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The diffusion of binary aqueous electrolytes through nanopores with dielectric as well as conductive surface
is investigated theoretically on the basis of Space—Charge model. The latter is extended to the case of
polarizable nanopore wall. It is shown that the diffusion of ions with different mobilities generates the
electric field, which induces non—uniform surface charge in a polarizable nanopore. It results in charge
separation inside the pore and leads to a dramatic enhancement of membrane potential in comparison
with a non—polarizable nanopore. The calculations are performed for three aqueous electrolytes based on
KCl, NaCl, and LiOH. The influence of electrolyte type and concentration difference applied across the

pore on the ion transport and membrane potential is discussed and analyzed.
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1. Introduction

When a charged membrane separates two salt solutions of different concentrations, a poten-
tial difference between them appears. It results from Donnan equilibrium between diffusion and
electric forces at membrane/solution interfaces (Donnan potentials), and electric field generated
by diffusion of ions with different mobilities (diffusion potential) [1]. The measurement of mem-
brane potential at zero current is used for characterizing the ionic permselectivity of ion exchange
membranes and determining their charge density [2, 3].
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A widely used theoretical approach for describing the membrane potential is the Teorell-
Meyer—Sievers (TMS) model [4,5]. It is based on the assumption that the Debye screening
length is larger than the pore size, so the potential and ion concentrations in the pore cross—
section are uniform. In addition, the osmotic water transport is neglected. For densely charged
membranes, the predictions of TMS model are accurate when the concentration difference across
the membrane is small [6].

The Space—Charge (SC) model, which takes into account the radial variation of potential and
ion concentrations as well as water transport in cylindrical pores, was first suggested in [7] and
revisited recently in [8]. The experimental verification of SC model was performed by comparing
the predicted streaming potential, pore conductivity, and membrane potential at zero current
with the measured data [9]. The comparison between SC and TMS model showed that the latter
overestimates the value of membrane potential for large surface charge and/or pore size exceeding
the Debye length [10].

The TMS and SC models assume that the membrane charge is constant, which is typical for
many commercially available membranes. In recent decades, a new class of membranes containing
gold nanotubules that span a complete thickness of a porous polymeric support was suggested
in [11,12]. Using membrane potential measurement at zero current, it was shown that their
selectivity can be reversible switched from anion to cation by changing the potential applied to
the conductive membrane surface. Theoretical studies of electrolyte transport in nanofiltration
membranes with conductive surface were performed in [13,14]. To correctly describe the ion
transfer in conductive nanopores, the fixed surface potential should be assumed [15]. Note that
the electric field generated by moving ions near a conductive surface can induce polarization
charges [16,17], which may in turn alter the pore transport characteristics.

Recently, it was shown theoretically and experimentally that the induced charge is responsible
for significant enhancement of diffusion potential in membranes with polarizable conductive
surface [18-20]. In binary monovalent electrolytes, the diffusion of ions with different mobilities
through such membranes generates an electric field, which speeds up the slower diffusing ion
and retards the faster diffusing ion. The electric field induces a surface charge on a conductive
pore wall, which results in charge separation inside the nanopore. The corresponding Donnan
potentials appear at the pore entrance and exit leading to a dramatic enhancement of membrane
potential in comparison with uncharged dielectric membrane.

In this work, we theoretically investigate the diffusion of electrolytes through a nanopore
with conductive polarizable walls. The influence of electrolyte type and applied concentration
difference on the ion transport are discussed and analyzed.

2. Mathematical model of electrolyte diffusion through a
nanopore

Consider a porous membrane, which separates two reservoirs denoted by L (left) and R
(right). The reservoirs contain aqueous solutions of the same monovalent and symmetric (1:1)
electrolyte with concentrations Cr and Cg, respectively (Cr, > Cg). The electrolyte diffuses
from the reservoir with a higher concentration to that with a lower concentration. The pressures
in the reservoirs are equal, and there is no electric current between them. The potential difference
between reservoirs, which develops due to diffusion, is denoted by A®.

A membrane is modelled as an array of cylindrical pores of length L, and radius R,. The
cylindrical coordinates R in radial and Z in axial directions are introduced in a single pore
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Figure 1: The geometry of a single cylindrical pore.

(Fig. 1). The transport of electrolyte through the pore is characterized by the solution velocity
U = (U,V), pressure P, cation C, and anion C'_ concentrations (mol/m?), and electric potential
®. These quantities satisfy the system of two—dimensional Navier—Stokes, Nernst—Planck, and
Poisson equations [13,14,17]. In this work, we consider three types of pores with different
boundary conditions on the walls: (1) constant surface charge density o; (2) constant surface
potential ®; (3) constant total surface charge (). The total surface charge density is defined by
o =Q/2rR,L,.

