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New models are investigated in this paper, that describe equilibrium states of plates with Signorini type
nonpenetration conditions. In these models, it is assumed that under appropriate loading, plates have
special deformations with already known configurations of edges. For this case, we deal with new non-
penetration conditions that allow us to describe more precisely the possibility of contact interaction of
plate edges. Using the method of fictitious domains, it is proved that an original contact problem for a
plate can be obtained by passing to the limit when a rigidity parameter tends to infinity from a family
of auxiliary problems formulated in a wider domain. The mentioned family of problems model an equi-
librium state of plates with a crack and depend on the positive rigidity parameter. For these problems,
to prevent a mutual penetration of the opposite crack faces boundary conditions of inequality type are
imposed on the inner boundary corresponding to the crack. For the problem, describing a plate with a
crack that intersects the external boundary at zero angle (a case of a boundary having one cusp), the
unique solvability is proved.
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Introduction

The fictitious domain method for nonlinear models, describing equilibrium of n-dimensional
(n = 2, 3) elastic bodies with nonlinear boundary conditions in the form of inequalities was
elaborated in [1–10]. Particularly, non-linear models for plates are studied in [6–9]. Furthermore,
as was proved in [1], the two-dimensional contact problem for a rigid body with a Signorini type
boundary condition can be considered as a limiting case for a family of equilibrium problems
modelling two-dimensional bodies with cracks. Analogous results for the Kirchhoff-Love plates
were established in [6, 9].
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The method of the fictitious domain has proven useful in establishing the solvability of prob-
lems that describe equilibrium of bodies with cracks crossing the external boundary at zero an-
gles [2,4,8,9]. In the last years, within the framework of crack models subject to non-penetration
boundary conditions, numerous works have been published, see, for example, [11–25].

We should note that all boundary value problems considered here are related to the class
of free boundary problems with inequality type boundary conditions. About fictitious domain
method for linear problems, one can find in [26].

In the present work, models describing the equilibrium of plates under the Kirchhoff-Love
hypothesis are investigated. We have considered two models for plates, for the first one, we
study a plate that may be subjected to mechanical contact with a rigid obstacle, and the second
corresponds to a plate with a crack. Boundary conditions are given as a system of two inequalities
and describe non-penetration for a case of previously known configurations near plate edges that
can be subjected to mechanical contact. For the original problem, we assume that in a strain-
free state, a part of the cylindrical surface corresponding to the plate contour is adjacent to
the rigid obstacle. A unilateral condition of Signorini’s type is imposed on a given part γ of the
boundary Γ1 of a domain Ω1 that determines the plate’s midsurface. This condition characterizes
a possibility of a certain mechanical contact interaction between the plate and the obstacle. On
the rest part Γ0 of the boundary Γ1, measΓ0 > 0, Γ0∩γ = ∅, Γ0∪γ = Γ1, we consider a clamping
condition. Auxiliary problems are formulated in extended domains Ωγ = Ω\γ (Ω1 ⊂ Ωγ) that
describe the equilibrium of plates with a crack. For these problems, a condition of mutual non-
penetration of opposite crack faces is given as a system of two inequalities on the crack curve γ.
It is proved that the original contact problem can be obtained from a family of the auxiliary
problems by using a passage to the limit when a rigidity parameter tends to infinity. Applying
the fictitious domain method, the solvability of an equilibrium problem for a plate with a crack
crossing the external boundary at zero angle (in this case, the boundary of a domain does not
satisfy the Lipschitz condition) is proved.

1. Formulation of a contact problem

Let Ω1 ⊂ R2 be a bounded connected domain with smooth boundary Γ1 = γ∪Γ0, γ∩Γ0 = ∅,
measΓ0 > 0 (Fig.1). We suppose that the curve γ does not contain endpoints. We denote by
ν = (ν1, ν2) the outward unit normal vector to Γ1. We assume that the plate has a constant
thickness 2h = 2. We introduce the Cartesian coordinates {x1, x2, z} in such a way that the set
Ω1 × {0} ⊂ R3 corresponds to the initial undeformed plane midsurface of the plate.

