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New models are investigated in this paper, that describe equilibrium states of plates with Signorini type
nonpenetration conditions. In these models, it is assumed that under appropriate loading, plates have
special deformations with already known configurations of edges. For this case, we deal with new non-
penetration conditions that allow us to describe more precisely the possibility of contact interaction of
plate edges. Using the method of fictitious domains, it is proved that an original contact problem for a
plate can be obtained by passing to the limit when a rigidity parameter tends to infinity from a family
of auziliary problems formulated in a wider domain. The mentioned family of problems model an equi-
librium state of plates with a crack and depend on the positive rigidity parameter. For these problems,
to prevent a mutual penetration of the opposite crack faces boundary conditions of inequality type are
imposed on the inner boundary corresponding to the crack. For the problem, describing a plate with a
crack that intersects the external boundary at zero angle (a case of a boundary having one cusp), the

unique solvability is proved.
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Introduction

The fictitious domain method for nonlinear models, describing equilibrium of n-dimensional
(n = 2,3) elastic bodies with nonlinear boundary conditions in the form of inequalities was
elaborated in [1-10]. Particularly, non-linear models for plates are studied in [6-9]. Furthermore,
as was proved in [1], the two-dimensional contact problem for a rigid body with a Signorini type
boundary condition can be considered as a limiting case for a family of equilibrium problems
modelling two-dimensional bodies with cracks. Analogous results for the Kirchhoff-Love plates
were established in [6,9].
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The method of the fictitious domain has proven useful in establishing the solvability of prob-
lems that describe equilibrium of bodies with cracks crossing the external boundary at zero an-
gles [2,4,8,9]. In the last years, within the framework of crack models subject to non-penetration
boundary conditions, numerous works have been published, see, for example, [11-25].

We should note that all boundary value problems considered here are related to the class
of free boundary problems with inequality type boundary conditions. About fictitious domain
method for linear problems, one can find in [26].

In the present work, models describing the equilibrium of plates under the Kirchhoff-Love
hypothesis are investigated. We have considered two models for plates, for the first one, we
study a plate that may be subjected to mechanical contact with a rigid obstacle, and the second
corresponds to a plate with a crack. Boundary conditions are given as a system of two inequalities
and describe non-penetration for a case of previously known configurations near plate edges that
can be subjected to mechanical contact. For the original problem, we assume that in a strain-
free state, a part of the cylindrical surface corresponding to the plate contour is adjacent to
the rigid obstacle. A unilateral condition of Signorini’s type is imposed on a given part 7 of the
boundary I'y of a domain 2, that determines the plate’s midsurface. This condition characterizes
a possibility of a certain mechanical contact interaction between the plate and the obstacle. On
the rest part I'g of the boundary I'y, measIy > 0, ToNy = @, ToU~y = I'y, we consider a clamping
condition. Auxiliary problems are formulated in extended domains ., = Q\F (€ C Q) that
describe the equilibrium of plates with a crack. For these problems, a condition of mutual non-
penetration of opposite crack faces is given as a system of two inequalities on the crack curve .
It is proved that the original contact problem can be obtained from a family of the auxiliary
problems by using a passage to the limit when a rigidity parameter tends to infinity. Applying
the fictitious domain method, the solvability of an equilibrium problem for a plate with a crack
crossing the external boundary at zero angle (in this case, the boundary of a domain does not
satisfy the Lipschitz condition) is proved.

1. Formulation of a contact problem

Let Q; C R? be a bounded connected domain with smooth boundary I'y = yUT'g, yNTy = 0,
measly > 0 (Fig.1). We suppose that the curve v does not contain endpoints. We denote by
v = (v1,12) the outward unit normal vector to I';. We assume that the plate has a constant
thickness 2h = 2. We introduce the Cartesian coordinates {1, 2,2} in such a way that the set
Q1 x {0} C R? corresponds to the initial undeformed plane midsurface of the plate.