The ions in the pores are transported by convection, diffusion, and migration in electric field.
The fluxes of ions are written as

DiF
Jy=CLU-DVCyLF = CL Vo, (1)
R,T

where Dy are the ion diffusion coefficients, R, is the ideal gas constant, 7" is the temperature,
and F is the Faraday constant. The ion mobilities are calculated as uy = D+ F/R,T.
Let us introduce dimensionless variables by

R=R,r, Z = Lyz, U=—u, P =CoR,T p,

RgT Jo = D_C() . R g
& ==L, ¥ %7 . R,T/FR,

Ci:OOCj:, P =

Here u = (u,v) and Cj is the reference concentration taken as Cy = 1 mol/m3.
In what follows, we will need the quantities averaged over the pore cross—section. The di-
mensional average axial velocity is defined by

_ 2 R,
V= —/ VRdR.
RZ Jo

The average pressure P, ion concentrations C'4, potential ®, axial ion fluxes J4, total axial ion
flux J = J, + J_, and axial ion current I = J, — J_ are introduced in the same way. The
corresponding dimensionless quantities are v, p, ¢4, @, ji, j =Jjy +Jj_,and i =j, —j_.

The Space—Charge model is derived from the Navier—Stokes, Nernst—Planck, and Poisson
equations by introducing several assumptions appropriate for large aspect ratio pores [8]. The
dimensionless potential ¢, ion concentrations c4, and pressure p are represented as

QD(T,Z) = ¢v(z) +¢(T72)7 C:I:(Ta Z) = CU(Z) eXP(:FdJ(T, Z))ﬂ (2)
p(r, 2) = pu(2) + 2¢,(2) cosh(¢(r, 2)).
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Here the ion concentrations satisfy the Boltzmann distribution. The function v satisfies the
Poisson equation with boundary condition of axial symmetry

%% <ra¢é: Z)> = Cv)\(;) sinh¥(r, 2), (3)
o
5(0, z) =0. (4)

The constant surface charge density is imposed by

o
F1.2) =0, )

while for the constant surface potential one should write

Y(1,2) = ps — Pu(2). (6)

For a polarizable conductive pore wall, the surface potential ¢ should be determined in order
to satisfy the floating boundary condition

oy -
/0 E(l,z) dz =7s. (7

In conditions (5)—(7), ¢s, 0s, and 7, are the dimensionless surface potential, surface charge
density, and total surface charge density, respectively.

The relation of the average volume flux ¥ (or average axial velocity), average ion flux j =
Jj+ +Jj_, and average ion current ¢ = j, — j_ to the gradients of virtual pressure p,, virtual
chemical potential u, = Inc,, and virtual electric potential ¢, can be written in the form of
phenomenological flux—force formalism:

dp, dp, do,\" - 7
(% e %) —1@0 )" ©

Here L = —£~! is the symmetric 3x3 matrix. The coefficients of matrix £ = {£;;(z)} depend
on the function #(r, z) and virtual concentration ¢, (z) according to [18,19]

Loy = 8% Lon = 26, /01 r<D exp((r)) + eXp(—w(r))) dr—

_16c; /0 1 [rcosh(dz(r))lnr<r22cosh(1/)(r)) N (r&gy)f)] dr,

« 4c,

8¢y,

i = =2 [ ) 00) )~ 5 (Petvo) + e ) | ar. )

1 1
Liz= Lo =2 [ (r—1%)cosh(y(r))dr,  Li3= Ly = 1 / rA*(Y(r) = 1) dr,
o Jo @ Jo

| Y Jcosh(w(r)20(r) = ) = § (Dexplv(r) — exp(—u(r) )|

where o = uD,(CORgTRg)_l, ¥s = ¥(1,2), and p is the solution dynamic viscosity. The
dependence of ¢ and ¢, on z is not explicitly stated in the above formulas.
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The membrane potential is measured at zero current (z = 0). In this case, system (8) becomes

doy
dz

dp,
dz

1 de,
cy dz

=L+ L1z, = L1oT+ Las j, = L1304 L3 j. (10)
The corresponding boundary conditions are derived by assuming equal (zero) pressures and
constant concentrations in the reservoirs, and setting the potential at the left reservoir to zero.

