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Introduction
This paper is devoted to multidimensional analogues of the Fabry and Pȯlya theorems on

lacunary series. We study domains of convergence of lacunary Hartogs series and series in
homogeneous polynomials. Analogues of the Fabry and Pȯlya theorems for such series are given.

We consider the following lacunary series on the plane

f(z) =
∞∑
k=0

ank
znk , lim

k→∞
|ank

|
1

nk = 1. (1)

Then it is clear that the radius of convergence of this series is 1 and this series converges
inside the unit disk U = {z : |z| < 1}. There is at least one singular point of function f on the
boundary ∂U .

The case when each boundary point of the unit disk is singular point of f(z) is interesting,
that is, the unit disk U is the natural Weierstrass domain for the function f(z).

It is well known that each boundary point of the disk of convergence for the series

f(z) =

∞∑
k=0

z2
k

is singular. Therefore the disk of convergence U = {z : |z| < 1} is the natural Weierstrass domain
for the function f(z).

The answer to the question of when each boundary point of the domain of convergence is a
singular point for the sum of a series is in the following statement (the Fabry theorem [1]): if for
series (1)

lim
k→∞

k

nk
= 0, (2)
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then the circle |z| = 1 is natural the boundary of f(z), i.e., f(z) is single-valued holomorphic
function in {|z| < 1}, and each point of the circle |z| = 1 is a singular point of function f(z),
Wf (z) = {|z| < 1} .

Faber constructed an example of a series (see [2]) for which

lim
k→∞

k

nk
= 0 (3)

and the sum of the series has only one singular point on |z| = 1.
Nevertheless, under condition (3) the following statement holds (the Pȯlya theorem [3]): if

condition (3) holds for series (1) then series (1) defines a single-valued holomorphic function with
a simply-connected domain of existence Wf ⊂ C.

It is known that the Hartogs series and series in homogeneous polynomials play an important
role in multidimensional complex analysis. In this paper we study domains of convergence of
such series.

In Section 1 of this paper we describe the domains of convergence of series in homogeneous
polynomials that converge on a pencil of complex lines in terms of the Green’s function. In Sec-
tion 2 we study the domain of convergence of the Hartogs series, assuming only that coefficients
are holomorphic.

In Sections 3 and 4 we give multidimensional analogues of the Fabry and Pȯlya theorems for
lacunary Hartogs series and series in homogeneous polynomials. In particular, in section 5 we
consider the Siciak’s theorem [4], which is a multidimensional analogue of the Fabry theorem on
gaps for series in homogeneous polynomials. We give another proof of this theorem based on
pluripotential theory.

This work was initiated by the above-mentioned article of J.Siciak and his discussion with
A. Sadullaev on the possible applications of pluripotential theory to proofs of multidimensional
analogues of the Fabry and Pȯlya theorems. I would like to express my sincere gratitude to
professor J. Siciak for formulating problems and to professor A. Sadullaev for useful discussions
and assistance in the work.

1. The domain of convergence of series of homogeneous
polynomials with variable radius of convergence

In this section we study the question of the holomorphic continuation of series in homogeneous
polynomials

∞∑
s=0

Qs(z), (4)

assuming only that for each complex line ℓ ∋ 0 in some family L ⊂ Pn−1 this series converges in
a disk ℓ ∩B(0, r(ℓ)) of radius r(ℓ) > 0.

Further we shall use the following definitions and facts from the multidimensional complex
potential theory [5] – [7].

Definition 1. A subset E of a domain D ⊂ Cn is said to be pluripolar in a domain D if there
exists a function u(z) that is plurisubharmonic in D such that u ̸≡ −∞, but u|E = −∞

We denote the class of functions u(z) that are plurisubharmonic in Cn by L and such that
u(z) 6 βu + ln(1 + |z|) for all z ∈ Cn.

Definition 2. Let E ⊂ Cn be an arbitrary set and L(E) be a class of functions u ∈ L such that
u|E 6 0. We put

V (z, E) = sup{u(z) : u ∈ L(E)}.
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Then function
V ∗(z, E) = lim

w→z
V (w,E)

is called Green’s function of the set E (or the Siciak-Zakharyuta extremal function).

Note that if the set E ⊂ Cn is pluripolar in Cn then V ∗(z,E) ≡ +∞ and vice versa. If
V ∗(z, E) ≡ +∞ then there exists a plurisubharmonic function u(z) ∈ L, u ̸≡ −∞ such that
u|E = −∞.

