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The di�usion of binary aqueous electrolytes through nanopores with dielectric as well as conductive surface

is investigated theoretically on the basis of Space�Charge model. The latter is extended to the case of

polarizable nanopore wall. It is shown that the di�usion of ions with di�erent mobilities generates the

electric �eld, which induces non�uniform surface charge in a polarizable nanopore. It results in charge

separation inside the pore and leads to a dramatic enhancement of membrane potential in comparison

with a non�polarizable nanopore. The calculations are performed for three aqueous electrolytes based on

KCl, NaCl, and LiOH. The in�uence of electrolyte type and concentration di�erence applied across the

pore on the ion transport and membrane potential is discussed and analyzed.
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1. Introduction

When a charged membrane separates two salt solutions of di�erent concentrations, a poten-

tial di�erence between them appears. It results from Donnan equilibrium between di�usion and

electric forces at membrane/solution interfaces (Donnan potentials), and electric �eld generated

by di�usion of ions with di�erent mobilities (di�usion potential) [1]. The measurement of mem-

brane potential at zero current is used for characterizing the ionic permselectivity of ion exchange

membranes and determining their charge density [2, 3].
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A widely used theoretical approach for describing the membrane potential is the Teorell�

Meyer�Sievers (TMS) model [4, 5]. It is based on the assumption that the Debye screening

length is larger than the pore size, so the potential and ion concentrations in the pore cross�

section are uniform. In addition, the osmotic water transport is neglected. For densely charged

membranes, the predictions of TMS model are accurate when the concentration di�erence across

the membrane is small [6].

The Space�Charge (SC) model, which takes into account the radial variation of potential and

ion concentrations as well as water transport in cylindrical pores, was �rst suggested in [7] and

revisited recently in [8]. The experimental veri�cation of SC model was performed by comparing

the predicted streaming potential, pore conductivity, and membrane potential at zero current

with the measured data [9]. The comparison between SC and TMS model showed that the latter

overestimates the value of membrane potential for large surface charge and/or pore size exceeding

the Debye length [10].

The TMS and SC models assume that the membrane charge is constant, which is typical for

many commercially available membranes. In recent decades, a new class of membranes containing

gold nanotubules that span a complete thickness of a porous polymeric support was suggested

in [11, 12]. Using membrane potential measurement at zero current, it was shown that their

selectivity can be reversible switched from anion to cation by changing the potential applied to

the conductive membrane surface. Theoretical studies of electrolyte transport in nano�ltration

membranes with conductive surface were performed in [13, 14]. To correctly describe the ion

transfer in conductive nanopores, the �xed surface potential should be assumed [15]. Note that

the electric �eld generated by moving ions near a conductive surface can induce polarization

charges [16,17], which may in turn alter the pore transport characteristics.

Recently, it was shown theoretically and experimentally that the induced charge is responsible

for signi�cant enhancement of di�usion potential in membranes with polarizable conductive

surface [18�20]. In binary monovalent electrolytes, the di�usion of ions with di�erent mobilities

through such membranes generates an electric �eld, which speeds up the slower di�using ion

and retards the faster di�using ion. The electric �eld induces a surface charge on a conductive

pore wall, which results in charge separation inside the nanopore. The corresponding Donnan

potentials appear at the pore entrance and exit leading to a dramatic enhancement of membrane

potential in comparison with uncharged dielectric membrane.

In this work, we theoretically investigate the di�usion of electrolytes through a nanopore

with conductive polarizable walls. The in�uence of electrolyte type and applied concentration

di�erence on the ion transport are discussed and analyzed.

2. Mathematical model of electrolyte di�usion through a

nanopore

Consider a porous membrane, which separates two reservoirs denoted by L (left) and R

(right). The reservoirs contain aqueous solutions of the same monovalent and symmetric (1:1)

electrolyte with concentrations CL and CR, respectively (CL > CR). The electrolyte di�uses

from the reservoir with a higher concentration to that with a lower concentration. The pressures

in the reservoirs are equal, and there is no electric current between them. The potential di�erence

between reservoirs, which develops due to di�usion, is denoted by ∆Φ.