By putting ¥ (r, z) = 0 in (2), one arrives at
z2=0: py,=-2cL, cy=cr, ¢, =0, (11)
z=1: p, =—2cg, c¢y,=cr, ¢1} = AQD
Here Ay is the dimensionless potential difference between the reservoirs (membrane potential).
Let us express dz = dc,/(c,(L12 0+ Loz j)) ™! from the second equation in (10) and substitute

it into the first and third equations. Integration of resulting equations over the pore length with
the help of boundary conditions (11) gives

CR T
/ M dey, +2(cgp —cp) =0, (12)
cr Co(Lia f+ Lao)
- [ (13)
cr CU(L12?+L22)’
bo(cy) :/ Md&” (14)
e Co(Liz f+ Lag)

where f = ©/j is the fluxes ratio. It follows from (3), (6), (9), and (14) that one can write
Y =9(r,c), ¢o = d(cy), Lij = Lij(cv)-

The calculation is performed as follows. For a non—polarizable dielectric pore with constant
surface charge density o5, problem (3)—(5) is solved numerically for a set of successive values
Co = Coi, k = 0,...,n, where ¢,o = ¢, con = cr. Then the ratio of fluxes f = v/j is
found numerically from (12), and the ion flux j is obtained from (13). The potential difference
between reservoirs Ay = ¢,(cr) is determined from (14), while the virtual variables are found
by integration of (10), (11).

For a polarizable conductive pore with constant total surface charge density @4, an initial
guess for the surface potential o is set. Here problem (3), (4), (6) is solved for each ¢, at
fixed @5 and j. Note that ¢,(cy0) = ¢ (cr) = 0. The value ¢,(c,i) is found iteratively starting
from ¢, (¢, k—1) and repeating the solution of (3), (4), (6) followed by application of (14). The
calculation is performed iteratively to find the fluxes ratio f from (12). Then j is calculated
from (13) and virtual variables are obtained by integration of (10), (11). It allows to find
Y(r, z) = P(r,cy(z)) and finally calculate the distribution of surface charge o(z) = 0v/0r(1, 2)
and the integral in the left-hand side of (7). The whole procedure is iterated to find the surface
potential ¢, with which Eq. (7) is satisfied. This iteration is not required when the surface
potential is fixed externally.

The integration of Poisson equation (3) is performed by reducing it to two first—-order ODE
and applying the Runge-Kutta—Merson method of 5th order starting from r = € to r = 1, where
€ is close to zero. Here an additional boundary condition v (e, x) = 9 is required. The value g
is determined by the shooting method in order to satisfy boundary condition (5) or (6) at fixed
z. The initial approximation for it can be found from analytical solution derived in [21].
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Table 1: The diffusion coefficients of ions.

Tons K*, ClI™ Nat, ClI~ Lit, OH™
Dy, 1079 m?/s 1.957 1.330 1.030
D_, 1079 m?/s 2.032 2.032 5.028
D,/D_ 0.963 0.654 0.195

3. Results and discussion

In this work, we consider the diffusion of three aqueous electrolytes on the basis of KCl and
NaCl salts and LiOH base through a nanopore. The ion diffusion coefficients and their ratios are
given in Table 1. The ratio of diffusion coefficients decreases in the sequence KCl — NaCl —
LiOH. To study purely diffusive transport of ions, it is assumed that the membrane is uncharged.
For a dielectric nanopore, it means that the surface charge density o = 0, while for a conductive
nanopore, the total surface charge density @ = 0. In the latter case, the local surface charge
density can be non—zero.

The dimensions of nanopore are taken as R, = 5 nm, L, = 100 gm. The parameters used
in the calculations are as follows: T = 298.15 K, R = 8.314 J/(mol K), F = 96485 C/mol,
€ ="78.49, g9 = 8.854-107!? F/m. The dynamic viscosity of ionic solutions is taken as that of
water: = 0.888-1073 Pa-s.

The extensive comparison between non—polarizable and polarizable nanopores for different
electrolytes is shown in Fig. 2. Let us start with the aqueous NaCl electrolyte, see Figs. 2
(e-h). The concentrations at the reservoirs are fixed at C;,=10 mM and Cr=1 mM. For a non—
polarizable nanopore, the concentrations of cations and anions coincide. Due to the difference
between ion diffusion coefficients (D;/D_ = 0.654), the electric field E = —V® develops. It
speeds up the slower diffusing cation and retards the faster diffusing anion to make the total
ion fluxes equal (Jy = J_) and satisfy the condition of zero current (I = Jy —J_ = 0). In
a polarizable pore, this electric field induces the surface charge, which changes almost linearly
from the pore entrance (Z/L, = 0) to the pore exit (Z/L, = 1), while keeping the total surface
charge 7 zero, see Fig. 2 (h). It results in the higher concentration of cations (anions) at
negatively (positively) charged part of the pore, Fig. 2 (f). The separation of charge induces
the Donnan potentials at the pore entrance and exit, which both contribute to the enhancement
of membrane potential A® = ®(L,) in comparison with non—polarizable pore, Fig. 2 (e). Note
that the magnitude of averaged potential inside the pore is smaller for a polarizable case since
the induced charge suppresses the electric field in the near—wall region. The separation of ionic
charge in the pore also results in osmotic pressure jumps at the pore entrance and exit, see Fig.
2 (g). These jumps balance the electric force, which develops in the interfacial regions, where
non—zero net charge is subjected to a large electric field. The pressure gradient inside the pore
generates osmotic flow in the direction from lower to higher concentration side.