Fig. 1. Geometrical objects of the problem

We denote by χ = (W,w) the vector of displacements of points of the midsurface, where
W = W (x) = (w1, w2) and w = w(x) are horizontal (along the plane (x1, x2)) and vertical
displacements respectively, x = (x1, x2). In accordance with the Kirchhoff-Love hypothesis, for
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displacements of plate points we have the following linear relationships [27]

W z(x, z) = W (x)− z∇w, wz(x, z) = w(x), |z| 6 1,

where |z| is a distance from the mid-surface. The strain and integrated stress tensors are denoted
by εij = εij(W ), σij = σij(W ), respectively [11]:

εij(W ) =
1

2
(wj,i + wi,j), σij(W ) = aijklεkl(W ), i, j = 1, 2, (1)

where {aijkl} is the given elasticity tensor, assumed to be symmetric and positive definite:

aijkl = aklij = ajikl, i, j, k, l = 1, 2, aijkl ∈ L∞(R2),

aijklξijξkl > c0|ξ|2, ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const > 0.

Hereinafter, we will use a summation convention over repeated indices and the following notation

ϕ,i =
∂ϕ

∂xi
, ϕ,ij =

∂2ϕ

∂xi∂xj
.

Next we denote the bending moments by formulae [11]

mij(w) = −dijklw,kl , i, j = 1, 2, (2)

where the tensor {dijkl} has the same properties as the tensor {aijkl}. Let B(S, · , ·) be a bilinear
form defined by the equality

B(S, χ, χ) =

∫
S

{
σij(W ) εij(W )−mij(w)w,ij

}
dx,

where S is some domain, χ = (W,w) ∈ H1(S)2 ×H2(S), χ = (W,w) ∈ H1(S)2 ×H2(S). The
potential energy functional of the plate has the following representation [11]:

Π(Ω1, χ) =
1

2
B(Ω1, χ, χ)−

∫
Ω1

F χdx, χ = (W,w), (3)

where the vector F = (f1, f2, f3) ∈ L2
loc(R2)3 describes the body forces [11].

Suppose that the following boundary clamping conditions are satisfied

w =
∂w

∂ν
= W = 0 on Γ0,

where ν is the unit external normal vector to Γ1. We will need the following spaces

H1,0(Ω1) =
{
v ∈ H1(Ω1)

∣∣∣ v = 0 on Γ0

}
,

H2,0(Ω1) =

{
v ∈ H2(Ω1)

∣∣∣ v =
∂v

∂ν
= 0 on Γ0

}
,

H(Ω1) = H1,0(Ω1)
2 ×H2,0(Ω1).

Let us write out a boundary condition of Signorini’s type for the edge of the plate describing
a possible mechanical frictionless contact with a rigid obstacle for the case of a known certain
configuration of a plate bending near the edge

Wν − ∂w

∂ν
6 0,

∂w

∂ν
6 0 on γ. (4)
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Fig. 2. The configuration of the plate bending near the contact surface of a rigid obstacle

As an example of the considered configuration of the plate edge near the contact surface, which

is given by the sign of the expression
∂w

∂ν
, we can provide the following figure for the section of

the plate (see Fig. 2), where the angle α = arctan
(
∂w
∂ν

)
6 0 determines a bending angle.

Here, the top figure shows the state of the plate before deformation, and the bottom one depicts
the deformed state. It is easy to see, that if the function χ = (W,w) satisfies (4), then the
following relation

(W z(x, z), wz(x, z)) · (ν, 0) 6 0 on γ ∀z : |z| 6 1 (5)

also holds. This means that (4) provides non-penetration for a certain known configuration of a
plate bending near the edge. The general non-penetration condition has the form [6]

Wν +

∣∣∣∣∂w∂ν
∣∣∣∣ 6 0 on γ. (6)

Now we can specify the following set of admissible displacements

Ks = {χ = (W,w) ∈ H(Ω1)| χ satisfies (4)}.

It is obvious that the set Ks is convex and closed and, consequently, weakly closed in the reflexive
space H(Ω1). Applying the Korn and the Poincare inequalities, we infer the following estimates

c1||W ||2H1,0(Ω1)
6

∫
Ω1

σij(W )εij(W )dx, c2||w||2H2,0(Ω1)
6 −

∫
Ω1

mij(w)w,ij dx,

with constants c1 > 0, c2 > 0 being independent of W ∈ H1,0(Ω1)
2, w ∈ H2,0(Ω1). From this

we get the inequality
||χ||2H(Ω1)

6 B(Ω1, χ, χ) ∀χ ∈ H(Ω1), (7)

which guarantees the equivalence of the standard H(Ω1) norm with that defined by the seminorm
B(Ω1, ·, ·).