Vv 1"1

Fig. 1. Geometrical objects of the problem
We denote by x = (W, w) the vector of displacements of points of the midsurface, where

W = W(z) = (wy,ws) and w = w(x) are horizontal (along the plane (z1,z2)) and vertical
displacements respectively, © = (21, z2). In accordance with the Kirchhoff-Love hypothesis, for
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displacements of plate points we have the following linear relationships [27]
Wz, z) =W(z) — zVw, w(z,z)=w(x), |z|<1,
where |z| is a distance from the mid-surface. The strain and integrated stress tensors are denoted

by e = €:;(W), 04 = 04;(W), respectively [11]:

1 o
eig(W) = g(wsi +wiy), 0i;(W) = agmen(W), 1,7 =1,2, (1)

where {a;;ri} is the given elasticity tensor, assumed to be symmetric and positive definite:
Qijkt = Qiij = QGikt, G55, k,0=1,2, ajju € L(R?),
aijméiiCm = col€l?, V&, & =&, i,j=1,2, co=const>0.
Hereinafter, we will use a summation convention over repeated indices and the following notation

¢ 0%
= ) (b)lj = .

¢7i

Next we denote the bending moments by formulae [11]
mij(w) = —dijrw,k, 4,5 =1,2, 2)

where the tensor {d;;x} has the same properties as the tensor {a;;x }. Let B(S,-,-) be a bilinear
form defined by the equality

B(S. v, ) = /S {045 (W) €55 (W) — miy(w)w,5; b,

where S is some domain, y = (W,w) € H(S)? x H(S), x = (W,w) € H(S)? x H*(S). The
potential energy functional of the plate has the following representation [11]:

1
(4, x) = §B(Ql,x,x) */Q Fxdz, x=(W,w), (3)

where the vector F' = (fi, f2, f3) € L? (R?)? describes the body forces [11].

loc
Suppose that the following boundary clamping conditions are satisfied

wza—w:Wzo on [,
ov

where v is the unit external normal vector to I';. We will need the following spaces
HYO(Q) = {v € HY(Qy) ‘ v=0 on Iy },
2,0 2 v
H*%(0q) = qv e H*() ‘ v=—=0 only ¢,

v
H(Ql) = HI’O(Ql)Q X HQ’O(Ql).

Let us write out a boundary condition of Signorini’s type for the edge of the plate describing
a possible mechanical frictionless contact with a rigid obstacle for the case of a known certain
configuration of a plate bending near the edge

ow ow
Wy — — < — K .
v S 0, ) <0 on Y (4)
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Fig. 2. The configuration of the plate bending near the contact surface of a rigid obstacle

As an example of the considered configuration of the plate edge near the contact surface, which

w
is given by the sign of the expression 5y e can provide the following figure for the section of
v

the plate (see Fig. 2), where the angle o = arctan (%’j) < 0 determines a bending angle.

Here, the top figure shows the state of the plate before deformation, and the bottom one depicts
the deformed state. It is easy to see, that if the function x = (W, w) satisfies (4), then the
following relation

(W2(z,2z),w*(z,2)) - (r,00 <0 on vy Vz:|z|<1 (5)

also holds. This means that (4) provides non-penetration for a certain known configuration of a
plate bending near the edge. The general non-penetration condition has the form [6]

ow
Wl/—i—‘ay‘\o on 7y (6)

Now we can specify the following set of admissible displacements
Ko ={x=W,w) € H()| x satisfies (4)}.

It is obvious that the set K is convex and closed and, consequently, weakly closed in the reflexive
space H (7). Applying the Korn and the Poincare inequalities, we infer the following estimates

lWlo < [ auWeg(Wde. eallwlfpa, < = [ mitwho ds
with constants ¢; > 0, ¢z > 0 being independent of W € HY0(Q;)?, w € H*>(Q;). From this
we get the inequality
Xl 0, < B(Q1,x,x) Vx € H(), (7)

which guarantees the equivalence of the standard H(€2;) norm with that defined by the seminorm
B(le 5 ) .

A variational statement of an equilibrium problem for an elastic plate that may be subjected
to mechanical contact with a rigid obstacle is formulated as follows:

Find & € K5 such that II(921;&) = 1€nlf(’ II(Q; 7). (8)
neKs

The estimate (7) and the linearity of the functional F* : H(;) — R, F*(x) = [ Fxdz, guaran-
o
tee that the energy functional II(§2, x) is coercive and weakly lower semicontinuous on H (1)