For aqueous KCl electrolyte, the ion diffusion coefficients almost coincide (D4 /D_ = 0.963).
In this case, the electric field generated by diffusion is much smaller in comparison with NaCl
electrolyte. The induced charge is smaller as well (Fig. 2 (d)), so there is almost no charge
separation inside the nanopore (Fig. 2 (b)), and the osmotic pressure jumps essentially decrease
(Fig. 2 (c)). Although the magnitude of membrane potential is greatly reduced in this case,
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Figure 2: The cross—sectionally averaged potential (a, e, i), concentrations (b,f,j), pressure
(c,g,k), and surface charged density (d,h,l) for aqueous KCl (a—d), NaCl (e-h), and LiOH

(i-1) electrolytes. Non—polarizable nanopore (dashed curves) and polarizable nanopore (solid
curves).
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Figure 3: The cross—sectionally averaged potential (a), pressure (b), and surface charge density
(c) for different concentrations Cp, at fixed Cr = 1 mM in aqueous LiOH electrolyte.

@ ®
-20
—-40 -2
60 ”
£l e
s ADT =
< 100 2 >~ e
-120 LiOH \
-140
"o 05 10 15 20 25 3.0 %o 0.5 10 15 20 25 3.0
log(C1/Cr) log(C1/Cr)
c d °
© @ KCl
30 sloNe T NaCl ]
- =
;g 20 *e‘ 10
<10 o .
1 — LIO<[
o
0.0 05 10 15 20 25 3.0 ) 05 10 15 20 25 3.0
log(CL/CRr) log(CL/CRr)

Figure 4: The membrane potential (a), average axial velocity (b), average ion flux (c), and
surface ®, or pore-averaged ® potential (d) for different electrolytes. Non—polarizable nanopore
(dashed curves) and polarizable nanopore (solid curves). Cg=1 mM.

the relative enhancement of membrane potential in a polarizable nanopore in comparison with
a non-polarizable one is close to that of NaCl electrolyte (around 2 times), compare Fig. 2 (a)
and Fig. 2 (e).

For aqueous LiOH electrolyte, the contrast between ion diffusion coefficients is quite large
(Dy/D_ = 0.195). It leads to the increase of induced charge (Fig. 2 (1)) and strong charge
separation inside the nanopore, see Fig. 2 (j). The increase of concentration jumps at the pore
entrance and exit results in the increase of osmotic pressure jumps, Fig. 2 (k). The magnitude of
membrane potential increases as well, but its relative enhancement in a polarizable nanopore with
respect to a non—polarizable one becomes smaller in comparison with KCl and NaCl electrolytes,
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see Fig. 2 (i).

The effect of electrolyte concentration Cp, in the left reservoir on the averaged potential,
averaged pressure, and induced charge profiles is demonstrated in Fig. 3. When the concentration
Cr, increases at fixed Cg, the diffusive fluxes of cations and anions become larger (second term
in the right-hand side of Eq. (1)), so a larger electric field (third term in the right—hand side
of Eq. (1)) is required to make the total fluxes equal. It results in a stronger induced surface
charge, higher osmotic pressure jumps, and larger magnitude of membrane potential.