A membrane is modelled as an array of cylindrical pores of length Lp and radius Rp. The

cylindrical coordinates R in radial and Z in axial directions are introduced in a single pore
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Figure 1: The geometry of a single cylindrical pore.

(Fig. 1). The transport of electrolyte through the pore is characterized by the solution velocity

U = (U, V ), pressure P , cation C+ and anion C− concentrations (mol/m3), and electric potential

Φ. These quantities satisfy the system of two�dimensional Navier�Stokes, Nernst�Planck, and

Poisson equations [13, 14, 17]. In this work, we consider three types of pores with di�erent

boundary conditions on the walls: (1) constant surface charge density σ; (2) constant surface

potential Φs; (3) constant total surface charge Q. The total surface charge density is de�ned by

σ = Q/2πRpLp.

The ions in the pores are transported by convection, di�usion, and migration in electric �eld.

The �uxes of ions are written as

J± = C±U −D±∇C± ∓
D±F

RgT
C±∇Φ, (1)

where D± are the ion di�usion coe�cients, Rg is the ideal gas constant, T is the temperature,

and F is the Faraday constant. The ion mobilities are calculated as u± = D±F/RgT .

Let us introduce dimensionless variables by

R = Rp r, Z = Lp z, U =
D−

Lp
u, P = C0RgT p,

C± = C0 c±, Φ =
RgT

F
ϕ, J± =

D−C0

Lp
j±, σs =

σ

εε0RgT/FRp
.

Here u = (u, v) and C0 is the reference concentration taken as C0 = 1 mol/m3.

In what follows, we will need the quantities averaged over the pore cross�section. The di-

mensional average axial velocity is de�ned by

V =
2

R2
p

∫ Rp

0

V RdR.

The average pressure P , ion concentrations C±, potential Φ, axial ion �uxes J±, total axial ion

�ux J = J+ + J−, and axial ion current I = J+ − J− are introduced in the same way. The

corresponding dimensionless quantities are v, p, c±, ϕ, j±, j = j+ + j−, and i = j+ − j−.
The Space�Charge model is derived from the Navier�Stokes, Nernst�Planck, and Poisson

equations by introducing several assumptions appropriate for large aspect ratio pores [8]. The

dimensionless potential ϕ, ion concentrations c±, and pressure p are represented as

ϕ(r, z) = φv(z) + ψ(r, z), c±(r, z) = cv(z) exp(∓ψ(r, z)), (2)

p(r, z) = pv(z) + 2cv(z) cosh(ψ(r, z)).
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Here the ion concentrations satisfy the Boltzmann distribution. The function ψ satis�es the

Poisson equation with boundary condition of axial symmetry

1

r

∂

∂r

(
r
∂ψ(r, z)

∂r

)
=
cv(z)

λ2
sinhψ(r, z), (3)

∂ψ

∂r
(0, z) = 0. (4)

The constant surface charge density is imposed by

∂ψ

∂r
(1, z) = σs, (5)

while for the constant surface potential one should write

ψ(1, z) = ϕs − φv(z). (6)

For a polarizable conductive pore wall, the surface potential ϕs should be determined in order

to satisfy the �oating boundary condition∫ 1

0

∂ψ

∂r
(1, z) dz = σs. (7)

In conditions (5)�(7), ϕs, σs, and σs are the dimensionless surface potential, surface charge

density, and total surface charge density, respectively.