(see [4]). In virtue of the mentioned properties of the functional II(€2, x) and the set K of
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admissible displacements, we can apply the Weierstrass theorem, which gives an existence of a
solution to the problem (8). Uniqueness of the solution & = (Us,us) follows from the strict
monotonicity of the derivative operator 1T} (€21, x) : H (1) — H(Q1)*. Because of the convex-
ity and differentiability of the functional II(21,x) on H(€;), the minimization problem (8) is
equivalent to the following variational inequality, see [4]

§s € K, Bl(Qlagst_fs) = o F(X—ﬁs)diﬁ Vx € K. (9)

2. Auxiliary problems

As it turned out, the problem (9) which is equivalent to (8) can be obtained as a limit problem
for a family of auxiliary problems formulated in a wider domain than ;. Moreover, each problem
of this family governs the equilibrium state of an elastic plate with a crack. We extend the domain
2y to a domain ), by adding some fictitious domain €, in such a way that v lies strictly inside
Q = int(Q; UQy) (see Fig. 3). We assume that the boundary I'y of Q5 is sufficiently smooth.
The extended domain with cut is denoted by Q. = Q\7¥, and its exterior boundary is denoted
by I' = (T';y UT9)\Y, where £ = int(T'; NT'2). We assume that meas(I' N I;) > 0, i = 1,2.
In accordance with the direction v, we will use the notations 1, ¥~ for positive and negative
faces of the curve ¥, respectively. Thus, one can define the traces vt = v|g+, v~ = v|y- for an
arbitrary v € H'(Q,). The jump of v on ¥ is denoted by [v] = v — v~. Similar notation will
be used for traces and jumps on ~.

Fig. 3. Geometry of the extended domain

Let us define a family of variational problems that are formulated in €2, and depend on
the positive parameter A\, which will subsequently tend to zero. We consider the plates with a
midsurface corresponding to the set {2} x 0. Suppose the elastic coefficients in the subdomain
)4 are constant, and in the subdomain 25 depend on A as follows

- { Qijkl in (), Ay = { dijk in ), (10)
A gk : A 4k i
“ A ag i in Qo I AT i in Qo

We will need the following spaces

HYO(Q,) = {veHl(QW) ‘ v=0 onF},

on

H*%(Q,) = {’U € H*(Qy) ’ v= 9 =0 on I‘},
H(Q,) = H"(Q,)% x H*9(Q,), (11)
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where n is a unit exterior vector to I'.  For the functions x = (W,w) € H(Q,),
= (W,w) € H(,) we can define the following bilinear form

B ’vaa / {Uzj 82] ’l] }dlE

where

m;\J(w) = —dg\jklw,kl, ag\j(W) = c;\jklakl(W), 1=1,2. (12)
Obviously, taking into account the formulas (1), (2) for o;;(W), ms;(w), i¢,j = 1,2, we can
rewrite B*(Q,,,-) in the form

BA(Q’Y7X7>Z> = B(QI,XaX) + A_lB(QQaX7>Z)'
Let us assume that the energy functional of the plate with the crack is defined by
1
T (993 %) = 5B (25, X X) —/Q Fydr, x=Ww), (13)
v

where the function F of external forces was given in (3).
Under assumption that for equilibrium state the plate edges have a certain configuration, the
non-penetration condition for the crack faces takes the form

w2 (3

The corresponding equilibrium problem implies the minimization of the energy functional:

}20 on 7. (14)

find ¢* € K such that II,(Q,;¢&") = ig’(m(m;x), (15)
X

where
K={xeH,y)|x=(Ww) satisfies (14)}

set of admissible displacements.
Considering that the desired function belongs to the class H(2), we have the following
relations

ow

S e

i.e. the displacement vector x = (W, w) satisfies the gluing conditions on ¥\7. For the domain
Q,, we introduce the Sobolev spaces

H(Qy) = {n (W,w) € H' Qo) x H () x H2(Q) | 7=0, 22 =0 on rmFQ,}. (16)

0
on
Regularity of the domain’s boundary 'y (the Lipschitz regularity is sufficient) allows us to state
that the estimate

B(Qa,m,1) = c2|nllira,y, Y0 € H(Q2), n=0 on I'NTy, (17)

which is analogous to (7), holds with some constant ¢z > 0 independent of n [11]. In virtue of
(7) and (17), for every fixed A we have

B Qy,m,m) = exllnllye,) Y0 € H(Q), (18)
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where c), is a constant independent of A. It is easy to show that the set K is closed and convex.
Besides, one can easily prove that II(£2,;7) is coercive, convex, weakly lower semicontinuous,
and differentiable on H(£2,) [28].

For every fixed A > 0, by the Weierstrass theorem there exists a solution &* = (U*,u?) to
the minimization problem (15). The uniqueness of solutions to (15) follows by the standard
arguments [11]. Furthermore, (15) is equivalent to the variational inequality [28]

S K, BNQ.E -6 > / Fn—&)dr VneK. (19)

Q“/
3. Passage to the limit when a rigidity of the plate goes
to infinity.
Now we are going to make explicit the relationship between the problems (9) and (19). It
turns out that the solutions £* converge to a limiting function & as A — 0. Moreover, the
restriction of £ onto {2 is a solution to the variational inequality (9).

Comparing two inequalities that correspond to (19) with the test functions n = 0 and n = 2¢,
we get

B ) + 1B ) = [ e
Q'Y

From here, making use of (17), (18), for A € (0, Ag] we have

1M e,y < e, 1€ m,) < e, (20)

where the constants ¢ > 0 and ¢4 > 0 are independent of A. Due to the boundedness of the
solutions {€*}, A € (0, \o] in H((2,), we can extract a subsequence (we preserve the notation)
{&€*} such that

=€ weakly in  H(Q,). (21)

The second estimate in (20) implies
=0 strongly in  H(Qy). (22)

We show that the restriction €|q, of € onto Q; is a solution to the problem (8). We first prove
that £|q, belongs to the set K. The convergence (21) implies the strong convergence of traces

ou? o ~
8L — a—u strongly in  Lo(I'y NTy), & — & strongly in  Lo(Ty)?, i=1,2. (23)
v v
In view of (22), we have £* — 0 in Ly(I'2)3. This means that £=0in Ly(T'3)3. Choosing a
subsequence, if necessary, we assume that as A — 0

- out @

& =€, W—)(?V ae.on Iy, i=1,2.

Therefore, we can pass to the limit in the inequalities

o] owr
ov |’ ov

[U)\V]>[ ]20 on 7,
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and, taking into account the equality {;: = 0 almost everywhere on I's, we obtain the relations

7S ou 812<0 _
v ——, — < on .
ov ov "

Similarly, we can establish that §~ = 0 on I'y. Thus we have established that the inclusion
&|q, € Ks holds. Choosing the test function n € K such that n=0 in Qz, we get from (19)

B(Qlagkvn) P B(Qlag)\afk) + %B(QQa§A7E>\) - /

F@dm+/ F(n—&Nde.  (24)
Q2

2

Passing to the lower limit as A — 0 on both sides of this identity and using (21), (22), we have

Q1

The last term in (25) is nonnegative because of (17). This provides to the following inequality

B(OEa) > BOLED+ [ Fl-8in e K., (26)
1

It should be pointed out that when deriving the formula (26), we used the fact that by extending

an arbitrary function 77 € K, to 25 by zero, we obtain the function n € K such that n = 0 in Qs.

We note that (26) coincides up to the notation with (19). By the uniqueness of a solution of the

variational inequality (19), we get £|q, = &. The aforesaid remains valid for I'; € C%!, i =1,2.

So, the following statement is proved.

Theorem 3.1 Solutions £ of the problems (15) converge weakly in H(S,) to the function € as
A — 0, so that |, = &, where & is the solution of (8), &|q, = 0.

4. Application of the fictitious domains method in a proof
of the solvability of an equilibrium problem for a plate
with a crack

This section discusses a problem in which the curve describing the crack, crosses the external
boundary at zero angle. In this case, the standard method of proving solvability based on the
straightforward application of Korn’s inequality could not be applied. This circumstance causes
the fact that the boundary contains one boundary cusp, which violates the fulfillment of the
Lipschitz condition for a domain of the problem. To study the solvability of such problems, the
fictitious domain method, which adapted for this type of problems with one-sided constraints,
can be successfully applied.

In order to formulate the problem we start by providing a description of suitable geometric
objects. Let ; C R? be a bounded connected domain with smooth boundary I';. Suppose
that a smooth unclosed curve + lies inside §2; such that one of tips of the curve ¥ is located
on the boundary I';, and an angle between two tangents to curves I'1, 7 at their common point
20 = (29,29) is zero. The domain with cut is denoted by Q] = Q1\¥. In addition, we assume
that v can be extended up from the another curve’s tip to the outer boundary I'y so that angle
between these curves at their point of intersection is positive (see Fig. 4). Denote by v = (v1,v2)
the unit normal vector to . As above, suppose that the plate has a constant thickness equal
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Fig. 4. Geometry of the problem

to 2. Let us assign a three-dimensional Cartesian space {z1, 2,2} with the set ] x [-1,1]
corresponding to the plate with a crack. The cylindrical surface z € v, —1 < z < 1 describes the
crack in the plate. As before, the functional of energy for this problem has the following form

1
H<Q’1¥7X) = iB(Q'l}/a)QX) - /Q’YFde7 X = (VV7 U)),
1
where the vector F' = (fi, fa, f3) € L2 (R?)3 is the external force vector [11].

On the exterior boundary I'y, we impose the clamping condition

Jw
’LU:W:W:O on F17

where [ is the unit outward normal to I';. Let us introduce the following notation for the Sobolev
spaces:

H0@) = {ve HY(9)) ‘ v=0onT},
H?2%(Q]) = {v€H2 Q) ‘ v=2=0 onI‘l},
H(Q]) = HY(Q])? x H*°(Q]).
The set of admissible displacements is given by
i = {x = (W,w) € H(Q])| y satisfy (14)}.

It is obvious that the set K is convex and closed in H (Q7). The equilibrium problem for a plate
with the nonpenetration condition (14) for a certain known configuration of a plate bending near
the crack can be formulated as follows:
find e K suchthat II(Q];€) = inf II(Q;7). (27)
neK
The functional II(2];7) is convex and differentiable, hence the problem (27) is equivalent to the
variational inequality

Eek. BOLéx—9> [ Pa-fdr vxek, (25)

In order to apply the fictitious domain method, we add to the domain Q] a new domain s
with a smooth boundary I's so that 2° € ¥, ¥ = int(I'; N T3) (see Fig. 5). We denote by
Q) = (21 UQy U X)\7, an extended domain with a cut v and by I' = (I'; UT'2)\X an external
boundary of the domain €2,. Then, we assume that meas(I' N I';) > 0, i = 1, 2.
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L

Fig. 5. Geometry of the extended domain

Following the notation adopted in the third section of the article, we denote by n a unit
outward normal to I'. We formulate the family of auxiliary problems depending on a parameter
X € (0,g]. For any fixed A € (0; \g], consider a plate with the mid-plane corresponding to the

domain €2,. Suppose that the elastic coefficients depend on A by formulas (10), moments m)

i
and stresses o

%> 4, = 1,2, are expressed by the formulas (12). Consider a following energy
functional II)(£2,;n) that has the same form as in (13) and defined on H(f2,) ( the space H(2,)
is defined in (11)). So, for any fixed A € (0; Ao, we consider the following variational statement

of an equilibrium problem for a plate:

find ¢* € K’ such that TI,(Q,;&Y) = inf T (9253 7), (29)
neK’

where

K' = {ne H(Q,) |n=(W,uw)| satisfy (14)}

is the set of admissible functions.

By construction of the domain €2, it can be divided into two subdomains Q}, Q% with
Lipschitz boundaries such that v C Q} N Q2. For each domain Q% , i = 1,2, we can apply the
first Korn and the Poincare inequalities, which give us the following estimates

B(Q2,m,1m) = e2lnllFo, Y0 € H(Q2), =0 on I'NTy,

BNQy,m,m) = exllnlli,) Ve H(Q,),

where constants ca > 0, ¢y > 0 are independent of 7, and the space H(2) is defined in the same
way as (16).

For any fixed choice of A € (0; Ao], the functional IIy(£2,;n) is coercive and weakly lower semi-
continuous on H(2,), and the set K’ is weakly closed and convex; therefore, the minimization
problem (29) has a unique solution ¢ = (U*,u?) satisfying the variational inequality

S K, BNQ.E -6 > / F(p—&)dz VyeK'. (30)
Q,

A slight modification of the above reasonings of that were carried out section 3 enables us
to pass to the limit as A — 0 in (30) and to prove that £* converges to €9 satisfying £%]q, = ¢,
where £ is the solution of (28).

Let us show that the problem (28) has a unique solution. To verify the uniqueness we

suppose the existence of two solutions £ € K and 52 e K. Substituting these functions as the
test functions into (26), we find
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B, 1,y — 1) > /

F(éz - 51)61%7
Q’Y

1

B(QYaéQ»él - 52) = /ﬂ/ F(gl - ég)dl’

Ql
Adding the last two inequalities, we get

B(2],& — &,& — &) = 0. (31)
In the following, it will be reasonable to introduce the space R(O) for any domain O C R?:
R(O) = {C(z) = (p,0) | p = (p1, p2) = (=572 + c1, 571 + 2),
d=a+z;6;, x€O0},
where reals a, s, ¢1, co, 81, B2 € R are arbitrary. It is known that the equation
B(O,n,n) =0

holds if and only if n = ¢ in O for some function ¢ € R(O) (e.g. [4]). Using this property, from
(31) we obtain that there exists a function ¢ € R(Q]) such that £, —& = ¢ in Q7. In view of the
relation él — ég =0 on I'y, we conclude that ( =0 on I';. Bearing in mind the special structure
of ¢, we get ¢ =0 in the whole domain Q]. Therefore we have 51 — ég =0in Q. As a result,
the problem (30), which is equivalent to (27) has a unique solution. So, the following statement

is proved.

Theorem 4.1 Under the above conditions, there exists a unique solution of the equilibrium
problem (27).

The work was supported by Russian Foundation for Basic Research (grant 18-29-10007-mk)
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Metoa (pbuKTUBHBIX 00JiacTeil B 3aJa4e O paBHOBECUN
miaactuabl Kupxrodga-JIsgBa ¢ ycioBusiMu HENpOHUKAHUS
JJI M3BECTHOU KOHMUTYypaIum n3rnoa

Hroprynu 1I. JIazapes

Baamgumup B. 9BepcToB
Haranpsa A.PomanoBa

MNucTuryT MaremMmaTuku U HHMOPMATUKA
Cesepo-Bocrounslit deiepaibHblil yHIBEpCATET
Benumckoro, 58, fAxyrck, 677000

Poccus

B pabome uccaedyromesa Hosvie M00eAly 0 PABHOBECUL NAACTIUH C YCAOBUAMU Henporukarua muna Cu-
Hvopunu. Ilpednonazaemecs, 4wmo nod deticmeuem CREYUGALHHLL HA2PY30K NAGCTIURDL uMmerom defopma-
yuu ¢ onpedesennoti 3apanee u3secmHol Kon@uaypayueld Kpomox. as 3moz20 4aCMH020 CAYUAA Mb
DACCMAMPUBLEM HOBDLE YCAOBUA HENPOHUKAHUA, KOMOPYLE NO3BOAAOM HAM 00AEE MOYHO ONUCAML KOH-
maxmmnoe s3aumodeticmeue Ha kpomraxr. C nomowwpro memoda duxkmusnur obaacmetli doKa3aro, wmo
UCTOOHYI KOHMAKMHYIO 3G0GHY MONCHO NOAYHUMD € NOMOWLDHIO NPEJEADLHOL0 NEPET00a NO NAPAMEMPY
IHCECTNKOCTNY, 6 CEMETUCMEE BCNOMOLAGMEALHHIL 3000Y, CHOPMYAUPOSAHHHIL 6 boaee WUPOKOT 06AGCTU.
3adavu cemelicmea Modeaupyom pasHo8ecue NAGCTMUHBL ¢ MPEWUHOT U 3ABUCATN O NOAOHCUMENOHOZO0
napamempa srcecmrocmu. IIpu smom na enympenrets 2panuye, coomeemcmseywetd mpeuure, Haiaza-
1OMCA YCAOBUA HENPOHUKAGHUA NPOMUBONOAONHCHBIT bepe208 mpewuts, 6 sude nepasencms. Jaa 3adavu
0 naacmune ¢ mpewurot, 6urodauset Nod HYAEGHLM Y2AOM HA BHEWHION 2PAHUYY (CAYYAl 2panuydl ¢
00HUM KACOM), 00KA3aHA ee 0OHOZHANHAA PASPEUUMOCTID.

Knouesvie crosa: xpaesvie ycrosus Cunvopuru, GukmueHas obaacmyv, YCa08USs HENPOHUKAHUSA, NAA-
cmuna Kupzreogpa-Jlasa, mpewuna.
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