It is well known that any function f(z) that is holomorphic in a complete circular domain
D ⊂ Cn and centered at point z = 0 in this domain can be expanded in a series in homogeneous
polynomials

f(z) =
∞∑
s=0

Qs(z). (5)

The series converges uniformly on compact subsets of D.
Note that not every complete circular domain is a domain of convergence of a series in

homogeneous polynomials. The situation here is the same as in the case of the Hartogs or
Reinhart series. If we take the transformation

(′z, zn) → (′w, zn), where wν =
zν
zn

(ν = 1, 2, . . . , n− 1)

that transforms the circular domain into the Hartogs domain then series (5) becomes

g(′w, zn) = f(′wzn, zn) =
∞∑
s=0

Qs(
′w, 1)zsn

Thus we obtain a Hartogs series.
To find domains of convergence of series in homogeneous polynomials we need the following

statement that relates the extremal Green’s function to a polynomial (see [5]).

Proposition 1. For any compact K ⊂ Cn

V ∗(z,K) =

{
sup

(
1

degP
ln |P (z)| : ∥P∥K 6 1

)}∗

. (6)

Using (6), we prove the following statement for series in homogeneous polynomials with
variable radius of convergence.

Theorem 1. Let us assume that a formal series in homogeneous polynomials Qs

∞∑
s=0

Qs(z)

and the family L ⊂ Pn−1 of complex lines ℓ are given. If for every complex line ℓ ∈ L the series
∞∑
s=0

Qs(z) |l converges in the disk ℓ ∩ B(0, r(l)), 0 < r(l) 6 1 then it converges uniformly inside

the domain
Ω =

{
z ∈ Cn : |z| · expV ∗

(
z

|z|
, E

)
< 1
}
, (7)

where E =
∪
l∈L

(l ∩B(0, r(l))).

Since the generalized Green’s function V ∗(z, E) ≡ +∞ if and only if E is pluripolar set in
Cn then it follows from (7) that Theorem 1 is meaningful only if the set is non-pluripolar as we
will assume.

Proof of Theorem 1. Let 0 < r < 1 be an arbitrary number and
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Er =

{∪
l∈L

(l ∩B(0, r(l)) : r(l) > r

}
.

Then it is clear that Er1 ⊂ Er2 on r1 > r2 and
1∪

r=0
Er = E. We fix the number r > 0 so that

the set Er is non-pluripolar (this is possible because of nonpluripolarity of E). Consequently, by
Proposition 1 [6] the series converges uniformly in some neighbourhood of zero and the sum of
this series determines some function f (z):

f(z) :=
∞∑
s=0

Qs(z).

From this and conditions of the theorem it follows that function f(z) satisfies the following
conditions:

1) f(z) ∈ O {0},
2) for each complex line l ∈ L the function f is holomorphic in the disk l ∩B(0, r(l)), that is,

f |l∈L ∈ O {l ∩B(0, r(l))} .

Let us fix now an arbitrary small number ε, 0 < ε < r, and put

Lr,m =
{
l ∈ L : r(l) > r, |f |l∩B(0, r(l)−ε) 6 m

}
, m = 1, 2, . . . . (8)

Let l ∈ Lr,m, z ∈ l, and ω =
r(l)z

|z|
. Then the complex line

l = {ξ : ξ = ωλ, λ ∈ C }

passes through a point z. We take the restriction of the function f to this line

φ(λ) = f(λω) =
∞∑
s=0

Qs(λω) =
∞∑
s=0

Qs(ω)λ
s.

This series converges in a disk |λ| < 1. According to (8)

|φ(λ)| = |f(λω)| 6 m at |λω| 6 r(l)− ε,

i.e., |λ| 6 r(l)− ε

|ω|
=
r(l)− ε

r(l)
= 1− ε

r(l)
6 1− δ, where δ =

ε

r
, 0 < δ < 1.

Hence, according to the Cauchy inequalities

|Qs(ω)| 6
m

(1− δ)
s , s = 0, 1, 2, . . . .

These inequalities are true for all ω ∈
∪

l∈Lr,m

(l ∩B(0, r(l)− ε)) = Er,m . By the Bernstein-Walsh

inequality (see (6)) we have

|Qs(z)| 6
m

(1− δ)
s · [exp V ∗(z, Er,m)]

s
, z ∈ Cn. (9)

Therefore, using equality

Qs(z) = |z|sQs

(
z

|z|

)
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and inequality (9) we obtain the following inequality

|Qs(z)| 6
|z|s ·m
(1− δ)

s ·
[
expV ∗(

z

|z|
, Er,m)

]s
, z ∈ Cn.