A variational statement of an equilibrium problem for an elastic plate that may be subjected
to mechanical contact with a rigid obstacle is formulated as follows:

Find ξs ∈ Ks such that Π(Ω1; ξs) = inf
η∈Ks

Π(Ω1; η). (8)

The estimate (7) and the linearity of the functional F ∗ : H(Ω1) → R, F ∗(χ) =
∫
Ω1

Fχdx, guaran-

tee that the energy functional Π(Ω1, χ) is coercive and weakly lower semicontinuous on H(Ω1)

(see [4]). In virtue of the mentioned properties of the functional Π(Ω1, χ) and the set Ks of
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admissible displacements, we can apply the Weierstrass theorem, which gives an existence of a
solution to the problem (8). Uniqueness of the solution ξs = (Us, us) follows from the strict
monotonicity of the derivative operator Π′

η(Ω1, χ) : H(Ω1) → H(Ω1)
∗. Because of the convex-

ity and differentiability of the functional Π(Ω1, χ) on H(Ω1), the minimization problem (8) is
equivalent to the following variational inequality, see [4]

ξs ∈ Ks, B1(Ω1, ξs, χ− ξs) >
∫
Ω1

F (χ− ξs)dx ∀χ ∈ Ks. (9)

2. Auxiliary problems

As it turned out, the problem (9) which is equivalent to (8) can be obtained as a limit problem
for a family of auxiliary problems formulated in a wider domain than Ω1. Moreover, each problem
of this family governs the equilibrium state of an elastic plate with a crack. We extend the domain
Ω1 to a domain Ωγ by adding some fictitious domain Ω2 in such a way that γ lies strictly inside
Ω = int(Ω1 ∪ Ω2) (see Fig. 3). We assume that the boundary Γ2 of Ω2 is sufficiently smooth.
The extended domain with cut is denoted by Ωγ = Ω\γ, and its exterior boundary is denoted
by Γ = (Γ1 ∪ Γ2)\Σ, where Σ = int(Γ1 ∩ Γ2). We assume that meas(Γ ∩ Γi) > 0, i = 1, 2.

In accordance with the direction ν, we will use the notations Σ+, Σ− for positive and negative
faces of the curve Σ, respectively. Thus, one can define the traces v+ = v|Σ+ , v− = v|Σ− for an
arbitrary v ∈ H1(Ωγ). The jump of v on Σ is denoted by [v] = v+ − v−. Similar notation will
be used for traces and jumps on γ.

Fig. 3. Geometry of the extended domain

Let us define a family of variational problems that are formulated in Ωγ and depend on
the positive parameter λ, which will subsequently tend to zero. We consider the plates with a
midsurface corresponding to the set {Ωγ} × 0. Suppose the elastic coefficients in the subdomain
Ω1 are constant, and in the subdomain Ω2 depend on λ as follows

aλijkl =

{
aijkl in Ω1,

λ−1aijkl in Ω2,
dλijkl =

{
dijkl in Ω1,

λ−1dijkl in Ω2,
(10)

We will need the following spaces

H1,0(Ωγ) =
{
v ∈ H1(Ωγ)

∣∣∣ v = 0 on Γ
}
,

H2,0(Ωγ) =

{
v ∈ H2(Ωγ)

∣∣∣ v =
∂v

∂n
= 0 on Γ

}
,

H(Ωγ) = H1,0(Ωγ)
2 ×H2,0(Ωγ), (11)
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where n is a unit exterior vector to Γ. For the functions χ = (W,w) ∈ H(Ωγ),
χ̄ = (W̄ , w̄) ∈ H(Ωγ) we can define the following bilinear form

Bλ(Ωγ , χ, χ̄) =

∫
Ωγ

{
σλ
ij(W )εij(W̄ )−mλ

ij(w)w̄,ij
}
dx,

where
mλ

ij(w) = −dλijklw,kl , σλ
ij(W ) = cλijklεkl(W ), i = 1, 2. (12)

Obviously, taking into account the formulas (1), (2) for σij(W ), mij(w), i, j = 1, 2, we can
rewrite Bλ(Ωγ , ·, ·) in the form

Bλ(Ωγ , χ, χ̄) = B(Ω1, χ, χ̄) + λ−1B(Ω2, χ, χ̄).