The relation of the average volume �ux v (or average axial velocity), average ion �ux j =

j+ + j−, and average ion current i = j+ − j− to the gradients of virtual pressure pv, virtual

chemical potential µv = ln cv, and virtual electric potential φv can be written in the form of

phenomenological �ux�force formalism:(
dpv
dz

,
dµv

dz
,
dφv
dz

)T

= L
(
v, j, i

)T
. (8)

Here L = −L−1 is the symmetric 3×3 matrix. The coe�cients of matrix L = {Lij(z)} depend
on the function ψ(r, z) and virtual concentration cv(z) according to [18,19]

L11 =
1

8α
, L22 = 2cv

∫ 1

0

r

(
D exp(ψ(r)) + exp(−ψ(r))

)
dr−

−16c2v
α

∫ 1

0

[
r cosh(ψ(r)) ln r

(
r2

2
cosh(ψ(r))− λ2

4cv

(
r
∂ψ(r)

∂r

)2)]
dr,

L33 = −8cv
α

∫ 1

0

r

[
sinh(ψ(r))λ2(ψ(r)− ψs)−

α

4

(
D exp(ψ(r)) + exp(−ψ(r))

)]
dr, (9)

L12 = L21 =
cv
α

∫ 1

0

(r − r3) cosh(ψ(r)) dr, L13 = L31 =
4

α

∫ 1

0

rλ2(ψ(r)− ψs) dr,

L23 = L32 =
8cv
α

∫ 1

0

r

[
cosh(ψ(r))λ2(ψ(r)− ψs)−

α

4

(
D exp(ψ(r))− exp(−ψ(r))

)]
dr,

where α = µD−(C0RgTR
2
p)−1, ψs = ψ(1, z), and µ is the solution dynamic viscosity. The

dependence of ψ and cv on z is not explicitly stated in the above formulas.
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The membrane potential is measured at zero current (i = 0). In this case, system (8) becomes

dpv
dz

= L11 v + L12 j,
1

cv

dcv
dz

= L12 v + L22 j,
dφv
dz

= L13 v + L23 j. (10)

The corresponding boundary conditions are derived by assuming equal (zero) pressures and

constant concentrations in the reservoirs, and setting the potential at the left reservoir to zero.

By putting ψ(r, z) = 0 in (2), one arrives at

z = 0 : pv = −2cL, cv = cL, φv = 0, (11)

z = 1 : pv = −2cR, cv = cR, φv = ∆ϕ.

Here ∆ϕ is the dimensionless potential di�erence between the reservoirs (membrane potential).

Let us express dz = dcv/(cv(L12 v+L22 j))
−1 from the second equation in (10) and substitute

it into the �rst and third equations. Integration of resulting equations over the pore length with

the help of boundary conditions (11) gives∫ cR

cL

L11 f + L12

cv(L12 f + L22)
dcv + 2(cR − cL) = 0, (12)

j =

∫ cR

cL

dcv

cv(L12 f + L22)
, (13)

φv(cv) =

∫ cv

cL

L13 f + L23

cv(L12 f + L22)
dcv, (14)

where f = v/j is the �uxes ratio. It follows from (3), (6), (9), and (14) that one can write

ψ = ψ(r, cv), φv = φ(cv), Lij = Lij(cv).

The calculation is performed as follows. For a non�polarizable dielectric pore with constant

surface charge density σs, problem (3)�(5) is solved numerically for a set of successive values

cv = cvk, k = 0, . . . , n, where cv0 = cL, cvn = cR. Then the ratio of �uxes f = v/j is

found numerically from (12), and the ion �ux j is obtained from (13). The potential di�erence

between reservoirs ∆ϕ = φv(cR) is determined from (14), while the virtual variables are found

by integration of (10), (11).

For a polarizable conductive pore with constant total surface charge density σs, an initial

guess for the surface potential ϕs is set. Here problem (3), (4), (6) is solved for each cvk at

�xed ϕs and j. Note that φv(cv0) = φv(cL) = 0. The value φv(cvk) is found iteratively starting

from φv(cv,k−1) and repeating the solution of (3), (4), (6) followed by application of (14). The

calculation is performed iteratively to �nd the �uxes ratio f from (12). Then j is calculated

from (13) and virtual variables are obtained by integration of (10), (11). It allows to �nd

ψ(r, z) = ψ(r, cv(z)) and �nally calculate the distribution of surface charge σ(z) = ∂ψ/∂r(1, z)

and the integral in the left�hand side of (7). The whole procedure is iterated to �nd the surface

potential ϕs, with which Eq. (7) is satis�ed. This iteration is not required when the surface

potential is �xed externally.