The dependence of membrane potential for different electrolytes on the logarithm of con-
centration ratio Cr/Cg at fixed Cr = 1 mM is presented in Fig. 4 (a). When this ratio
increases, the enhancement of membrane potential in a polarizable nanopore in comparison with
a non—polarizable one becomes stronger, see also Fig. 3 (a). The increase of averaged osmotic
velocity with increasing C1,/Cgr and also in the sequence KCl — NaCl — LiOH is demonstrated
in Fig. 4 (b). It can be explained by the increased pressure gradient along the pore in both
cases, see Fig. 3 (b) and Fig. 2 (c,g,k), respectively. In a non—polarizable pore, there is no
osmotic flow due to the absence of osmotic pressure gradients. A larger concentration difference
between the reservoirs leads to higher values of averaged ion fluxes, see Fig. 4 (c) and also Eq.
(1). For a non—polarizable pore, the fluxes slightly decrease in the sequence KCl — LiOH —
Na(Cl, which corresponds to the decrease of average electrolyte diffusion coefficient calculated as
2/(1/D4++1/D_) |22]. For a polarizable pore, the LiOH electrolyte demonstrates the lowest flux
instead of NaCl electrolyte, probably, due to the presence of stronger osmotic flow in the direction
from lower to higher concentration, see Fig. 4 (b). The polarizable pore also demonstrates the
increase of surface potential with increasing the concentration contrast as well as in the sequence
KCl — NaCl — LiOH, see Fig. 4 (d). It can be explained by the stronger electric field, which
develops inside the nanopore in these cases, see Fig. 3 (a) and Fig. 2 (a,e,i), respectively. In a
non-polarizable nanopore, the absence of electric field suppression by the induced charge results
in the higher values of pore—averaged potential, Fig. 4 (d).

4. Conclusion

In this work, we have studied theoretically the diffusion of binary aqueous electrolytes through
nanopores with dielectric as well as conductive surface. The ion transport is described by the
Space—Charge model, which is extended to the case of a polarizable nanopore wall with constant
potential. It is shown that the diffusion of ions with different mobilities generates the electric
field, which induces non—uniform surface charge in a polarizable nanopore. It results in charge
separation inside the pore and leads to a dramatic enhancement of membrane potential in com-
parison with a non—polarizable nanopore. The calculations reveal that the induced charge and
charge separation inside the polarizable nanopore become larger in the sequence KCl — NaCl
— LiOH, which corresponds to the decrease of ion diffusion coefficients ratio from unity towards
zero. The same trend is found for membrane potential, averaged osmotic velocity, ion fluxes, and
pore surface potential. These quantities increase significantly with increasing the concentration
contrast between the pore entrance and exit. The described phenomena may find applications
in precise determination of ion mobilities, electrochemical and bio—sensing, as well as design of
nanofluidic and bioelectronic devices.

This work is supported the Russian Science Foundation, Project 15-19-10017.
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TeopeTtuvdeckoe mcciaenoBanme audPy3un JIEKTPOJIUTOB Ue-
pe3 moJigspu3yeMble HAHOTOPbI

Nnpa N. PezkkoB, AnToH C. Barkun, Auapeii B. Munakos

IIposederno meopemuneckoe uccaedosarue uPPysaut OUHAPHBT INEKMPOAUMOE YEPES HAHOTOPY, ¢ 0U-
INEKMPUHECKOT, & MaKHCE NPOB0OAULET NOBEPTHOCTNBIO HA 0CHOBE MOJEAU TPOCTNPAHCTNEEHH020 3aPAIG.
Jarnas modeav 0000wena Ha cay4ati NOAAPUSYMOT CTMEHKY NOPL ¢ NOCTNOARKbOIM Nomeryuarom. Ioxa-
3010, 4M0o OUPPY3UA UOHOE € PABAUNHBLMYU NOOBUHCHOCTAMU NPUBOOUM K 603HUKHOEEHUI INEKMPUE-
€K020 NOAK, KOMOPOE UHOYUUPYEN HEPABHOMEPHOE PACNPEIEACHUE 3APAOG HA NOBEPTHOCTU NPOE00AUET
nopv.. Omo ew3vieaem pasdesenue 3apAda BHYMPU NOPYL U NPUEOIUN K ZHAYUMEALHOMY YEEAUREHUIO
MEMOPAHH020 NOMEHUYAAG VO CPAEHEHUIO CO CAYYaEM JudAekmPuieckol nopv. [Iposedens, pacuemov, das
mpex munoé 600HuT dsekmposumos wa octose KCIl, NaCl u LiOH. Hcecaedosaro 6AuAHUE UG INEK-
MPOAUMA U MPAHCMEMODAHHOT, PAZHOCTNU KOHUEHMPAUUT HA NEPEHOC UOHOE U MEMOPAHHBLT NOMEHUUAA.

Karouesvie cao6a: HAHONOPUCTGA MEMOPAHA, NEPEHOC IAEKMPOAUME, JuPdysus, uHOYLUUPOBaHHYLT 3a-
pAd, 0601HOT snekmpudeckuts caotl, MeMOPAHHBLT NOMEHUUAN, YUCAEHHOE MOOEAUDPOBAHUE
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