Let us assume that the energy functional of the plate with the crack is defined by

Πλ(Ωγ ;χ) =
1

2
Bλ(Ωγ , χ, χ)−

∫
Ωγ

Fχdx , χ = (W,w), (13)

where the function F of external forces was given in (3).
Under assumption that for equilibrium state the plate edges have a certain configuration, the

non-penetration condition for the crack faces takes the form

[Wν] >
[
∂w

∂ν

]
,

[
∂w

∂ν

]
> 0 on γ. (14)

The corresponding equilibrium problem implies the minimization of the energy functional:

find ξλ ∈ K such that Πλ(Ωγ ; ξ
λ) = inf

χ∈K
Πλ(Ωγ ;χ), (15)

where
K = {χ ∈ H(Ωγ) |χ = (W,w) satisfies (14)}

set of admissible displacements.
Considering that the desired function belongs to the class H(Ωγ), we have the following

relations
[χ] = 0,

[
∂w

∂ν

]
= 0 on Σ\γ,

i.e. the displacement vector χ = (W,w) satisfies the gluing conditions on Σ\γ. For the domain
Ω2, we introduce the Sobolev spaces

H(Ω2) =

{
η = (W,w) ∈ H1(Ω2)×H1(Ω2)×H2(Ω2) | η = 0,

∂w

∂n
= 0 on Γ ∩ Γ2,

}
. (16)

Regularity of the domain’s boundary Γ2 (the Lipschitz regularity is sufficient) allows us to state
that the estimate

B(Ω2, η, η) > c2∥η∥2H(Ω2)
, ∀ η ∈ H(Ω2), η = 0 on Γ ∩ Γ2, (17)

which is analogous to (7), holds with some constant c2 > 0 independent of η [11]. In virtue of
(7) and (17), for every fixed λ we have

Bλ(Ωγ , η, η) > cλ∥η∥2H(Ωγ)
∀ η ∈ H(Ωγ), (18)
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where cλ is a constant independent of λ. It is easy to show that the set K is closed and convex.
Besides, one can easily prove that Πλ(Ωγ ; η) is coercive, convex, weakly lower semicontinuous,
and differentiable on H(Ωγ) [28].

For every fixed λ > 0, by the Weierstrass theorem there exists a solution ξλ = (Uλ, uλ) to
the minimization problem (15). The uniqueness of solutions to (15) follows by the standard
arguments [11]. Furthermore, (15) is equivalent to the variational inequality [28]

ξλ ∈ K, Bλ(Ωγ , ξ
λ, η − ξλ) >

∫
Ωγ

F (η − ξλ)dx ∀η ∈ K. (19)

3. Passage to the limit when a rigidity of the plate goes
to infinity.

Now we are going to make explicit the relationship between the problems (9) and (19). It
turns out that the solutions ξλ converge to a limiting function ξ̃ as λ → 0. Moreover, the
restriction of ξ̃ onto Ω1 is a solution to the variational inequality (9).

Comparing two inequalities that correspond to (19) with the test functions η = 0 and η = 2ξ,
we get

B(Ω1, ξ
λ, ξλ) +

1

λ
B(Ω2, ξ

λ, ξλ) =

∫
Ωγ

Fξλdx.

From here, making use of (17), (18), for λ ∈ (0, λ0] we have

∥ξλ∥H(Ωγ) 6 c3, ∥ξλ∥H(Ω2) 6 c4λ, (20)

where the constants c3 > 0 and c4 > 0 are independent of λ. Due to the boundedness of the
solutions {ξλ}, λ ∈ (0, λ0] in H(Ωγ), we can extract a subsequence (we preserve the notation)
{ξλ} such that

ξλ → ξ̃ weakly in H(Ωγ). (21)

The second estimate in (20) implies

ξλ → 0 strongly in H(Ω2). (22)

