 [5], we have $A^* \cong (\mathbb{Q}^{\chi})^* \times \operatorname{Ker} \rho$. Then

$$\operatorname{Aut} A \cong (\mathbb{Q}^{\chi})^* \times \operatorname{Ker} \rho \cong \operatorname{Aut} \mathbb{Q}^{\chi} \times \prod_{p \in L} (A_p)^* \cong \operatorname{Aut}(A/\operatorname{t}(A)) \times \prod_{p \in L} \operatorname{Aut} A_p.$$

This completes the proof of the proposition.

Cyclic groups of infinite order and of order n are denoted by Z and Z(n), respectively. It makes no difference whether these groups are written additively or multiplicatively.

Proposition 2. Suppose all p-components of a quotient divisible group A of rank 1 are nonzero. Then

Aut
$$A \cong \prod_{\aleph_0} Z \times \prod_{q \in \mathbb{P}} \prod_{k>0} \prod_{\aleph_0} Z(q^k).$$

Proof. It follows from the description of quotient divisible groups of rank 1 that $A/t(A) \cong \mathbb{Q}$. Using Proposition 1 and decomposing each group Aut A_p into the product of indecomposable cyclic subgroups, we obtain that

$$\operatorname{Aut} A \cong \prod_{\aleph_0} Z \times \prod_{q \in \mathbb{P}} \prod_{k > 0} \prod_{\mathfrak{J}_{q,k}} Z(q^k),$$

where $\mathfrak{J}_{q,k} \leq \aleph_0$ for every $q \in \mathbb{P}$ and k > 0.

We fix q^k and consider the arithmetic progression with initial term $1+q^k$ and difference q^{k+1} . By the Dirichlet theorem (see [8]) this progression contains infinitely many primes. If p is one of such primes and $A_p \cong Z(p^m)$ then Aut $A_p \cong Z(p-1) \times Z(p^{m-1})$ has a direct factor $Z(q^k)$ since p-1 is divisible by q^k but not by q^{k+1} . It follows that each of the cardinals $\mathfrak{J}_{q,k}$ is equal to \aleph_0 . This proves the proposition.

Definition. We shall say that a finite cyclic group A is weakly determined by its automorphism group if for any finite cyclic group $B \ncong A$ the condition Aut $A \cong$ Aut B implies that the number of nonzero B_p is greater than the number of nonzero A_p .

Let us note that if for a group $A \in \mathcal{QD}_1$ and $p \in \mathbb{P}$ we have $A_p = 0$ then group t(A) is *p*-divisible, and so the groups A and A/t(A) are simultaneously *p*-divisible or not *p*-divisible.

Theorem 3. A group $A \in \mathcal{QD}_1$ is determined by its automorphism group in the class \mathcal{QD}_1 if and only if t(A) is a cyclic group (possibly equal to zero) which is weakly determined by its automorphism group and $pA \neq A$ for all $p \in \mathbb{P}$ such that $A_p = 0$.

Proof. A quotient divisible group of rank 1 with non-zero *p*-components is not determined by its automorphism group in the class \mathcal{QD}_1 because automorphism groups of all such quotient divisible groups are isomorphic to each other as it follows from Proposition 2.

Let us suppose that group $A \in \mathcal{QD}_1$ has infinitely many nonzero *p*-components and its cocharacteristic $\chi = (m_p)_{p \in \mathbb{P}}$ contains at least one symbol ∞ . Let us define $\varphi = (h_p)_{p \in \mathbb{P}} \neq \chi$ by setting

$$h_p = \begin{cases} m_p & \text{if } m_p \neq \infty, \\ 0 & \text{if } m_p = \infty. \end{cases}$$

Then for any group $B \in \mathcal{QD}_1$ with cocharacteristic φ we have $B/t(B) \cong \mathbb{Q}$ and $B_p \cong A_p$ for every $p \in \mathbb{P}$. Taking into account Proposition 1, it follows from the isomorphisms

$$\operatorname{Aut}(A/\operatorname{t}(A)) \cong Z(2) \times \prod_{\aleph_0} Z \cong \operatorname{Aut} \mathbb{Q} \cong \operatorname{Aut}(B/\operatorname{t}(B))$$

that Aut $A \cong$ Aut B. Then group A is not determined by its automorphism group in \mathcal{QD}_1 .

Let us assume that group $B \in \mathcal{QD}_1$ has infinitely many nonzero *p*-components and its cocharacteristic φ does not contain symbols ∞ . Taking into account the case considered in the beginning of the proof, we may assume that φ contains at least one symbol 0. Then φ can be obtained from some characteristic $\chi \neq \varphi$ using the procedure described in the previous paragraph. Therefore for every group $A \in \mathcal{QD}_1$ with cocharacteristic χ we have $A \ncong B$ and Aut $A \cong$ Aut B. Hence B is not determined by its automorphism group in the class \mathcal{QD}_1 .

It remains to consider the case when the group $A \in \mathcal{QD}_1$ has a finite number of nonzero p-components, i.e., when the group t(A) is cyclic (then A splits). It follows from Proposition 1 and from the uniqueness (up to isomorphism) of the decomposition of a group into the restricted direct product of indecomposable cyclic groups that isomorphism Aut $A \cong \text{Aut } B$ with $B \in \mathcal{QD}_1$ is possible only in the case when t(B) is a cyclic group, $\text{Aut}(A/t(A)) \cong \text{Aut}(B/t(B))$ and $\text{Aut}(t(A)) \cong \text{Aut}(t(B))$. We denote the set of all $p \in \mathbb{P}$ for which $A_p \neq 0$ by L and the set of all $p \in \mathbb{P}$ for which the group A/t(A) is p-divisible by X (then $L \subset X$).