The integration of Poisson equation (3) is performed by reducing it to two �rst�order ODE

and applying the Runge�Kutta�Merson method of 5th order starting from r = ε to r = 1, where

ε is close to zero. Here an additional boundary condition ψ(ε, x) = ψ0 is required. The value ψ0

is determined by the shooting method in order to satisfy boundary condition (5) or (6) at �xed

z. The initial approximation for it can be found from analytical solution derived in [21].
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Table 1: The di�usion coe�cients of ions.

Ions K+, Cl− Na+, Cl− Li+, OH−

D+, 10
−9 m2/s 1.957 1.330 1.030

D−, 10
−9 m2/s 2.032 2.032 5.028

D+/D− 0.963 0.654 0.195

3. Results and discussion

In this work, we consider the di�usion of three aqueous electrolytes on the basis of KCl and

NaCl salts and LiOH base through a nanopore. The ion di�usion coe�cients and their ratios are

given in Table 1. The ratio of di�usion coe�cients decreases in the sequence KCl → NaCl →
LiOH. To study purely di�usive transport of ions, it is assumed that the membrane is uncharged.

For a dielectric nanopore, it means that the surface charge density σ = 0, while for a conductive

nanopore, the total surface charge density σ = 0. In the latter case, the local surface charge

density can be non�zero.

The dimensions of nanopore are taken as Rp = 5 nm, Lp = 100 µm. The parameters used

in the calculations are as follows: T = 298.15 K, R = 8.314 J/(mol K), F = 96485 C/mol,

ε = 78.49, ε0 = 8.854 · 10−12 F/m. The dynamic viscosity of ionic solutions is taken as that of

water: µ = 0.888 · 10−3 Pa·s.
The extensive comparison between non�polarizable and polarizable nanopores for di�erent

electrolytes is shown in Fig. 2. Let us start with the aqueous NaCl electrolyte, see Figs. 2

(e�h). The concentrations at the reservoirs are �xed at CL=10 mM and CR=1 mM. For a non�

polarizable nanopore, the concentrations of cations and anions coincide. Due to the di�erence

between ion di�usion coe�cients (D+/D− = 0.654), the electric �eld E = −∇Φ develops. It

speeds up the slower di�using cation and retards the faster di�using anion to make the total

ion �uxes equal (J+ = J−) and satisfy the condition of zero current (I = J+ − J− = 0). In

a polarizable pore, this electric �eld induces the surface charge, which changes almost linearly

from the pore entrance (Z/Lp = 0) to the pore exit (Z/Lp = 1), while keeping the total surface

charge σ zero, see Fig. 2 (h). It results in the higher concentration of cations (anions) at

negatively (positively) charged part of the pore, Fig. 2 (f). The separation of charge induces

the Donnan potentials at the pore entrance and exit, which both contribute to the enhancement

of membrane potential ∆Φ = Φ(Lp) in comparison with non�polarizable pore, Fig. 2 (e). Note

that the magnitude of averaged potential inside the pore is smaller for a polarizable case since

the induced charge suppresses the electric �eld in the near�wall region. The separation of ionic

charge in the pore also results in osmotic pressure jumps at the pore entrance and exit, see Fig.

2 (g). These jumps balance the electric force, which develops in the interfacial regions, where

non�zero net charge is subjected to a large electric �eld. The pressure gradient inside the pore

generates osmotic �ow in the direction from lower to higher concentration side.

For aqueous KCl electrolyte, the ion di�usion coe�cients almost coincide (D+/D− = 0.963).