It follows that series
∞∑
s=0

Qs(z) converges uniformly inside the set

Ωr,m = {z ∈ Cn :
|z|

1− δ
· exp V ∗

(
z

|z|
, Er,m

)
< 1}. (10)

(Recall that the domain of convergence of a series
∞∑
s=0

Qs(z), where Qs(z) is a homogeneous

polynomial of degree s, is a set
{
z ∈ Cn : lim

S→∞
|Qs(z)|

1
s < 1

}
).

Now we take ε→ o and m→ ∞ in (10). Then we obtain the convergence of series (4) inside
the domain

Ωr =

{
z ∈ Cn : |z| · expV ∗

(
z

|z|
, Er

)
< 1

}
.

From this r ↘ 0 we obtain that series
∞∑
s=0

Qs(z) converges in the domain

Ω =

{
z ∈ Cn : |z| · expV ∗

(
z

|z|
, E

)
< 1

}
.

The theorem is proved. 2

We remark that if we set r(ℓ) ≡ 1 in Theorem 1 then we obtain the well-known result
of A. Sadullaev (Proposition 1, [5]). If we set r(ℓ) ≡ 1 and E = B(0, 1) then we obtain
the Forelli theorem. Moreover, if the radius of convergence r(ℓ) 6 R for all l ∈ E then it
is not difficult to prove that the domain of convergence Ω in (7) can be replaced by ΩR =

=

{
z ∈ Cn :

|z|
R

· expV ∗
(
Rz

|z|
, E

)
< 1

}
. It is clear that as R is increased the domain is also

increased. Therefore, series (4) actually converges inside

Ω =
∪
R

ΩR = lim
R→+∞

{
z ∈ Cn :

|z|
R

· expV ∗
(
Rz

|z|
, E

)
< 1

}
,

where the union is over all such R.

2. Holomorphy of the sum of Hartogs series
In this section we consider the holomorphy of the Hartogs series

f (z, w) =

∞∑
k=0

ck (z) w
k, (11)

assuming only that coefficients ck (z) are holomorphic. In this case we require the natural con-
dition that radius of convergence R (z) of series (11) is positive for each fixed point z ∈ D,
where D ⊂ Cn

z is some domain. We note that if f (z, w) is holomorphic function in a domain
D×{|w| < r} ⊂ Cn

z ×Cw then f (z, w) is represented in this domain by series (11), where ck (z)
are holomorphic functions and the series converges uniformly inside D × {|w| < r}. In our case,
there is no convergence of series (11) in such domain. A similar problem was considered by
M. Jarnicki, P. Pflug [8].
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Theorem 2 (9). For arbitrary series (11) with coefficients ck (z) that are holomorphic in the
domain D ⊂ Cn

z there exists a nowhere dense closed set S ⊂ D such that

1) − lnR∗(z) ∈ psh(D \ S),
2) the sum of series (11) is holomorphic for the set of variables in

{z ∈ (D \ S), |w| < R∗(z) } ,
where R∗ (z) = lim

w→z
R (w) is the lower regularization of the radius of function R(z).

Proof. Let us consider sets

Em =
{
z ∈ D : |ck(z)|

1
k 6 m, k = 1, 2, . . .

}
, m = 1, 2, . . . .

By construction and from the holomorphy of coefficients ck (z) in D it follows that these sets are

closed, E1 ⊂ E2 ⊂ . . . and D =
∞∪

m=1
Em. Then, by the Baire Theorem [10] there exists a set EM

with non-empty interior E0
M . By hypothesis,

1

k
ln |ck (z)| 6 lnM for all z ∈ E0

M , k = 1, 2, . . . .