1) Suppose that equality $A_p = 0$ does not imply $pA \neq A$, i.e., that set X strictly contains L. Let us choose a set $Y \subset \mathbb{P}$ so that $L \subset Y$, $Y \neq X$ and |Y| = |X|. If R is the subring of the field \mathbb{Q} generated by elements $\frac{1}{q}$ such that $q \in Y$ then for the group $B = R \oplus t(A) \in \mathcal{QD}_1$ we have $A \ncong B$ (because $A/t(A) \ncong R$) and

$$\operatorname{Aut}(B/\operatorname{t}(B)) \cong \operatorname{Aut} R \cong Z(2) \times \prod_{|X|} Z \cong \operatorname{Aut}(A/\operatorname{t}(A)),$$

whence we obtain $\operatorname{Aut} B \cong \operatorname{Aut} A$. This means that the group A is not determined by its automorphism group in the class \mathcal{QD}_1 .

2) Now assume that X = L but the group t(A) is not weakly determined by its automorphism group. Then there is a finite cyclic group $G \not\cong t(A)$ such that $\operatorname{Aut} G \cong \operatorname{Aut}(t(A))$, and the number of non-zero primary components of G does not exceed |L|. Let us choose a set $Y \subset \mathbb{P}$ so that it contains all $q \in \mathbb{P}$ for which $G_q \neq 0$ and so that |Y| = |L|. If R is the subring of the field \mathbb{Q} generated by elements $\frac{1}{q}$ with $q \in Y$ then for the group $B = R \oplus G \in \mathcal{QD}_1$ we have $B \ncong A$ and $\operatorname{Aut}(B/t(B)) \cong Z(2) \times Z^{|L|} \cong \operatorname{Aut}(A/t(A))$, whence we obtain $\operatorname{Aut} B \cong \operatorname{Aut} A$. Consequently, in this case the group A is again not determined by its automorphism group in \mathcal{QD}_1 .

3) Finally, suppose that X = L and the group t(A) is weakly determined by its automorphism group. Let Aut $A \cong \operatorname{Aut} B$ with $B \in \mathcal{QD}_1$. Then it follows from the isomorphism $\operatorname{Aut}(A/t(A)) \cong$ $\operatorname{Aut}(B/t(B))$ that the set of all $q \in \mathbb{P}$ such that B/t(B) is a q-divisible group has cardinality |L|. This means that B has at most |L| non-zero primary components. Then $\operatorname{Aut}(t(A)) \cong \operatorname{Aut}(t(B))$ implies the isomorphism $t(A) \cong t(B)$. Thus for every $p \in L$ we have $B_p \neq 0$, and hence B/t(B)is a p-divisible group. Therefore $A/t(A) \cong B/t(B)$ and so $A \cong B$. We obtain that group A is determined by its automorphism group in the class \mathcal{QD}_1 . The theorem is proved.

The theorem just proved implies that a quotient divisible group of rank 1 with cocharacteristic

$$\chi = (m_2, m_3, m_5, \dots)$$

is determined by its automorphism group in the class \mathcal{QD}_1 if and only if χ does not contain symbols 0 and $m_p = \infty$ for almost all $p \in \mathbb{P}$. The finite m_p defines a cyclic group which is weakly determined by its automorphism group.

It can be verified directly that if $n \leq 50$ then Z(n) is weakly determined by its automorphism group for n = 1, 5, 8, 11, 13, 16, 17, 23, 24, 25, 29, 31, 32, 37, 41, 47. From this we immediately obtain examples of quotient divisible groups of rank 1 which are determined by their automorphism groups in the class QD_1 . For instance, at n = 5 and n = 24 we have quotient divisible groups of rank 1 with cocharacteristics $(\infty, \infty, 1, \infty, \dots, \infty, \dots)$ and $(3, 1, \infty, \infty, \dots, \infty, \dots)$, respectively.

The work of the second author was supported by the Ministry of Science and Higher Education of Russia (assignment no. 1.13557.2019/13.1).

References

- H.Leptin, Abelsche p-gruppen und ihre Automorphismengruppen, Math. Z., 73(1960), 235–253.
- [2] W.Liebert, Isomorphic automorphism groups of primary Abelian groups, In: Abelian Group Theory (Proceedings of the 1985 Oberwolfach Conference), Gordon and Breach, New York, 1987, 9–31.
- [3] V.K.Vildanov, Determinability of a completely decomposable torsion-free Abelian group of rank 2 by its automorphism group, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, (2011), no. 3(1), 174–177 (in Russian).
- [4] V.K.Vildanov, Determinability of a completely decomposable block-rigid torsion-free Abelian group by its automorphism group, J. Math. Sci., 197(2014), no. 5, 590–594.
- [5] L.Fuchs, Infinite Abelian groups, Vols. 1 and 2, Academic Press, New York, 1970, 1973.
- [6] O.I.Davydova, Rank-1 quotient divisible groups, J. Math. Sci., 154(2008), no. 3, 295–300.
- [7] A.V.Tsarev, T-rings and quotient divisible groups of rank 1, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 4(24)(2013), 50-53 (in Russian).
- [8] K.Ireland, M.Rosen, A classical introduction to modern number theory, Springer, New York, 1990.

Об определяемости факторно делимой абелевой группы ранга 1 своей группой автоморфизмов

Вадим К. Вильданов

Нижегородский государственный университет им. Лобачевского Гагарина, 23, Нижний Новгород, 603950 Россия

Егор А. Тимошенко

Томский государственный университет Ленина, 36, Томск, 634050 Россия

Получен критерий определяемости факторно делимой абелевой группы ранга 1 ее группой автоморфизмов в классе факторно делимых абелевых групп ранга 1.

Ключевые слова: определяемость, факторно делимая группа, группа автоморфизмов.