In this case, the electric �eld generated by di�usion is much smaller in comparison with NaCl

electrolyte. The induced charge is smaller as well (Fig. 2 (d)), so there is almost no charge

separation inside the nanopore (Fig. 2 (b)), and the osmotic pressure jumps essentially decrease

(Fig. 2 (c)). Although the magnitude of membrane potential is greatly reduced in this case,
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Figure 2: The cross�sectionally averaged potential (a, e, i), concentrations (b, f, j), pressure
(c, g, k), and surface charged density (d, h, l) for aqueous KCl (a�d), NaCl (e�h), and LiOH
(i�l) electrolytes. Non�polarizable nanopore (dashed curves) and polarizable nanopore (solid
curves).
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Figure 3: The cross�sectionally averaged potential (a), pressure (b), and surface charge density
(c) for di�erent concentrations CL at �xed CR = 1 mM in aqueous LiOH electrolyte.

Figure 4: The membrane potential (a), average axial velocity (b), average ion �ux (c), and

surface Φs or pore�averaged Φ̃ potential (d) for di�erent electrolytes. Non�polarizable nanopore
(dashed curves) and polarizable nanopore (solid curves). CR=1 mM.

the relative enhancement of membrane potential in a polarizable nanopore in comparison with

a non�polarizable one is close to that of NaCl electrolyte (around 2 times), compare Fig. 2 (a)

and Fig. 2 (e).

For aqueous LiOH electrolyte, the contrast between ion di�usion coe�cients is quite large

(D+/D− = 0.195). It leads to the increase of induced charge (Fig. 2 (l)) and strong charge

separation inside the nanopore, see Fig. 2 (j). The increase of concentration jumps at the pore

entrance and exit results in the increase of osmotic pressure jumps, Fig. 2 (k). The magnitude of

membrane potential increases as well, but its relative enhancement in a polarizable nanopore with

respect to a non�polarizable one becomes smaller in comparison with KCl and NaCl electrolytes,
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see Fig. 2 (i).

The e�ect of electrolyte concentration CL in the left reservoir on the averaged potential,

averaged pressure, and induced charge pro�les is demonstrated in Fig. 3. When the concentration

CL increases at �xed CR, the di�usive �uxes of cations and anions become larger (second term

in the right�hand side of Eq. (1)), so a larger electric �eld (third term in the right�hand side

of Eq. (1)) is required to make the total �uxes equal. It results in a stronger induced surface

charge, higher osmotic pressure jumps, and larger magnitude of membrane potential.

The dependence of membrane potential for di�erent electrolytes on the logarithm of con-

centration ratio CL/CR at �xed CR = 1 mM is presented in Fig. 4 (a). When this ratio

increases, the enhancement of membrane potential in a polarizable nanopore in comparison with

a non�polarizable one becomes stronger, see also Fig. 3 (a). The increase of averaged osmotic

velocity with increasing CL/CR and also in the sequence KCl → NaCl → LiOH is demonstrated

in Fig. 4 (b). It can be explained by the increased pressure gradient along the pore in both

cases, see Fig. 3 (b) and Fig. 2 (c,g,k), respectively. In a non�polarizable pore, there is no

osmotic �ow due to the absence of osmotic pressure gradients. A larger concentration di�erence

between the reservoirs leads to higher values of averaged ion �uxes, see Fig. 4 (c) and also Eq.

(1). For a non�polarizable pore, the �uxes slightly decrease in the sequence KCl → LiOH →
NaCl, which corresponds to the decrease of average electrolyte di�usion coe�cient calculated as

2/(1/D+ +1/D−) [22]. For a polarizable pore, the LiOH electrolyte demonstrates the lowest �ux

instead of NaCl electrolyte, probably, due to the presence of stronger osmotic �ow in the direction

from lower to higher concentration, see Fig. 4 (b). The polarizable pore also demonstrates the

increase of surface potential with increasing the concentration contrast as well as in the sequence

KCl → NaCl → LiOH, see Fig. 4 (d). It can be explained by the stronger electric �eld, which

develops inside the nanopore in these cases, see Fig. 3 (a) and Fig. 2 (a,e,i), respectively. In a

non�polarizable nanopore, the absence of electric �eld suppression by the induced charge results

in the higher values of pore�averaged potential, Fig. 4 (d).