Symbol D1 denotes the set of points z0 ∈ D such that in some neighbourhood V ∋ z0 all

functions
1

k
ln |ck (z)| are bounded from above by some constant M

(
z0
)
, that is,

1

k
ln |ck (z)| 6

M(zo) for any z ∈ V and k = 1, 2, . . . . Then the set S = D \
0

D1 is closed and nowhere dense
in D. Indeed, if S is not nowhere dense in D then S contains some neighbourhood U ⊂ S. Using

results proved above, there exists a ball B ⊂ S in which
1

k
ln |ck (z)| are uniformly bounded from

above, i.e.
1

k
ln |ck (z)| 6 M for all z ∈ B and k = 1, 2, . . . . The contradiction proves that set

S is nowhere dense.
Now let

R(z) =
1

lim
k→∞

|ck (z) |
1
k

be a radius of convergence of series (11). Then − lnR(z) = lim
k→∞

1

k
ln |ck (z)|. Taking into

account the plurisubharmonicity and local boundedness of functions
1

k
ln |ck (z)| in D1, we obtain

that function − lnR∗(z) is plurisubharmonic in D1, where R∗ (z) = lim
w→z

R (w) is the lower

regularization of function R(z). In addition, outside some pluripolar set Π ⊂ D the equality
R∗ (z) = R (z) holds (see [5]).

The holomorphy of the sum of series (11) in {z ∈ (D \ S), |w| < R∗(z)} follows from the
uniform convergence of series (11) inside this region. The theorem is proved. 2

Remark 1. The existence of S in Theorem 2 is necessary. For a nowhere dense connected
closed set S ⊂ C with a connected complement with respect to an infinitely distant point (that is,
any point z ∈ C \ S can be joined by a continuous curve with an infinite point) we can construct

a series
∞∑
k=0

ck (z) w
k for which the set S × C is an unremovable singular set ([8]).

3. Multidimensional analogues of the Fabry and Pȯlya
theorems for Hartogs series

This section is devoted to multidimensional analogues of the Fabry and Pȯlya theorems on
lacunary series. Here we study the domain of convergence of the lacunary Hartogs series and
give analogues of the Fabry and Pȯlya theorems for such series.
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Let

f (z, w) =
∞∑
k=0

cnk
(z)wnk (12)

be a lacunary Hartogs series with holomorphic coefficients cnk
(z) ∈ O (D), k = 0, 1, 2, . . . , where

D ⊂ Cn is some region. In this case we require the natural condition that radius of convergence
of series (12) R (z) is positive for each fixed point z ∈ D.

Theorem 3. Let series (12) satisfies the following conditions

1) cnk
(z) ∈ O (D), k = 0, 1, 2, . . . , and for each fixed z ∈ D it converges in the disk |w| <

R (z), R (z) > 0,

2) lim
k→∞

k

nk
= 0.

Then there exist a closed nowhere dense set S ⊂ D such that the sum of series (12) f(z, w)
is holomorphic for the set of variables inside the domain

{z ∈ D \ S, |w| < R∗ (z)}

and each point of the set {z ∈ D \ S, |w| = R∗ (z)} is a singular point of function f(z, w), where
R∗ (z) = lim

w→z
R (w) is the lower regularization of the radius of function R (z).

Proof. By Theorem 2 there is nowhere dense closed set S ⊂ D such that function f(z, w) is
holomorphic in the set of variables in

{z ∈ D \ S, |w| < R∗ (z)} ,

where R∗ (z) = lim
w→z

R (w) is the lower regularization of the radius of function R (z). In addition,

outside some pluripolar set Π ⊂ D the equality R∗ (z) = R (z) holds (see [5]).
Using condition 2 of Theorem 3 and the classical Fabry theorem on gaps, we obtain that each

point of the set {z ∈ D \ S, |w| = = R∗ (z)} is a singular point of function f(z, w). Indeed, in
any neighbourhood of a point of this set there are infinitely many points that are singular points
of f(z, w). Consequently, the point itself is singular for this function. The theorem is proved.

Now we consider the situation when condition (3) is satisfied for coefficients of lacunary series
(12).

In this case, we have the following multidimensional analogue of the Pȯlya theorem.

Theorem 4 ( [11]). Let us assume that series (12) satisfies the following conditions:

1) series (12) converges uniformly inside the domain D × {|w| < r} ⊂ Cn
z × Cw, r > 0;

2) lim
k→∞

k

nk
= 0.

Then series (12) defines a single-valued holomorphic function f(z, w) in the domain W 0,
where W 0 is the open kernel of the set W =

∪
z∈D

Wf (z).

To prove this theorem we need the following statement.

Proposition 2. [12]. We consider function f(z, w) that is holomorphic in the domain D ×
{|w| < r} ⊂ Cn

z × Cw, r > 0, such that for each fixed z ∈ D function f(z, w), the function
holomorphic in the disk |w| < r is single-valued in Cw, that is, Wf (z) ⊂ Cw.

We set W =
∪

z∈D

Wf (z). Then
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1) an open kernel W 0 is domain (that is, it is connected), and the set P = npD
(
W/W 0

)
is

pluripolar in D;

2) function f(z, w) extends holomorphically to W 0;

3) if ρ (z, w) = ρ (z, ∂Wf (z)) the distance from the point (z, w) to the boundary ∂Wf (z) is
fixed z ∈ D,

then the regularization (− ln ρ (z, w))
∗ is a plurisubharmonic function in W 0.

Let us note that this proposition is connected with the well-known classical fact. Let func-
tion f(z, w) be holomorphic in some domain W 0 ⊂ Cn+1 and not holomorphic to boundary
points ∂W 0 and let ρ (z, w) be the distance from the point (z, w) ∈ W 0 to the boundary
∂W 0 (z) = ∂W 0

∩
{z}, that is, Hartogs radius of the domain W 0 at the point (z, w) belongs to

W 0. Then function − ln ρ (z, w) is plurisubharmonic in W 0 [13]. The proposition does not re-
quire holomorphy f in the set W 0 in summation of variables; it is proved under weak restrictions
on f .

Proof of Theorem 4. It follows from condition 1) of Theorem 4 that f (z, w) ∈
O (D × {|w| < r}) ⊂ Cn

z × Cw, r > 0. Using condition 2) and the classical Pȯlya theorem,
we obtain that for each fixed z ∈ D function f(z, w) holomorphic in the disk |w| < r uniquely
extends to Cw, that is, Wf (z) ⊂ Cw.

Then, by Proposition 2 the open kernel W 0 of the set W =
∪

z∈D

Wf (z) is a domain and

function f(z, w) extends holomorphically to W 0.
Using Theorems 2 and 4, we obtain the following multidimensional analogue of the Pȯlya

theorem for the lacunary Hartogs series with variable radius of convergence.

Theorem 5. Assume that series (12) satisfies the following conditions:

1) cnk
(z) ∈ O (D), k = 0, 1, 2, . . . ;

2) it converges for every fixed z ∈ D in the disk |w| < R (z), R (z) > 0;

3) lim
k→∞

k

nk
= 0 .

Then there exists a closed nowhere dense set S ⊂ D such that series (12) defines a single-
valued holomorphic function f(z, w) in the domain W 0 \ (S×C) where W 0 is the open kernel of
the set W =

∪
z∈D

Wf (z).

4. Analogues of the Fabry and Pȯlya theorems for series
in homogeneous polynomials. The Siciak’s theorem

Let us consider the formal lacunary series
∞∑
k=0

Qnk
(z) (13)

in homogeneous polynomials Qnk
(z) and we will study the domain of convergence of such series.

J. Siciak [4] considered the following situation. Let function f(z) of n complex variables be
holomorphic in a neighbourhood of zero and it is represented in the form of a lacunary series in
homogeneous polynomials

f(z) =
∞∑
k=0

Qnk
(z). (14)
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Let ψ(z) := lim
k→∞

|Qnk
(z)|

1
nk and h(z) := ψ∗(z) be a regularization of function ψ. Then it is

known that the circular domain

D := {z ∈ Cn : h(z) < 1}

is the domain of convergence of series (14). For this series we have the following multidimensional
analogue of the Fabry theorem.

Theorem 6 ( [4]). If for series (14)

lim
k→∞

k

nk
= lim

k→∞

k

nk
= 0

then the domain of convergence D of series (14) coincides with the natural domain of existence
Wf of function f(z).

Below, using the complex theory of pluripotential, we give more simple proof of this theorem,
consider it in more general situations and give an analogue of the Pȯlya theorem (the case when

lim
k→∞

k

nk
= 0). In the case when lim

k→∞

k

nk
= 0, as it was noted above, series (14) can converge

outside the domain D, i.e., D is not the natural domain of existence of function f . Nevertheless,
below we prove that f is a single-valued function in Cn, i.e. Wf ⊂ Cn, and give a simple
description of Wf in terms of Wf |l, ℓ ∈ Pn−1.

Theorem 7. Let us assume that the following conditions for series (13) and for the family of
complex lines L ⊂ Pn−1 hold:

1) L is not pluripolar;

2) lim
k→∞

k

nk
= 0;

3) for each complex line ℓ ∈ L series (13) converges in the disk l ∩B(0, r(l)), o < r 6 1.

Then the domain
Ω =

{
z ∈ Cn : |z| expV ∗

(
z

|z|
, E

)
< 1

}
,

is the domain of existence for the sum of series (13), where E =
∪
l∈L

(l ∩B(0, r(l))).

As we noted earlier, if the radius of convergence r(ℓ) 6 R then the domain Ω in Theorem 7

has the form Ω =

{
z ∈ Cn :

|z|
R

· expV ∗
(
Rz

|z|
, E

)
< 1

}
. We note that for a fixed complex line

ℓ ∋ 0 the restriction of the series
∞∑
s=0

Qs(z)] to this line determines a power series

∞∑
s=0

Qs(ω)w
s, (15)

where w ∈ ℓ is the direction vector of the line ℓ. If R̂ (ω) is the radius of convergence of series
(15) then r(ℓ) = |ω| · R̂ (ω). From this it follows that in the Siciak theorem the function

h(z) =
|z|
R

· expV ∗
(
Rz

|z|
, E

)
.

We also have the following multidimensional analogue of the Pȯlya theorem for the lacunary
series with respect to homogeneous polynomials with variable radius of convergence.
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Theorem 8. Let us assume that series (13) and the family L ⊂ Pn−1 of complex lines satisfy
the following conditions

1) L is not pluripolar;

2) lim
k→∞

k

nk
= 0;

3) for each straight line ℓ ∈ L series (13) converges in a circle of positive radius R(ℓ).

Then series (13) defines a single-valued holomorphic function f(z) in Cn, that is, natural
domain of existence Wf of a function f is schlicht, Wf ⊂ Cn. Furthermore,

1) 0 ∈Wf ;

2) Wf coincides with the open core of the union
∪
ℓ∋0

Wf,ℓ, i.e.

Wf =

( ∪
ℓ∈Pn−1

Wf,ℓ

)0

;

3) for all complex lines ℓ ∈ Pn−1 except of some pluripolar set P ⊂ Pn−1,

ℓ ∩Wf =Wf,ℓ, ℓ /∈ P.

Here we present a proof of Theorem 8. The proof of Theorem 7 follows from analogous
reasoning and Theorem 1.

Proof of Theorem 8. From conditions of Theorem 8 it follows that series (13) satisfies condi-
tions of Theorem 1. Then by Theorem 1 series (13) converges uniformly in some neighbourhood
of zero, and its sum defines a function f(z) that is holomorphic in this neighbourhood

f(z) :=
∞∑
k=0

Qnk
(z). (16)

Next, using a fractional-linear transformation (see Section 1), we map the region under con-
sideration to the Hartogs domain. Then lines ℓ � 0 go in to straight lines parallel to the axis zn
and a neighbourhood of zero in some domain Cn−1

′z ×{|zn| < r}, r > 0. Consequently, the series
in homogeneous polynomials (16) becomes a Hartogs series

g(′z, zn) =
∞∑
k=0

cnk
(′z)znk

n (17)

and this series satisfies conditions of Theorem 4:
Let series (17) satisfies the following conditions

1) series (17) converges uniformly inside the domain

Cn−1
′z × {|zn| < r} ⊂ Cn−1

′z × Czn , r > 0,

2) lim
k→∞

k

nk
= 0.

Then series (17) defines a single-valued holomorphic function f(z, w) in the domain W 0,
where W 0 is an open kernel of the set W =

∪
z∈D

Wf (z).

Using Theorem 4 and Proposition 2, we obtain the proof of Theorem 8. The theorem is
proved. 2
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Об областях сходимости многомерных лакунарных рядов
Тахир Т.Туйчиев

Национальный Университет Узбекистана
ВУЗ городок, Ташкент, 100174

Узбекистан

Данная работа посвящена многомерным аналогам теорем Фабри и Полиа о лакунарных рядах.
В работе исследуются области сходимости лакунарных рядов Хартогса и рядов по однородным
полиномам. Приводятся аналоги теорем Фабри и Полиа для таких рядов и описываются обла-
сти сходимости этих рядов. Также развивается известный результат Й.Сичака об областях
сходимости лакунарных рядов по однородным полиномам.

Ключевые слова: плюрисубгармоническая функция, особая точка, пренебрежимо малые множе-
ства в Cn, степенные ряды, лакунарные ряды Хартогса, ряды по однородным многочленам.
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