We show that the restriction ξ̃|Ω1 of ξ̃ onto Ω1 is a solution to the problem (8). We first prove
that ξ̃|Ω1 belongs to the set Ks. The convergence (21) implies the strong convergence of traces

∂uλ

∂ν
→ ∂ũ

∂ν
strongly in L2(Γ1 ∩ Γ2), ξλ → ξ̃ strongly in L2(Γi)

3, i = 1, 2. (23)

In view of (22), we have ξλ → 0 in L2(Γ2)
3. This means that ξ̃ = 0 in L2(Γ2)

3. Choosing a
subsequence, if necessary, we assume that as λ → 0

ξλ → ξ̃,
∂uλ

∂ν
→ ∂ũ

∂ν
a.e. on Γi, i = 1, 2.

Therefore, we can pass to the limit in the inequalities

[Uλν] >
[
∂uλ

∂ν

]
,

[
∂uλ+

∂ν

]
> 0 on γ,
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and, taking into account the equality ξ̃ = 0 almost everywhere on Γ2, we obtain the relations

−Ũν > −∂ũ

∂ν
,

∂ũ

∂ν
6 0 on γ−.

Similarly, we can establish that ξ̃ = 0 on Γ0. Thus we have established that the inclusion
ξ̃|Ω1 ∈ Ks holds. Choosing the test function η ∈ K such that η=0 in Ω2, we get from (19)

B(Ω1, ξ
λ, η) > B(Ω1, ξ

λ, ξλ) +
1

λ
B(Ω2, ξ

λ, ξλ)−
∫
Ω2

Fξλdx+

∫
Ω1

F (η − ξλ)dx. (24)

Passing to the lower limit as λ → 0 on both sides of this identity and using (21), (22), we have

B(Ω1, ξ̃, η) > B(Ω1, ξ̃, ξ̃) +

∫
Ω1

F (η − ξ̃)dx+ lim
λ→0

inf
1

λ
B(Ω2, ξ

λ, ξλ). (25)

The last term in (25) is nonnegative because of (17). This provides to the following inequality

B(Ω1, ξ̃, η̄) > B(Ω1, ξ̃, ξ̃) +

∫
Ω1

F (η̄ − ξ̃)dx ∀η̄ ∈ Ks. (26)

It should be pointed out that when deriving the formula (26), we used the fact that by extending
an arbitrary function η̄ ∈ Ks to Ω2 by zero, we obtain the function η ∈ K such that η = 0 in Ω2.
We note that (26) coincides up to the notation with (19). By the uniqueness of a solution of the
variational inequality (19), we get ξ̃|Ω1

= ξs. The aforesaid remains valid for Γi ∈ C0,1, i = 1, 2.
So, the following statement is proved.

Theorem 3.1 Solutions ξλ of the problems (15) converge weakly in H(Ωγ) to the function ξ̃ as
λ → 0, so that ξ̃|Ω1 = ξs, where ξs is the solution of (8), ξ̃|Ω2 = 0.

4. Application of the fictitious domains method in a proof
of the solvability of an equilibrium problem for a plate
with a crack

This section discusses a problem in which the curve describing the crack, crosses the external
boundary at zero angle. In this case, the standard method of proving solvability based on the
straightforward application of Korn’s inequality could not be applied. This circumstance causes
the fact that the boundary contains one boundary cusp, which violates the fulfillment of the
Lipschitz condition for a domain of the problem. To study the solvability of such problems, the
fictitious domain method, which adapted for this type of problems with one-sided constraints,
can be successfully applied.

In order to formulate the problem we start by providing a description of suitable geometric
objects. Let Ω1 ⊂ R2 be a bounded connected domain with smooth boundary Γ1. Suppose
that a smooth unclosed curve γ lies inside Ω1 such that one of tips of the curve γ is located
on the boundary Γ1, and an angle between two tangents to curves Γ1, γ at their common point
x0 = (x0

1, x
0
2) is zero. The domain with cut is denoted by Ωγ

1 = Ω1\γ. In addition, we assume
that γ can be extended up from the another curve’s tip to the outer boundary Γ1 so that angle
between these curves at their point of intersection is positive (see Fig. 4). Denote by ν = (ν1, ν2)

the unit normal vector to γ. As above, suppose that the plate has a constant thickness equal
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Fig. 4. Geometry of the problem

to 2. Let us assign a three-dimensional Cartesian space {x1, x2, z} with the set Ωγ
1 × [−1, 1]

corresponding to the plate with a crack. The cylindrical surface x ∈ γ, −1 6 z 6 1 describes the
crack in the plate. As before, the functional of energy for this problem has the following form

Π(Ωγ
1 , χ) =

1

2
B(Ωγ

1 , χ, χ)−
∫
Ωγ

1

F χdx, χ = (W,w),

where the vector F = (f1, f2, f3) ∈ L2
loc(R2)3 is the external force vector [11].

On the exterior boundary Γ1, we impose the clamping condition

w =
∂w

∂l
= W = 0 on Γ1,

where l is the unit outward normal to Γ1. Let us introduce the following notation for the Sobolev
spaces:

H1,0(Ωγ
1) =

{
v ∈ H1(Ωγ

1)
∣∣∣ v = 0 on Γ1

}
,

H2,0(Ωγ
1) =

{
v ∈ H2(Ωγ

1)
∣∣∣ v = ∂v

∂l = 0 on Γ1

}
,

H(Ωγ
1) = H1,0(Ωγ

1)
2 ×H2,0(Ωγ

1).

The set of admissible displacements is given by

K̂ = {χ = (W,w) ∈ H(Ωγ
1)| χ satisfy (14)}.

It is obvious that the set K̂ is convex and closed in H(Ωγ
1). The equilibrium problem for a plate

with the nonpenetration condition (14) for a certain known configuration of a plate bending near
the crack can be formulated as follows:

find ξ̂ ∈ K̂ such that Π(Ωγ
1 ; ξ̂) = inf

η∈K̂
Π(Ωγ

1 ; η). (27)

The functional Π(Ωγ
1 ; η) is convex and differentiable, hence the problem (27) is equivalent to the

variational inequality

ξ̂ ∈ K̂, B1(Ω
γ
1 , ξ̂, χ− ξ̂) >

∫
Ωγ

1

F (χ− ξ̂)dx ∀χ ∈ K̂. (28)

In order to apply the fictitious domain method, we add to the domain Ωγ
1 a new domain Ω2

with a smooth boundary Γ2 so that x0 ∈ Σ, Σ = int(Γ1 ∩ Γ2) (see Fig. 5). We denote by
Ωγ = (Ω1 ∪ Ω2 ∪ Σ)\γ, an extended domain with a cut γ and by Γ = (Γ1 ∪ Γ2)\Σ an external
boundary of the domain Ωγ . Then, we assume that meas(Γ ∩ Γi) > 0, i = 1, 2.
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Fig. 5. Geometry of the extended domain

Following the notation adopted in the third section of the article, we denote by n a unit
outward normal to Γ. We formulate the family of auxiliary problems depending on a parameter
λ ∈ (0, λ0]. For any fixed λ ∈ (0;λ0], consider a plate with the mid-plane corresponding to the
domain Ωγ . Suppose that the elastic coefficients depend on λ by formulas (10), moments mλ

ij

and stresses σλ
ij , i, j = 1, 2, are expressed by the formulas (12). Consider a following energy

functional Πλ(Ωγ ; η) that has the same form as in (13) and defined on H(Ωγ) ( the space H(Ωγ)

is defined in (11)). So, for any fixed λ ∈ (0;λ0], we consider the following variational statement
of an equilibrium problem for a plate:

find ξλ ∈ K ′ such that Πλ(Ωγ ; ξ
λ) = inf

η∈K′
Πλ(Ωγ ; η), (29)

where
K ′ = {η ∈ H(Ωγ) | η = (W,w) | satisfy (14)}

is the set of admissible functions.
By construction of the domain Ωγ , it can be divided into two subdomains Ω1

L, Ω2
L with

Lipschitz boundaries such that γ ⊂ Ω1
L ∩ Ω2

L. For each domain Ωi
L, i = 1, 2, we can apply the

first Korn and the Poincare inequalities, which give us the following estimates

B(Ω2, η, η) > c2∥η∥2H(Ω2)
∀ η ∈ H(Ω2), η = 0 on Γ ∩ Γ2,

Bλ(Ωγ , η, η) > cλ∥η∥2H(Ωγ)
∀ η ∈ H(Ωγ),

where constants c2 > 0, cλ > 0 are independent of η, and the space H(Ω2) is defined in the same
way as (16).

For any fixed choice of λ ∈ (0;λ0], the functional Πλ(Ωγ ; η) is coercive and weakly lower semi-
continuous on H(Ωγ), and the set K ′ is weakly closed and convex; therefore, the minimization
problem (29) has a unique solution ξλ = (Uλ, uλ) satisfying the variational inequality

ξλ ∈ K ′, Bλ(Ωγ , ξ
λ, η − ξλ) >

∫
Ωγ

F (η − ξλ)dx ∀η ∈ K ′. (30)

A slight modification of the above reasonings of that were carried out section 3 enables us
to pass to the limit as λ → 0 in (30) and to prove that ξλ converges to ξ0 satisfying ξ0|Ω1 = ξ̂,
where ξ̂ is the solution of (28).

Let us show that the problem (28) has a unique solution. To verify the uniqueness we
suppose the existence of two solutions ξ̂1 ∈ K and ξ̂2 ∈ K̂. Substituting these functions as the
test functions into (26), we find
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B(Ωγ
1 , ξ̂1, ξ̂2 − ξ̂1) >

∫
Ωγ

1

F (ξ̂2 − ξ̂1)dx,

B(Ωγ
1 , ξ̂2, ξ̂1 − ξ̂2) >

∫
Ωγ

1

F (ξ̂1 − ξ̂2)dx.

Adding the last two inequalities, we get

B(Ωγ
1 , ξ̂1 − ξ̂2, ξ̂1 − ξ̂2) = 0. (31)

In the following, it will be reasonable to introduce the space R(O) for any domain O ⊂ R2:

R(O) = {ζ(x) = (ρ, δ) | ρ = (ρ1, ρ2) = (−sx2 + c1, sx1 + c2),

δ = a+ xiβi, x ∈ O},

where reals a, s, c1, c2, β1, β2 ∈ R are arbitrary. It is known that the equation

B(O, η, η) = 0

holds if and only if η = ζ in O for some function ζ ∈ R(O) (e.g. [4]). Using this property, from
(31) we obtain that there exists a function ζ ∈ R(Ωγ

1) such that ξ̂1− ξ̂2 = ζ in Ωγ
1 . In view of the

relation ξ̂1 − ξ̂2 = 0 on Γ1, we conclude that ζ = 0 on Γ1. Bearing in mind the special structure
of ζ, we get ζ ≡ 0 in the whole domain Ωγ

1 . Therefore we have ξ̂1 − ξ̂2 = 0 in Ωγ
1 . As a result,

the problem (30), which is equivalent to (27) has a unique solution. So, the following statement
is proved.

Theorem 4.1 Under the above conditions, there exists a unique solution of the equilibrium
problem (27).
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Метод фиктивных областей в задаче о равновесии
пластины Кирхгофа-Лява с условиями непроникания
для известной конфигурации изгиба

Нюргун П.Лазарев
Владимир В.Эверстов
Наталья А. Романова
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Белинского, 58, Якутск, 677000
Россия

В работе исследуются новые модели о равновесии пластин с условиями непроникания типа Си-
ньорини. Предполагается, что под действием специальных нагрузок пластины имеют деформа-
ции с определенной заранее известной конфигурацией кромок. Для этого частного случая мы
рассматриваем новые условия непроникания, которые позволяют нам более точно описать кон-
тактное взаимодействие на кромках. С помощью метода фиктивных областей доказано, что
исходную контактную задачу можно получить с помощью предельного перехода по параметру
жесткости в семействе вспомогательных задач, сформулированных в более широкой области.
Задачи семейства моделируют равновесие пластины с трещиной и зависят от положительного
параметра жесткости. При этом на внутренней границе, соответствующей трещине, налага-
ются условия непроникания противоположных берегов трещины в виде неравенств. Для задачи
о пластине с трещиной, выходящей под нулевым углом на внешнюю границу (случай границы с
одним каспом), доказана ее однозначная разрешимость.

Ключевые слова: краевые условия Синьорини, фиктивная область, условия непроникания, пла-
стина Кирхгофа-Лява, трещина.
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