4. Conclusion

In this work, we have studied theoretically the di�usion of binary aqueous electrolytes through

nanopores with dielectric as well as conductive surface. The ion transport is described by the

Space�Charge model, which is extended to the case of a polarizable nanopore wall with constant

potential. It is shown that the di�usion of ions with di�erent mobilities generates the electric

�eld, which induces non�uniform surface charge in a polarizable nanopore. It results in charge

separation inside the pore and leads to a dramatic enhancement of membrane potential in com-

parison with a non�polarizable nanopore. The calculations reveal that the induced charge and

charge separation inside the polarizable nanopore become larger in the sequence KCl → NaCl

→ LiOH, which corresponds to the decrease of ion di�usion coe�cients ratio from unity towards

zero. The same trend is found for membrane potential, averaged osmotic velocity, ion �uxes, and

pore surface potential. These quantities increase signi�cantly with increasing the concentration

contrast between the pore entrance and exit. The described phenomena may �nd applications

in precise determination of ion mobilities, electrochemical and bio�sensing, as well as design of

nano�uidic and bioelectronic devices.

This work is supported the Russian Science Foundation, Project 15�19�10017.
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Òåîðåòè÷åñêîå èññëåäîâàíèå äèôôóçèè ýëåêòðîëèòîâ ÷å-
ðåç ïîëÿðèçóåìûå íàíîïîðû

Èëüÿ È. Ðûæêîâ, Àíòîí Ñ. Âÿòêèí, Àíäðåé Â. Ìèíàêîâ

Ïðîâåäåíî òåîðåòè÷åñêîå èññëåäîâàíèå äèôôóçèè áèíàðíûõ ýëåêòðîëèòîâ ÷åðåç íàíîïîðû ñ äè-

ýëåêòðè÷åñêîé, à òàêæå ïðîâîäÿùåé ïîâåðõíîñòüþ íà îñíîâå ìîäåëè ïðîñòðàíñòâåííîãî çàðÿäà.

Äàííàÿ ìîäåëü îáîáùåíà íà ñëó÷àé ïîëÿðèçóìîé ñòåíêè ïîðû ñ ïîñòîÿííûì ïîòåíöèàëîì. Ïîêà-

çàíî, ÷òî äèôôóçèÿ èîíîâ ñ ðàçëè÷íûìè ïîäâèæíîñòÿìè ïðèâîäèò ê âîçíèêíîâåíèþ ýëåêòðè÷å-

ñêîãî ïîëÿ, êîòîðîå èíäóöèðóåò íåðàâíîìåðíîå ðàñïðåäåëåíèå çàðÿäà íà ïîâåðõíîñòè ïðîâîäÿùåé

ïîðû. Ýòî âûçûâàåò ðàçäåëåíèå çàðÿäà âíóòðè ïîðû è ïðèâîäèò ê çíà÷èòåëüíîìó óâåëè÷åíèþ

ìåìáðàííîãî ïîòåíèöàëà ïî ñðàâíåíèþ ñî ñëó÷àåì äèýëåêòðè÷åñêîé ïîðû. Ïðîâåäåíû ðàñ÷åòû äëÿ

òðåõ òèïîâ âîäíûõ ýëåêòðîëèòîâ íà îñíîâå KCl, NaCl è LiOH. Èññëåäîâàíî âëèÿíèå òèïà ýëåê-

òðîëèòà è òðàíñìåìáðàííîé ðàçíîñòè êîíöåíòðàöèé íà ïåðåíîñ èîíîâ è ìåìáðàííûé ïîòåíöèàë.

Êëþ÷åâûå ñëîâà: íàíîïîðèñòàÿ ìåìáðàíà, ïåðåíîñ ýëåêòðîëèòà, äèôôóçèÿ, èíäóöèðîâàííûé çà-

ðÿä, äâîéíîé ýëåêòðè÷åñêèé ñëîé, ìåìáðàííûé ïîòåíöèàë, ÷èñëåííîå ìîäåëèðîâàíèå

� 11 �


